张文,杨巍
对于急性ST段抬高型心肌梗死(STEMI)患者,采用经皮冠状动脉介入治疗(PCI)开通罪犯血管及时恢复血流灌注,能降低梗死面积、保护心室功能,但在1年内仍有7%的死亡率和22%的心力衰竭(心衰)发生率,当高风险的STEMI发生心源性休克时,1年内的死亡率会更高,可达12%[1,2]。虽然心肌再灌注是挽救濒死心肌的有效方法,但是,在此过程的早期阶段又造成了心肌的额外损伤,比如扰乱离子稳态、活性氧的过量产生、激活炎症反应、引起线粒体功能紊乱和钙超载等,从而降低了心肌再灌注的获益,这一现象称为——心肌缺血/再灌注(I/R)损伤[3-6]。大多数学者认为即使单纯的PCI恢复心肌灌注后可以降低心肌梗死面积,但再灌注损伤仍可占总梗死面积的50%[5]。而且,随着科技的发展,虽然新型抗血小板、抗凝药物的应用改善再灌注血流,但对于PCI术后的患者再灌注损伤无明显作用。对于患者,其心肌梗死面积与心肌左室重塑、心衰及PCI术后的预后紧密联系。Larose 等表示当心肌梗死面积≥左室面积的23%时,易发生心衰等恶性心血管事件[7]。如何降低心肌I/R损伤并改善预后成为研究热点。通过大量的动物试验,发现了许多具有预防心肌再灌注损伤的措施,如抗氧化剂、镁剂、钙通道抑制剂、抗炎药物、阿托伐他汀、极化液、腺苷等,但这些方法从实验转化到临床应用并获利于患者却非常困难。
有研究首次报道在再灌注开始时迅速进行几个短暂的缺血与再灌注的循环可以降低狗的心肌梗死面积[8]。之后这项发现迅速被用于多种实验模型,发现通过短时间的心肌缺血打断再灌注过程来调节心肌缺血环境,增加心肌对缺血/再灌注损伤的耐受能力,可显著地保护心肌细胞避免缺血/再灌注损伤,该现象称为缺血后适应(IPostC)[9,10]。Staat等将这种方法迅速用于临床,并表明缺血后适应,即在罪犯血管用四个1 min缺血和1 min灌注的循环,在STEMI患者PCI术后可以使心肌梗死面积降低36%[11]。另外,有研究表明在冠状动脉完全闭塞(TIMI 0级)的STEMI患者中,IPostC处理后患者获益最大[12],但是其保护机制尚不清楚,考虑到临床手术的可操作性及临床效果的显著性,对IPostC减轻I/R损伤的机制还需进一步研究。
3.1 IPostC通过促进自噬降低心肌I/R损伤 自噬是吞噬自体胞浆内老化或损伤的蛋白及细胞器并使其包被进入囊泡,与溶酶体融合形成自噬溶酶体,降解其所包裹内容物的过程,从而完成细胞自体的新陈代谢和一些细胞器的更新[13]。一些研究表明自噬在心肌I/R损伤中发挥重要作用。当在可调控的范围内促进自噬可以在I/R损伤中补偿线粒体损伤和建立蛋白质稳态[14]。Hao等通过动物模型发现,IPostC和I/R组相比较,心肌梗死面积降低,心肌结构紊乱、细胞间质水肿等减轻,保留了心肌的正常结构,而且线粒体碎片的量及体积的减小程度都显著改善,而当给予I/R心肌IPostC加上自噬抑制剂处理时,IPostC的这种心肌保护作用就消失了,出现心肌细胞坏死、细胞核溶解和显著的心肌结构紊乱[15]。由此可见自噬可以被IPostC所调控,并且参与了IPostC的心肌保护机制。另外,还有报道称IPostC可以通过促进自噬减轻氧化应激从而抑制再灌注损伤[16],其具体机制还需进一步研究。
3.2 IPostC通过调节神经元型一氧化氮合酶途径降低心肌I/R损伤 心肌I/R损伤机制中氧化应激和钙超载是主要途径[2],主要通过产生过量内源性的活性氧和氮氧化物发挥作用[17]。虽然一氧化氮(NO)在再灌注心肌保护的方法如缺血预适应和IPostC中都发挥着重要作用,但实际上NO在心肌I/R损伤中是一把双刃剑[18]。NO在经典的环磷酸鸟苷环化酶(cGMP)介导的信号通路中发挥作用,但最近的研究表明NO调节的心肌功能也受到氮氧化物酶系统的限制[19]。内皮型一氧化氮合酶(eNOS)位于细胞膜小凹,调节细胞膜L型钙通道,神经元型一氧化氮合酶(nNOS)位于肌浆网和线粒体中,通过维持钙循环和亚硝基——氧化还原反应来调节肌浆网和线粒体的功能[20-22]。有报道称nNOS大量表达可以保护小鼠心肌避免I/R损伤,但是,同时也增加了小鼠室性心律失常和心肌梗死后的死亡率[23]。Hu等在离体小鼠心脏中发现,IPostC组与I/R组相较而言,IPostC显著促进了左室收缩力的恢复,降低了左室舒张末压水平和血浆中乳酸脱氢酶(LDH)水平,而nNOS抑制剂却能消除IPostC的心肌保护能力[24],提示IPostC通过调节nNOS途径发挥心肌保护作用。
