马超群 张岩
综 述
miRNA及lncRNA在胃癌中作用机制的研究进展
马超群 张岩
胃癌是世界上最常见的恶性肿瘤之一,严重威胁着人们的健康,探明胃癌的机制对改善预后十分重要。在胃癌发生发展过程中许多基因的表达及活性发生了改变,其中非编码RNA〔包括微小RNA(miRNA)及长链非编码RNA(lncRNA)〕在胃癌中发挥了重要作用。miRNA通过参与肿瘤细胞的生长、迁移、侵袭以及凋亡等过程从而调控胃癌进程,血中循环miRNA对胃癌的诊断和治疗具有重要提示作用。lncRNA能够同时在转录和转录后水平参与调控胃癌进程,它不仅能够通过诱导染色质修饰或调控信使RNA(mRNA)稳定性的方式参与胃癌进程,还可作为竞争性内源RNA(ceRNA)与靶基因竞争结合miRNA,进而参与调控胃癌进程。因此,了解miRNA及lncRNA在胃癌中的具体作用机制,有利于我们对胃癌的机制进行深入的理解,同时也可以为胃癌的诊治提供新思路。
胃癌; 微小RNA; 长链非编码RNA
胃癌是我国最常见的实体肿瘤之一,严重威胁着人们的健康。最新的统计数据表明,胃癌发病率位居全球恶性肿瘤的第四位,其病死率已跃居第三位[1-2]。在美国2016年新增的胃癌患者中,男性发病率高于女性20%,病死率高于女性40%[3]。近年来随着早期胃镜检查的应用和及时的手术干预治疗,我国胃癌患者5年生存率有了显著提高,然而对于晚期胃癌患者,其5年病死率依旧高达50%[4]。胃癌的病死率与肿瘤淋巴转移、血行转移和腹膜种植率息息相关。因此,探索胃癌机制,有效抑制胃癌增殖转移,将成为降低胃癌病死率的关键。大量的文献研究表明,非编码RNA能够参与调控胃癌的发生发展[5-7]。本文将对非编码RNA在胃癌进展过程中扮演的角色进行总结。
非编码RNA是一类不编码蛋白质的单链RNA,按其长度不同可以分为两大类,一类是长度超过50个碱基的RNA家族,包括长链非编码RNA(lncRNA)、小核仁RNA(small nucleolar RNA)、环状 RNA(circRNA)、转运 RNA(tRNA)和核糖体RNA(rRNA)[8];另一类是长度小于50个碱基的RNA 家族,包括微小RNA(miRNA)、小干扰(siRNA)和PIWI相互作用 RNA(piRNA)[9],目前大部分研究人员都将目光聚焦在miRNA和lncRNA这两类分子上。
1.1 miRNA对胃癌的调控作用 miRNA是由内源性发卡结构转录产物衍生而来的一类有19~24个碱基的非编码单链RNA[10-13]。编码miRNA的基因在细胞核内由RNA聚合酶Ⅱ或Ⅲ转录为初始转录本(pri-miRNA),然后在Drosha RNA酶加工成为带茎环结构的约70个核苷酸序列的前体miRNA(pre-miRNA)[14]。当pre-miRNA加工完成后,在Ran-GTP依赖的核质/细胞质转运蛋白Exportin 5的作用下从细胞核输出到细胞浆中[15-18]。在细胞浆中,pre-miRNA被RNaseⅢ样的Dicer加工处理成19~23个核苷酸长度的成熟miRNA分子[19]。成熟的单链miRNA分子被组装入RNA介导的沉默复合物(RISC)中发挥作用[20-21]。miRNA形成RISC后,主要通过两种方式来发挥作用:第一种,通过miRNA与其靶基因3'-UTR区的不完全互补结合,引起靶基因mRNA的翻译抑制,但不影响mRNA的稳定性,从而发挥其负性调控靶基因的作用;第二种,通过与其靶基因3'-UTR区的完全互补结合,引起靶基因mRNA的降解,从而发挥其负性调节靶基因的作用[22]。但是现在也有很多文献报道了miRNA对靶基因也会具有正性调控作用[15,23-24]。
据文献报道,miRNA能够参与包括肿瘤在内的多种疾病的调控[25-27],而目前已经发现了超过2 500种的miRNA可以通过参与肿瘤细胞的增殖、迁移、侵袭及凋亡等途径影响肿瘤的进展[28]。
miRNA具有高度的保守性、时序性和组织特异性,在癌组织中异常高表达的miRNA被视为一种新的癌基因。胃癌中高表达的miRNA-130(miR-130)通过与肿瘤坏死因子-β(TGF-β)的3'-UTR区结合使其降解,从而促进肿瘤细胞的增殖和转移[20]。miR-24能通过调控BCL2L11的表达抑制胃癌细胞凋亡促进其增殖[21];miR-143-3p在幽门螺旋杆菌阳性的胃癌患者中表达升高,并促进肿瘤细胞的增殖、迁移和侵袭[22];miR-181a-5p通过激活丝裂原活化蛋白激酶(MAPK)通路进而促进胃癌细胞的增殖[23],miR-21能够通过靶向调控STAT3基因抑制人乳腺癌MCF-7细胞的侵袭[29]
