软粘土路基沉降的蠕变效应研究

2018-01-17 00:48李科锋谭儒蛟邱长林
水道港口 2017年6期
关键词:粘土滨海软土

李科锋,谭儒蛟,邱长林,袁 宇

(1.天津大学 水利工程仿真与安全国家重点实验室,天津 300072;2.天津市市政工程设计研究院,天津 300072)

天津滨海地区软土具有含水量高、渗透性低、压缩性高、灵敏度高、变形大且持续时间长等特点,流变特性显著。当荷载作用于软土地基上时,由于软土变形具有明显的时效性,建筑物的工后沉降不容忽视。在软土变形的计算中,土的蠕变特性非常重要,是否考虑软土的蠕变特性不仅会使计算产生明显不同的结果,而且可能对工程的安全与否作出完全相反的评价。例如,由于蠕变效应,软土变形使得天津港北疆高桩码头的部分桩基成为“被动桩”,造成桩顶变位,大大降低了码头的安全性[1];再如竣工于1957年6月的上海工业展览馆,由于建立在软土地基上,截至1998年因软粘土的蠕变作用产生的平均沉降量超过1.6 m,且展览馆内出现大量裂缝。因此,探讨软土蠕变的变形特征,研究软土变形时效特性的内在机理,对软土地基上修建的工程十分必要。

国内外学者对于软土的蠕变特性做了大量研究。在国外,Benjamin等[2]基于一维固结试验,确定了德国不莱梅港吹填土的主固结系数和次固结系数取值范围,论证了与蠕变结合的太沙基理论的适用性;Thu Minh等[3]利用渥太华粘土提出一种新型数值解,有效预估了粘土的沉降趋势。在国内,殷建华等[4]引入“等效时间”概念,并应用到一维粘弹塑性本构模型中来分析粘土的蠕变行为;王常明等[5]对滨海软土进行三轴蠕变试验,提出软土的应力-应变-时间关系;刘润等[6-7]采用硬化模型对地基进行固结沉降分析,并对天津港南疆吹泥围埝工程进行了原位试验研究;闫澍旺等[8]对天津吹填土开展了三轴不固结不排水蠕变试验,建立了天津滨海新区软粘土的无屈服面蠕变模型;江宗斌等[9]采用FLAC3D中的Cvisc模型模拟软土路基分别考虑蠕变效应和不考虑蠕变效应的沉降对比;雷华阳等[10]对滨海吹填土进行了一系列蠕变试验,建立了相应的蠕变模型;王元战等[11]考虑围压、静偏应力、动应力、荷载循环次数等因素的影响,对烟台港淤泥质粘土进行动三轴试验,并提出描述累积塑性应变发展规律的双曲模型。这些研究得出的模型往往只能描述特定条件的试验结果,加之土体的空间变异性使得蠕变模型本身存在复杂性和局限性[12],因此有关软土蠕变特性的研究仍有待深入。

本文针对天津滨海地区典型软粘土开展了一维固结蠕变试验,应用ABAQUS有限元软件建立了考虑蠕变效应性质的软土地基固结沉降模型,通过与不考虑软土蠕变效应性质的沉降过程比较,分析天津滨海地区软土蠕变对于工后沉降的影响。

1 软土蠕变模型的建立

1.1 原状土的物理力学指标

试验土样取自天津临港工业区,该区域广泛分布新近吹填的软粘土,经真空预压加固成陆。取土地点场地平坦,取样深度为4.0~6.0 m,所取原状土样具有典型的天津滨海地区软粘土特征。土样取回后,进行了常规物理力学指标测试,如表1所示。

表1 试验土样常规物理参数Tab.1 Physical parameters of soil samples

1.2 蠕变试验

试验采用杠杆式固结仪,利用分级加载方式进行一维固结蠕变试验,加载等级依次为12.5 kPa、25 kPa、50 kPa、100 kPa、200 kPa、400 kPa,定时记录土样变形随时间发展的过程。每级荷载下土样变形小于0.01 mm/d达到稳定,进入下一级荷载。《土工试验规程》规定,每级荷载作用下,试验前24 h为土样主固结阶段,故取24 h之后的试验数据进行软土蠕变分析。