3.3 IPostC通过下调钙敏感受体降低心肌I/R损伤 钙敏感受体(CaSR)调节机体多个组织和器官的钙代谢平衡[25]。在2003年首次报道了CaSR存在于小鼠心肌组织[26]。CaSR在心肌组织中为G蛋白偶联受体,可以通过激活磷脂酶C(PLC)促进3-磷酸磷脂酰肌醇(IP3)的产生,进而促进肌浆网中钙离子释放入线粒体内,通过启动线粒体和肌浆网的凋亡通路诱发心肌凋亡[27]。曾有报道称在心肌I/R损伤过程中,CaSR过度表达,引起钙超载促进心肌细胞凋亡,而IPostC可以下调CaSR的表达起到心肌保护作用[28,29]。随后实验中发现,IPostC通过下调CaSR通路的心肌保护作用离不开ATP敏感性钾通道(K+-ATP),是多种心肌保护方法如缺血预适应、远程预处理等过程中最后的效应受体,而K+-ATP通道的开放则是CaSR下调后的下游效应[29,30]。在心肌I/R损伤过程中的缺血阶段,机体通过上调CaSR而诱发钙超载,在再灌注阶段这种游离钙的释放被无限制放大,造成心肌损伤;而IPostC可通过下调CaSR,使K+-ATP通道开放,维持心肌细胞内的ATP代谢平衡[31],并抑制线粒体膜渗透转换孔的开放,保持线粒体功能稳定[32]。这些结果都表明CaSR是I/R损伤阶段诱发钙超载的重要靶点,而调控CaSR可能是降低I/R损伤的一个潜在方法。
缺血性心肌病发病率和死亡率较高,及时恢复阻塞血管血流,是降低STEMI患者死亡率有效方法,但随之产生的心肌I/R损伤及预后都是不可忽视的问题。近年来,经过不断探索及大量实验研究,普遍认为缺血后适应可以通过改变心肌缺血环境,增加心肌耐受能力,从而降低心肌I/R损伤,但由于目前报道的相关实验都是动物实验及小型的临床实验,其具体机制尚未阐明,在临床上缺血后适应未得到广泛推广,因此还需进一步大量多中心研究探究。
参 考 文 献
[1]Bulluck H,Yellon DM,Hausenloy DJ. Reducing myocardial infarct size:challenges and future opportunities[J]. Heart,2016,102(5):341-8.
[2]Hausenloy DJ,Botker HE,Engstrom T,et al. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations[J]. Eur Heart J,2017,38(13):935-41.
[3]Hausenloy DJ,Yellon MD. Targeting myocardial reperfusion injury--the search continues[J]. N Engl J Med,2015,373(11):1073-5.
[4]Granger DN,Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept[J]. Redox Biology,2015,6:524-51.
[5]Hausenloy DJ,Yellon MD. Myocardial ischemia-reperfusion injury: a neglected therapeutic target[J]. J Clin Invest,2013,123(1):92-100.
[6]Jing G,Shou-Bao W,Tian-Yi Y,et al. Coptisine protects rat heart against myocardial ischemia/reperfusion injury by suppressing myocardial apoptosis and inflammation[J]. Atherosclerosis,2013,231(2):384-91.
[7]Larose E,Rodes-Cabau J,Pibarot P,et al. Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction traditional measures compared with microvascular obstruction, salvaged myocardium, and necrosis characteristics by cardiovascular magnetic resonance[J]. J Am Coll Cardiol,2010,55(22):2459-69.
[8]Zhao ZQ,Corvera JS,Halkos ME,et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning[J]. Am J Physiol Heart Circ Physiol,2003,285(2):H579-88.
[9]Zhao ZQ,Morris CD,Budde JM,et al. Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion[J]. Cardiovasc Res,2003,59(1):132-42.
[10]Maslov LN,Podoksenov AY,Khaliulin IG. Ischaemic postconditioning of the heart. Analysis of experimental findings[J]. Angiol Sosud Khir,2016,22(4):8-16.