相反,肿瘤细胞中某些miRNA表达下调甚至缺失,也可能导致肿瘤的发生,此类miRNA被视为抑癌基因。miR-15和miR-16通过靶定抗凋亡基因Bcl-2而诱导肿瘤细胞凋亡[30],miR-4269 通过调控 TEAD1/4 抑制肿瘤的增殖[31],在胃癌组织中还可检测到miR-491-5p、miR-939和miR-26b呈现低表达[32-34]。
1.2 miRNA在胃癌诊断中的应用 肿瘤的早期诊断手段不足一直是人们的一大困扰,严重影响了肿瘤患者的预后。目前研究人员将大量精力投入在探索新的早期肿瘤标志物的研究中,而miRNA正是其中一个选择[35]。实验发现,大量的miRNA在胃癌患者的血液中异常表达[36-39]。miR-223、miR-233、miR-278、miR-421、miR-451和miR-1993p在胃癌患者的血浆中高表达[40-42]。将miR-233作为胃癌的肿瘤标志物进行检测发现,其受试者工作特征(ROC)曲线下面积(AUC)达到了 0.85(敏感度 81%,特异度 78%),并且血中miR-233水平与胃癌的TNM分期、肿瘤的分化水平、肿瘤的大小和转移情况呈正相关[43]。而另一项对90例胃癌患者的研究中发现,miR-421的AUC为0.821(敏感度95.5%,特异度89.1%),其敏感度和特异度都超过了糖类抗原CA125和癌胚抗原(CEA)在胃癌患者中的敏感度及特异度,因此,胃癌患者血中高表达的miR-421有可能成为一种更有效的胃癌肿瘤标志物[44]。同时有文献报道,miR-421在胃癌组织中的表达高于癌旁组织,但表达水平与肿瘤的病理分期不具有明显相关性,体内和体外实验证实miR-421可促进胃癌细胞的增殖、迁移和侵袭[41,45]。
与上述几种miRNA在肿瘤患者体内高表达相反,miRNA let-7a、miR-375、miR-20a-5p和 miR-320a在胃癌患者的血浆中表达降低[46-48]。前期研究表明,将miR-106a和miRNA let-7a作为组合标志物联合检测,其AUC达到了0.879(敏感度85.5%,特异度80%),在胃癌组织中,miRNA let-7a呈低表达状态,过表达miRNA let-7a能够通过抑制靶基因PMK2的表达来抑制肿瘤细胞的增殖、迁移和侵袭[49-50]。miR-375能够通过靶定 p53、JAK2、ERBB2和STAT3等多个靶基因抑制胃癌的发展,在胃癌组织及血浆标本中miR-375表达水平均呈下调状态,其AUC为0.835(敏感度85%,特异度80%)[51-52]。以上研究表明,随着大量临床试验的进行,miRNA在将来有可能成为一种新的胃癌早期诊断指标,从而改善患者预后,提高患者5年生存率。
1.3 miRNA在胃癌治疗中的应用 miRNA不仅在肿瘤的发生发展中发挥着重要作用,而且在肿瘤治疗过程中也渐显地位。一方面,miRNA相关药物能够抑制致癌miRNA的表达或提高抑癌miRNA的表达,进而通过调控相关的信号通路来达到抑制肿瘤生长的作用。其中比较具有代表性的药物为MRX34,该药物中的有效成分为miR-34的成熟体,患者服用该药物后能够恢复原本在肿瘤组织中呈低表达的miR-34水平,而miR-34可以在诸如肝癌、胃癌、肺癌等癌症中发挥抑制肿瘤的作用[53-55]。在美国曾经开展过MRX34治疗肝癌以及早期非小细胞肺癌的一期临床试验,其中在非小细胞肺癌患者的治疗过程中,MRX34能够明显降低肿瘤组织中靶基因PD-L1的水平并提高CD8+的T细胞数量,从而起到提高机体自身抗肿瘤免疫的效果[56-57]。然而,MRX34在临床试验过程中由于很多患者出现了一系列药物引发的不良反应而不得不在2016年被终止。在所有参与服药的47名肝癌患者中,有6名患者在整个服药过程中均伴有药物引起的不良反应,而另有1名患者的不良药物反应在停止服药后仍然持续了长达48周的时间,因此对于MRX34的临床大规模使用仍然有很长的路要走[58]。体内实验发现,miR-34能够通过靶定转录因子Yin Yang1来抑制肿瘤的生长和转移,同时人为提高内源性miR-34的水平能够有效抑制p53的突变,可达到抑制肿瘤的目的[59]。