通过一维固结蠕变试验,得到连续加载条件下软土的变形时间关系曲线,如图1所示,由曲线可知,不同荷载下软土变形经48 h达到稳定。处理试验结果,得到不同荷载下应变-时间关系,如图2所示。由图2可知,每级加载开始时产生较大变形,随着时间的增长,变形趋于稳定,蠕变变形以减速发展,速度最终趋于零,其变形趋向于与荷载值相关的某一稳定的值,不会导致土体发生破坏,因此这种土体的蠕变特性属于衰减蠕变过程。

图1 软土蠕变曲线 图2 应变-时间关系Fig.1 Creep curves of soft soil Fig.2 ε-t curves of creep test

1.3 确定蠕变参数

针对软土的一维固结蠕变试验,ABAQUS有限元软件提供了“时间硬化蠕变定律”[13],即式(1),该式反映了土体在应力不变时的应变规律。

(1)

对式(1)中的时间积分可得

(2)

两边取对数得

(3)

式(2)即为软土蠕变的本构关系式,由式(3)可知,m+1、n分别为lgε-lgt、lgε-lgσcr曲线的斜率,由此可求得m、n值,再将m、n代入式(2)中,即可求得A值,具体过程如下。

1.3.1 确定时间指数m

在蠕变阶段,当应力为定值时,应变和时间成幂指数关系。故根据式(3)绘制应变-时间曲线,以确定m值。如图3 所示,为不同荷载下应变-时间拟合图。

图3 不同荷载下应变-时间拟合Fig.3 ε-t fitting under different loads

由图3可求得m值如表2所示。

表2 参数m结果Tab.2 The values of parameter m

1.3.2 确定应力指数n

在各级荷载作用下,当时间为定值时,应变和应力之间成幂指数关系。故根据式(3)绘制等时曲线,以确定n值。如图4所示,为等时曲线应力-应变拟合图。

图4 等时曲线应力-应变拟合Fig.4 σ-ε fitting of isochronous curves

由图4可求得n值如表3所示。

表3 参数n结果Tab.3 The values of parameter n

1.3.3 确定应变率系数A

根据上述确定的m,n值,代入“时间硬化蠕变定律”式(2)内,可求得参数A在各个荷载不同时刻的值,如表4所示。

表4 参数A结果 Tab.4 The values of parameter A

由此得到描述天津滨海地区软土蠕变特性的方程如下

ε=6.050 9(σcr)0.682 6t0.054 6×10-6

图5 K13+840断面填土-沉降-时间曲线Fig.5 The filling-settlement-time curve of K13+840 section

2 工程实例分析

2.1 工程概况

天津市滨海新区某道路工程[14],全路段总长为23.9 km,路面宽度为30 m,设计路面标高为3.5~3.8 m。该工程沿线地形主要以耕地、坑塘为主,现以桩号K13+840穿越坑塘段为研究对象,填土高度为8 m,填筑过程中以及施工完成后观测路基中心处沉降,填土高度和累积沉降随时间变化如图5所示。

2.2 模型建立

图6 有限元模型Fig.6 Finite element model

根据工程实际,建立有限元模型。计算中将路基变形当作平面应变问题处理,在施工过程中,路基填土经过夯实处理,自身蠕变可忽略不计。由于路基断面具有对称性,取模型一半进行分析。其中路基填土顶部宽度15 m,底部宽度27 m,深度8 m;地基土宽度80 m,深度14 m。路基采用CEP4单元,地基土采用CPE4P单元。地基土右侧边界约束水平X方向位移,底部边界全约束,未与路基接触的地基土体上边界设置排水边界,有限元模型如图6所示。

对于平面应变问题,可以通过公式把Mohr-Coulomb模型参数转换为线性Drucker-Prager模型相关参数[12],模型中路基填土采用Mohr-Coulomb模型,地基软粘土采用线性Drucker-Prager与时间硬化蠕变定律耦合的蠕变模型,路基填土和地基土参数如表5所示。