[11]Thibault H,Angoulvant D,Bergerot C,et al. Postconditioning the human heart[J]. Heart Metab,2007,37(37):19-22.
[12]Sorensson P,Saleh N,Bouvier F,et al. Effect of postconditioning on infarct size in patients with ST elevation myocardial infarction[J].Heart,2010,96(21):1710-5.
[13]Loos B,Engelbrecht AM,Lockshin RA,et al. The variability of autophagy and cell death susceptibility: Unanswered questions[J]. Autophagy,2013,9(9):1270-85.
[14]Quinsay MN,Thomas RL,Lee Y,et al. Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore[J]. Autophagy,2010,6(7):855.
[15]Hao M,Zhu S,Hu L,et al. Myocardial Ischemic Postconditioning Promotes Autophagy against Ischemia Reperfusion Injury via the Activation of the nNOS/AMPK/mTOR Pathway[J]. Int J Mol Sci,2017,18(3):E614.
[16]Zhang YL,Yao YT,Fang NX,et al. Restoration of autophagic flux in myocardial tissues is required for cardioprotection of sevoflurane postconditioning in rats[J]. Acta Pharmacol Sin,2014,35(6):758-69.
[17]Okada H,Lai NC,Kawaraguchi Y,et al. Integrins protect cardiomyocytes from ischemia/reperfusion injury[J]. J Clin Invest,2013,123(10):4294-308.
[18]Belge C,Massion PB,Pelat M,et al. Nitric oxide and the heart: update on new paradigms[J]. Ann NY Acad Sci,2005,1047(1):173-82.
[19]Sun J,Picht E,Ginsburg KS,et al. Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel α1 subunit and reduced ischemia/reperfusion injury[J]. Circ Res,2006,98(3):403-11.
[20]Xu KY,Huso DL,Dawson TM,et al. Nitric oxide synthase in cardiac sarcoplasmic reticulum[J]. P Natl Acad Sci USA,1999,96(2):657-62.
[21]Zhang YH. Nitric oxide signalling and neuronal nitric oxide synthase in the heart under stress[J]. F1000Res,2017,6:742.
[22]Kanai AJ,Pearce LL,Clemens PR,et al. Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection[J]. Proc Natl Acad Sci USA,2001,98(24):14126-31.
[23]Burger DE,Lu X,Lei M,et al. Neuronal nitric oxide synthase protects against myocardial infarction-induced ventricular arrhythmia and mortality in mice[J]. Circulation,2009,120(14): 1345-54.
[24]Hu L,Wang J,Zhu H,et al. Ischemic postconditioning protects the heart against ischemia-reperfusion injury via neuronal nitric oxide synthase in the sarcoplasmic reticulum and mitochondria[J]. Cell Death &Disease,2016,7(5):e2222.
[25]Hu F,Pan L,Zhang K,et al. Elevation of Extracellular Ca2+ Induces Store-Operated Calcium Entry via Calcium-Sensing Receptors:A Pathway Contributes to the Proliferation of Osteoblasts[J]. Plos One,2014,9(9):e107217.
[26]Wang R,Xu C,Zhao W,et al. Calcium and polyamine regulated calciumsensing receptors in cardiac tissues[J]. Eur J Biochem,2003,270(12):2680-8.
[27]Lu FH,Fu SB,Leng X,et al. Role of the calcium-sensing receptor in cardiomyocyte apoptosis via the sarcoplasmic reticulum and mitochondrial death pathway in cardiac hypertrophy and heart failure[J]. Cell Physiol Biochem,2013,31(4-5):728-74.
[28]Onukwufor JO,Stevens D,Kamunde C. Bioenergetic and volume regulatory effects of mitoKATP channel modulators protect against hypoxia-reoxygenation-induced mitochondrial dysfunction[J]. J Exp Biol,2016,219(Pt 17):2743-51.
[29]Cao S,Liu Y,Sun W,et al. Genome-wide expression profiling of anoxia/reoxygenation in rat cardiomyocytes uncovers the role of MitoKATP in energy homeostasis[J]. Oxid Med Cell Long,2015,20(75):65-76.
[30]Gan R,Hu G,Zhao Y,et al. Post-conditioning protecting rat cardiomyocytes from apoptosis via attenuating calciumsensing receptor-induced endo (sarco) plasmic reticulum stress[J]. Mole Cell Biochem,2012,361(1-2):123-34.
[31]Zhang L,Cao S,Deng S,et al. Ischemic postconditioning and pinacidil suppress calcium overload in anoxiareoxygenation cardiomyocytes via downregulation of the calcium-sensing receptor[J]. Peer J,2016,4:e2612.
[32]Valls-Lacalle L,Barba I,Miro-Casas E,et al. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition[J]. Cardiovasc Res,2016,109(3):374-84.