另一方面,miRNA在机体对药物的吸收和耐受方面也发挥了重要作用,大量文献报道称,miRNA能够通过靶定药物转运蛋白、药物代谢酶、转录因子以及核受体来影响机体对抗肿瘤药物的吸收。在人胃癌细胞系SGC7901中过表达的miR-21明显能够使细胞系对顺铂产生药物耐受,而当敲除掉细胞中的miR-21后,顺铂诱导细胞的凋亡及抗增生作用明显增强[60]。检测多重耐药胃癌患者体内的miRNA含量发现,miR-15的水平明显下降,当患者通过服用miRNA类药物提高体内的miR-15含量后,miR-15的下游靶基因抗凋亡蛋白Bcl-2的降解增加,间接起到诱导肿瘤细胞凋亡的作用,改善了患者多重耐药的状况[61]。值得注意的是,单一的miRNA可以靶定多个不同的靶基因,但不是所有的靶基因改变都符合我们对于疾病治疗的需要,因此如何提高miRNA治疗体系的特异性是下阶段研究中需要首先解决的问题[62]。
miRNA作为非编码RNA的重要组成部分,广泛参与人体的多种生理功能,在胃癌增殖、迁移、侵袭和凋亡中发挥了不同的功能,既可以促进胃癌的发生,也可以抑制其发展。胃癌患者血浆中过表达的miR-421在将来很有希望成为一种新的胃癌诊断、预后标志物。而通过服用药物来提升胃癌患者体内miR-34的含量,则能有效抑制肿瘤的增殖,因此,miR-34在将来很有可能作为一种治疗胃癌的新型药物来为患者提供一种新的选择。
2.1 lncRNA对胃癌的调控作用 与miRNA的短小相反的是,lncRNA是一类长度超过200个碱基的非编码单链RNA。lncRNA根据其在基因上所处的位置以及其碱基排列方向可分为反义lncRNA(antisense lncRNA)、正义lncRNA(sense lncRNA)、内含子 lncRNA(intronic lncRNA)、基因间lncRNA(intronic lncRNA)等类型[63-64]。大量研究表明,lncRNA参与了包括染色质修饰、转录激活在内的多种重要的调控过程,可作为信号分子、桥梁、向导、诱饵等与其他非编码RNA、mRNA、蛋白质及基因组DNA交流,参与多种疾病的发生发展与肿瘤进程[65-68]。最新的文献报道显示,H19、TUSC7、MEG3、MALAT1等在胃癌中异常表达的lncRNA能够参与调控胃癌的增殖、迁移、侵袭、凋亡、细胞周期等多个方面[69-71]。
2.2 lncRNA在转录水平调节基因的表达 有多达38%的lncRNA可与组蛋白修饰复合物结合,共同介导染色质修饰和DNA甲基化等过程,从而最终抑制靶基因转录[72-73]。深度测序发现,lncRNA HOXA11-AS仅在胃癌患者体内表达增高,并且大多富集在肿瘤细胞细胞核中,患者体内的HOXA11-AS水平大幅度增高往往提示预后较差,降低HOXA11-AS的表达可以明显抑制肿瘤细胞的增殖,促进凋亡,改善患者预后。HOXA11-AS通过多点反式作用对PRC2、LSD1和DNMT1这三种蛋白产生募集作用,诱导KLF2及PRSS8这两种蛋白发生甲基化,从而降低其表达(见图 1A)[74]。与 HOXA11-AS 在胃癌中的高表达相反,FENDRR在胃癌患者体内呈下调状态,FENDRR能够与PRC2蛋白结合降低肿瘤转移相关蛋白如基质金属蛋白酶2/9(MMP2/9)的表达水平,从而抑制胃癌细胞转移[75]。
lncRNA能够在转录水平抑制miRNA的表达,从而间接影响肿瘤进程。胃癌患者体内的lncRNA HOTAIR水平越高往往预后越差,HOTAIR可以与EZH2和SUZ12蛋白结合形成复合体,与miR-34a的启动子区相结合,通过甲基化作用降低其表达,抑制miR-34a对HGF/c-met的降解作用,间接上调HGF/c-met的表达水平,进而激活SNAIL、PI3K/Akt和NF-κB等信号通路,最终促进胃癌中上皮细胞-间质细胞转换(EMT)过程(见图 1B)[76]。研究发现,lncRNA ANRIL在胃癌组织中高表达,E2F1蛋白可与ANRIL的启动子区相结合并促进其表达,高表达的ANRIL可以与PRC2蛋白结合诱导miR-99a/miR-499a的甲基化,进而抑制miR-99a/miR-499a对其靶基因mTOR、CDK6和E2F1的降解作用,而E2F1进一步反馈性地提高ANRIL的水平,形成了一个正反馈循环,最终达到促进胃癌细胞增殖的效果[77]。