表5 模型计算参数Tab.5 The model parameter

2.3 计算结果分析

模型计算分为三步:地应力平衡,路基填筑以及工后沉降分析,其中路基填筑和工后沉降分析均采用soils分析步,填筑时间为120 d,设置为线性加载,模拟工程实际,计算结果如图7所示,工后沉降分析时间为280 d,计算结果如图8所示。

图7 填土结束时竖向位移Fig.7Verticaldisplacementattheendoffilling图8 工后280d竖向位移Fig.8Post-constructionverticaldisplacementat280days

由图7可知,路基填筑完成后,路基中点表面附近产生了非常明显的沉降,最大沉降量为0.53 m,发生在路基中点处,在水平方向,离路基中轴线方向越远沉降越小;在竖直方向,深度越大沉降越小。由图8可知,施工完成后,可认为土体上部荷载已经达到稳定,但地基仍然产生了明显的竖向沉降,最大处达到0.67 m。为了进一步分析地基沉降的发展过程,绘制路基中点的沉降量随时间变化曲线,并与实测数据进行对比,如图9所示,结果与实测数据较吻合,证明有限元模型的正确性。

分别计算考虑蠕变和不考虑蠕变工后10 a后路基中点处沉降,以分析蠕变效应对路基沉降的影响。两者沉降最大处均发生在路基中点处,考虑蠕变时沉降为0.71 m,不考虑时沉降为0.62 m,绘制路基中点处沉降曲线,如图10、图11所示。

图9 路面中点处沉降曲线Fig.9Settlementcurveatthecenterofpavement图10 路面中点处总沉降曲线Fig.10Totalsettlementcurveatthecenterofpavement图11 路面中点处工后沉降曲线Fig.11Post-constructionsettlementcurveatthecenterofpavement

由图10、图11可知,路基填筑结束时沉降占不考虑蠕变总沉降的85%,施工期内地基软土的超孔隙水压力逐渐减小而土体的有效应力逐渐增大,这时土体的主固结发展最快;施工结束后2 a土体沉降达到稳定,这与工程实际是不相符的,故不考虑蠕变效应的模型计算误差较大。而考虑地基软土蠕变效应时,路基填筑结束时沉降占总沉降的75%,蠕变效应引起的沉降占总沉降的13%,占工后沉降的50%,与不考虑蠕变模型相比,工后2 a沉降值仍在增长,在工后10 a没有停止,这说明在主固结完成后土体沉降为由蠕变效应引起次固结沉降。

3 结论

本文通过一维固结蠕变试验,研究了天津滨海地区软粘土的蠕变效应,根据时间硬化蠕变定律建立了蠕变本构模型,并确定了其蠕变参数。然后结合该地区某道路工程,运用有限元软件ABAQUS建立软土路基的固结蠕变模型,开展了是否考虑软土蠕变特性的路基沉降对比分析,通过分析,得到以下具体结论:

(1)天津滨海地区软粘土的一维固结蠕变试验证明,每级加载开始时产生较大变形,随着时间的增长,变形趋于稳定,该地区土体的蠕变类型为衰减蠕变型;

(2)通过一维固结蠕变试验确定蠕变参数A、n、m,并把参数代入到ABAQUS建立的路基沉降模型中,结果与工程实际相吻合,验证了蠕变参数和沉降模型的合理性;

(3)开展了工后10 a是否考虑蠕变的沉降对比分析,结果表明天津滨海地区软粘土的蠕变效应作用显著,蠕变效应引起的沉降占总沉降的13%,占工后沉降的50%,在工程实际中必须加以重视。

[1]李越松, 赵冲久, 赵利平, 等. 天津港岸坡土体蠕变对高桩码头的影响[J]. 中国港湾建设, 2009(4): 5-8.

LI Y S, ZHAO C J, ZHAO L P, et al. Influence of bank soil creep deformation on high-piled wharf in Tianjin Port[J]. China Harbour Engineering, 2009(4): 5-8.

[2]Schlue B F, Kreiter K, Moerz T. Time-dependent deformation of dredged harbor mud used as backfilling material[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2009, 135(4): 154-163.