靶基因mRNA的ALU序列和lncRNA互补序列通过不完全碱基配对形成RNA双链(dsRNA)结构。STAU1蛋白可识别dsRNA结合位点并降解mRNA,该过程称为STAU1介导的mRNA衰减。lncRNA TINCR与胃癌的增殖、凋亡密切相关,TINCR通过STAU1介导的mRNA衰减过程与KLF2的mRNA相结合,降低mRNA的稳定性和表达。KLF2表达的降低减少了CDKN2B/P15和CDKN1A/P21的转录并最终促进了肿瘤的增殖、迁移和侵袭[78]。除了直接作用,同样在胃癌患者中高表达的lncRNA GHET1与其靶基因mRNA之间发挥间接作用。GHET1可促进胰岛素样生长因子mRNA结合蛋白1(IGF2BP1)和c-myc基因的mRNA结合并增加其稳定性,高表达的c-myc能够促进胃癌细胞的增殖[79]。
2.3 lncRNA在转录后水平调节基因的表达 lncRNA可以通过与靶基因mRNA竞争性结合miRNA的应答元件,从而抑制miRNA的表达,间接增高靶基因的表达水平,即竞争性内源RNA(ceRNA)机制。研究发现胃癌患者体内lncRNA BC32469高表达,BC32469能够与miR-1207-5p相结合,从而减少人端粒逆转录酶(hTERT)与miR-1207-5p的结合,抑制miR-1207-5p对hTERT的降解作用,间接上调hTERT的表达水平,进而促进胃癌的增殖和迁移(见图2A)[80]。lncRNA HOTAIR与HER竞争性的结合miR-331-3p,上调HER表达水平,进而促进胃癌的进展[81]。
lncRNA除了能够在转录后水平调控miRNA的稳定性,也可以通过调控蛋白质的稳定性来达到促进胃癌进展的目的。在胃癌患者体内高表达的FOXM1能够与lncRNA PVT1的启动子区相结合并诱导PVT1的表达,而高水平的PVT1对FOXM1的mRNA水平并没有影响,反而可以与FOXM1蛋白相结合,增加其稳定性,抑制26S蛋白酶体对FOXM1的降解作用。因此,高表达的FOXM1和PVT1能够在胃癌患者体内形成正反馈调控循环,进而促进胃癌的增殖和迁移(见图 2B)[82]。
lncRNA的特征在于其作用机制的复杂性,它既能够在细胞核中也能在胞浆中调控基因的表达。在细胞核中,lncRNA与组蛋白修饰物相结合形成复合体,在转录水平介导组蛋白甲基化,lncRNA也可以直接结合到miRNA启动子区调控其表达。在胞浆中lncRNA也可以与靶基因mRNA相结合,通过mRNA衰减过程调控其表达。不仅如此,在转录后水平上lncRNA一方面可以与靶基因竞争性结合miRNA来调控基因表达,也可以与蛋白相结合调控其稳定性及其表达。
本文总结了miRNA和lncRNA在胃癌中的作用。绝大多数的miRNA通过与靶基因的3'-UTR区相结合来调节其表达,还有少数miRNA可以与靶基因的开放阅读框相结合来调节其表达。miRNA作为一种新型的生物标志物,在胃癌的早期诊断、预后评估以及靶向治疗等方面具有巨大的潜力,相信随着相关研究逐渐深入,胃癌的诊断和治疗能够取得新的进展。
对于lncRNA,本文也总结了其在胃癌中与miRNA、mRNA和蛋白相结合进而调控基因表达的过程。然而目前关于lncRNA在正常胃细胞中的研究相对较少,相信未来对于lncRNA在胃炎、非典型增生和癌前病变中是如何发挥功能的研究将会越来越多,有助于深入解析lncRNA的功能,并在疾病的诊断和治疗过程中提供信息。
图1 lncRNA在转录水平调节基因的表达
图2 lncRNA在转录后水平调节基因的表达
1 Liang D,Liang S,Jin J,et al. Gastric cancer burden of last 40 years in North China (Hebei Province): a population-based study[J].Medicine (Baltimore), 2017,96(2):e5887.
2 Siegel RL,Miller KD,Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016,66(1):7-30.
3 Siegel RL,Miller KD,Jemal A. Cancer Statistics, 2017[J]. CA Cancer J Clin, 2017,67(1):7-30.