[3]Le T M, Fatahi B, Khabbaz H, et al. Numerical optimization applying trust-region reflective least squares algorithm with constraints to optimize the non-linear creep parameters of soft soil[J]. Applied Mathematical Modelling, 2017, 41(1): 236-256.

[4]Yin J H, Graham J. Equivalent times and one dimensional elastic viscoplastic modeling of time-dependent stress-strain behaviour of clays[J]. Canadian Geotechnical Journal, 1994, 31:42-52.

[5]王常明, 王清, 张淑华. 滨海软土蠕变特性及蠕变模型[J]. 岩石力学与工程学报, 2004(2): 227-230.

WANG C M, WANG Q, ZHANG S H. Creep characteristics and creep model of marine soft soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2004 (2): 227-230.

[6]刘润, 闫澍旺. 天津港南疆吹泥围埝工程试验段的试验研究[J]. 土木工程学报, 2005, 38(1):105-109.

LIU R, YAN S W. Using geotextile bags to build a dike in Tianjin Harbor[J]. China Civil Engineering Journal, 2005, 38(1):105-109.

[7]刘润, 闫玥, 闫澍旺, 等. 模袋固化土围埝地基排水固结过程的模拟分析[J]. 岩土力学, 2007, 28(11):2 409-2 414.

LIU R, YAN Y, YAN S W, et al. Numerical simulation of consolidation process of soil foundation for a dam constructed by geobag solidified soil[J]. Rock and Soil Mechanics, 2007, 28(11):2 409-2 414.

[8]闫澍旺, 刘克瑾, 李伟,等. 天津滨海新区软黏土的蠕变特性及无屈服面模型研究[J]. 岩土力学, 2010(5):1 431-1 436,1 444.

YAN S W, LIU K J, LI W, et al. Study of creep properties of soft clay in Tianjin Binhai New Area and no-yield-surface constitutive model[J]. Rock and Soil Mechanics, 2010 (5): 1 431-1 436,1 444.

[9]江宗斌, 姜谙男, 石静. 基于Cvisc蠕变模型的CFG桩路基施工沉降分析[J]. 岩土工程学报, 2013 (S2): 346-351.

JIANG Z B, JIANG A N, SHI J. Subgrade settlement using CFG piles based on cvisc creep model[J].Chinese Journal of Geotechnical Engineering, 2013(S2): 346-351.

[10]雷华阳, 贾亚芳, 李肖. 滨海软土非线性蠕变特性的试验研究[J]. 岩石力学与工程学报, 2013(S1): 2 806-2 816.

LEI H Y, JIA Y F, LI X. Experimental study of nonlinear creep property of soft soil in littoral area[J]. Chinese Journal of Rock Mechanics and Engineering, 2013 (S1): 2 806-2 816.

[11]王元战, 胡珅榕, 杨攀博. 循环荷载下滨海软粘土累积塑性应变试验研究[J]. 水道港口, 2016, 37(3):298-305.

WANG Y Z, HU K R, YANG P B. Experimental research on cumulative plastic strain of littoral soft clay under cyclic loading[J]. Journal of Waterway and Harbor, 2016, 37(3):298-305.

[12]王元战, 董焱赫. 天津滨海软黏土蠕变特性及其经验模型研究[J]. 水道港口, 2014 (3): 209-216.

WANG Y Z, DONG Y H. Experimental research on creep properties of soft clays in coastal region of Tianjin and its empirical creep model[J]. Journal of Waterway and Harbor, 2014(3): 209-216.

[12]费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京:中国水利水电出版社, 2010.

[13]刘斌. 海相软土地基沉降模式的研究分析[D]. 天津:河北工业大学, 2015.

猜你喜欢
粘土滨海软土
沿海公路路基沉降分析与修复措施
软土路基的处理方法研究
浅层换填技术在深厚软土路基中的应用
滨海白首乌
粘土成了治理赤潮的利器?
滨海顶层公寓
岳滨海 藏石欣赏
粘土玫瑰DIY
浆喷桩在软土路基处理中的应用
粘土仙人掌