4 Hamashima C,Shabana M,Okada K,et al. Mortality reduction from gastric cancer by endoscopic and radiographic screening[J]. Cancer Sci, 2015,106(12):1744-1749.
5 Liz J,Esteller M. lncRNAs and microRNAs with a role in cancer development[J]. Biochim Biophys Acta, 2016,1859(1):169-176.
6 Zhang M,Du X. Noncoding RNAs in gastric cancer: research progress and prospects[J]. World J Gastroenterol, 2016,22(29):6610-6618.
7 Li T,Mo X,Fu L,et al. Molecular mechanisms of long noncoding RNAs on gastric cancer[J]. Oncotarget, 2016,7(8):8601-8612.
8 Volders PJ,Helsens K,Wang X,et al. LNCipedia: a database for annotated human lncRNA transcript sequences and structures[J].Nucleic Acids Res, 2013,41:D246-251.
9 He L,Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation[J]. Nat Rev Genet, 2004,5(7):522-531.
10 Naveed A,Ur-Rahman S,Abdullah S,et al. A concise review of microRNA exploring the insights of microRNA regulations in bacterial, viral and metabolic diseases[J]. Mol Biotechnol, 2017.
11 Ghibaudi M,Boido M,Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration[J]. Prog Neurobiol, 2017.
12 Yan Y,Wang R,Guan W,et al. Roles of microRNAs in cancer associated fibroblasts of gastric cancer[J]. Pathol Res Pract, 2017,213(7):730-736.
13 王秀宏.微小RNA与肿瘤发生发展的关系[J].实用检验医师杂志,2010,02(3):181-184.
14 Mao L,Sun AJ,Wu JZ,et al. Involvement of microRNAs in HER2 signaling and trastuzumab treatment[J]. Tumour Biol, 2016.
15 Dutta R,Mahato RI. Recent advances in hepatocellular carcinoma therapy[J]. Pharmacol Ther, 2017,173:106-117.
16 Pileti K,Kunej T. MicroRNA epigenetic signatures in human disease[J]. Arch Toxicol, 2016,90(10):2405-2419.
17 Majeed W,Iftikhar A,Khaliq T,et al. Gastric Carcinoma:Recent Trends in Diagnostic Biomarkers and Molecular Targeted Therapies[J]. Asian Pac J Cancer Prev, 2016,17(7):3053-3060.
18 Kang HW,Wang F,Wei Q,et al. miR-20a promotes migration and invasion by regulating TNKS2 in human cervical cancer cells[J].FEBS Lett, 2012,586(6):897-904.
19 Ma C,Qi Y,Shao L,et al. Downregulation of miR-7 upregulates Cullin 5 (CUL5) to facilitate G1/S transition in human hepatocellular carcinoma cells[J]. IUBMB Life, 2013,65(12):1026-1034.
20 Duan J,Zhang H,Qu Y,et al. Onco-miR-130 promotes cell proliferation and migration by targeting TGFβR2 in gastric cancer [J].Oncotarget,2016,7(28):44522-44533.
21 Zhang H,Duan J,Qu Y,et al. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer[J]. Protein Cell, 2016,7(2):141-151.
22 Wang F,Liu J,Zou Y,et al. MicroRNA-143-3p, up-regulated in H.pylori-positive gastric cancer, suppresses tumor growth, migration and invasion by directly targeting AKT2[J]. Oncotarget, 2017,8(17):28711-28724.
23 Mi Y,Zhang D,Jiang W,et al. miR-181a-5p promotes the progression of gastric cancer via RASSF6-mediated MAPK signalling activation[J]. Cancer Lett, 2017,389:11-22.
24 Ma C,Qi Y,Shao L,et al. Downregulation of miR-7 upregulates Cullin 5 (CUL5) to facilitate G1/S transition in human hepatocellular carcinoma cells[J]. IUBMB Life, 2013,65(12):1026-1034.
25 刘国跃,陈淼,戢慧,等.微小RNA-21-5p对大鼠高氧性急性肺损伤的影响[J].中国中西医结合急救杂志,2015,(1):23-27.
26 葛晨,董士民.微小RNA在脓毒症临床实践中的应用[J].中华危重病急救医学,2014,26(7):522-524.
27 李世朋,邢雨,田庆,等.微小RNA与器官移植研究进展[J].实用器官移植电子杂志,2013,(6):363-367.
28 Dong WH,Li Q,Zhang XY,et al. Deep sequencing identifies deregulation of microRNAs involved with vincristine drug-resistance of colon cancer cells[J]. Int J Clin Exp Pathol, 2015,8(9):11524-11530.
29 赵守香,王涛,李玉军. miR-21靶向调控STAT3基因抑制人乳腺癌MCF-7细胞的侵袭[J].实用检验医师杂志,2016,8(1):5-9.
30 Nishizawa T,Suzuki H. The role of microRNA in gastric malignancy[J]. Int J Mol Sci, 2013,14(5):9487-9496.
31 Zhou Y,Huang T,Zhang J,et al. TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis[J].Oncogene, 2017.
32 Sun R,Liu Z,Tong D,et al. miR-491-5p, mediated by Foxi1,functions as a tumor suppressor by targeting Wnt3a/β-catenin signaling in the development of gastric cancer[J]. Cell Death Dis,2017,8(3):e2714.
33 Zhang JX,Xu Y,Gao Y,et al. Decreased expression of miR-939 contributes to chemoresistance and metastasis of gastric cancer via dysregulation of SLC34A2 and Raf/MEK/ERK pathway[J].Mol Cancer, 2017,16(1):18.
34 Han BW,Li ZH,Liu SF,et al. A comprehensive review of microRNA-related polymorphisms in gastric cancer[J]. Genet Mol Res,2016,15(2) .
35 林浩,赵楚生,郑永平.肝硬化和肝癌患者外周血淋巴细胞中INK4位点反义非编码RNA和肿瘤抑制因子的表达[J].中国中西医结合急救杂志,2015,(1):86-89.
36 Mirzaei H,Khataminfar S,Mohammadparast S,et al. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in gastric cancer: current status and future perspectives [J].Curr Med Chem, 2016,23(36):4135-4150.
37 Cai H,Xu J,Han Y,et al. Integrated miRNA-risk gene-pathway pair network analysis provides prognostic biomarkers for gastric cancer [J].Onco Targets Ther, 2016,9:2975-2986.
38 Zheng L,Chen Y,Ye L,et al. miRNA-584-3p inhibits gastric cancer progression by repressing Yin Yang 1- facilitated MMP-14 expression [J]. Sci Rep, 2017,7(1):8967.
39 Peng Y,Zhang X,Ma Q,et al.MiRNA-194 activates the Wnt/β-catenin signaling pathway in gastric cancer by targeting the negative Wnt regulator, SUFU[J].Cancer Lett,2017,385:117-127.
40 Zhou X,Jin W,Jia H,et al. MiR-223 promotes the cisplatin resistance of human gastric cancer cells via regulating cell cycle by targeting FBXW7 [J]. J Exp Clin Cancer Res, 2015,34:28.
41 Zhou H,Xiao B,Zhou F,et al. MiR-421 is a functional marker of circulating tumor cells in gastric cancer patients[J]. Biomarkers,2012,17(2):104-110.
42 Ren C,Chen H,Han C,et al. High expression of miR-16 and miR-451 predicating better prognosis in patients with gastric cancer[J]. J Cancer Res Clin Oncol, 2016,142(12):2489-2496.
43 Wang H,Wang L,Wu Z,et al. Three dysregulated microRNAs in serum as novel biomarkers for gastric cancer screening[J].Med Oncol, 2014,31(12):298.
44 Wu J,Li G,Yao Y,et al. MicroRNA-421 is a new potential diagnosis biomarker with higher sensitivity and specificity than carcinoembryonic antigen and cancer antigen 125 in gastric cancer [J]. Biomarkers,2015,20(1):58-63.
45 Jiang Z,Guo J,Xiao B,et al. Increased expression of miR-421 in human gastric carcinoma and its clinical association[J].J Gastroenterol, 2010,45(1):17-23.
46 Shen ZY,Zhang ZZ,Liu H,et al. miR-375 inhibits the proliferation of gastric cancer cells by repressing ERBB2 expression[J].Exp Ther Med, 2014,7(6):1757-1761.
47 Mohammadian F,Pilehvar-Soltanahmadi Y,Zarghami F,et al.Upregulation of miR-9 and Let-7a by nanoencapsulated chrysin in gastric cancer cells[J]. Artif Cells Nanomed Biotechnol, 2017,45(6):1-6.
48 Xu Q,Dong QG,Sun LP,et al. Expression of serum miR-20a-5p,let-7a, and miR-320a and their correlations with pepsinogen in atrophic gastritis and gastric cancer: a case-control study [J]. BMC Clin Pathol, 2013,13:11.
49 Tang R,Yang C,Ma X,et al. MiR-let-7a inhibits cell proliferation,migration, and invasion by down-regulating PKM2 in gastric cancer [J]. Oncotarget, 2016,7(5):5972-5984.
50 Zhu Y,Xu F. Up-regulation of Let-7a expression induces gastric carcinoma cell apoptosis in vitro [J]. Chin Med Sci J, 2017,32(1):44-47.
51 Miao L,Liu K,Xie M,et al. miR-375 inhibits Helicobacter pylori-induced gastric carcinogenesis by blocking JAK2-STAT3 signaling[J]. Cancer Immunol Immunother, 2014,63(7):699-711.
52 Liu Y,Xing R,Zhang X,et al. miR-375 targets the p53 gene to regulate cellular response to ionizing radiation and etoposide in gastric cancer cells[J]. DNA Repair (Amst), 2013,12(9):741-750.
53 Ji Q,Hao X,Meng Y,et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres [J].BMC Cancer, 2008,8:266.
54 Stahlhut C,Slack FJ. Combinatorial action of microRNAs let-7 and miR-34 effectively synergizes with erlotinib to suppress non-small cell lung cancer cell proliferation [J]. Cell Cycle, 2015,14(13):2171-2180.
55 Wang R,Ma J,Wu Q,et al. Functional role of miR-34 family in human cancer[J]. Curr Drug Targets, 2013,14(10):1185-1191.
56 Cortez MA,Ivan C,Valdecanas D,et al. PDL1 regulation by p53 via miR-34 [J]. J Natl Cancer Inst, 2016,108(1):303.
57 Farooqi AA,Fayyaz S,Shatynska-Mytsyk I,et al. Is miR-34a a well-equipped swordsman to conquer temple of molecular oncology?[J]. Chem Biol Drug Des, 2016,87(3):321-334.
58 Beg MS,Brenner AJ,Sachdev J,et al. Phase I study of MRX34,a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors[J]. Invest New Drugs, 2017,35(2):180-188.
59 Wang AM,Huang TT,Hsu KW,et al. Yin Yang 1 is a target of microRNA-34 family and contributes to gastric carcinogenesis [J].Oncotarget, 2014,5(13):5002-5016.
60 Yang SM,Huang C,Li XF,et al. miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN [J]. Toxicology, 2013,306:162-168.
61 Xia L,Zhang D,Du R,et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells[J]. Int J Cancer, 2008,123(2):372-379.
62 Tsai MM,Wang CS,Tsai CY,et al. Potential diagnostic, prognostic and therapeutic targets of microRNAs in human gastric cancer [J].Int J Mol Sci, 2016,17(6).
63 Esposti DD,Hernandez-Vargas H,Voegele C,et al. Identification of novel long non-coding RNAs deregulated in hepatocellular carcinoma using RNA-sequencing [J]. Oncotarget, 2016,7(22):31862-31877.
64 Rogoyski OM,Pueyo JI,Couso JP,et al. Functions of long non-coding RNAs in human disease and their conservation in Drosophila development[J]. Biochem Soc Trans, 2017,45(4):895-904.
65 Yu F,Zheng J,Mao Y,et al. Long non-coding RNA growth arrestspecific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA[J]. J Biol Chem,2015,290(47):28286-28298.
66 Shen W,Yuan Y,Zhao M,et al. Novel long non-coding RNA GACAT3 promotes gastric cancer cell proliferation through the IL-6/STAT3 signaling pathway [J]. Tumour Biol, 2016,37(11):14895-14902.
67 Zhu Y,Dai B,Zhang H,et al. Long non-coding RNA LOC572558 inhibits bladder cancer cell proliferation and tumor growth by regulating the AKT-MDM2-p53 signaling axis [J]. Cancer Lett,2016,380(2):369-374.
68 刘名倬,朱峰.长链非编码RNA的研究进展[J].中华危重病急救医学,2014,26(4):285-288.
69 Yu J,Han Q,Cui Y. Decreased long non-coding RNA SPRY4-IT1 contributes to ovarian cancer cell metastasis partly via affecting epithelial-mesenchymal transition [J]. Tumour Biol, 2017,39(7):1010428317709129.
70 Qin F,Zhang Y,Liu J,et al. SLC45A3-ELK4 functions as a long non-coding chimeric RNA[J]. Cancer Lett, 2017,404:53-61.
71 Han B,He Y,Zhang L,et al. Long intergenic non-coding RNA GALMD3 in chicken Marek's disease [J]. Sci Rep, 2017,7(1):10294.
72 Yang SZ,Xu F,Zhou T,et al. The long non-coding RNA HOTAIR enhances pancreatic cancer resistance to TNF-related apoptosisinducing ligand [J]. J Biol Chem, 2017,292(25):10390-10397.
73 O'Leary VB,Hain S,Maugg D,et al. Long non-coding RNA PARTICLE bridges histone and DNA methylation[J]. Sci Rep,2017,7(1):1790.
74 Sun M,Nie F,Wang Y,et al. LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1 [J].Cancer Res, 2016,76(21):6299-6310.
75 Xu TP,Huang MD,Xia R,et al. Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression [J]. J Hematol Oncol, 2014,7:63.
76 Liu YW,Sun M,Xia R,et al. LincHOTAIR epigenetically silences miR34a by binding to PRC2 to promote the epithelial-tomesenchymal transition in human gastric cancer[J]. Cell Death Dis, 2015,6:e1802.
77 Zhang EB,Kong R,Yin DD,et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a[J]. Oncotarget,2014,5(8):2276-2292.
78 Xu TP,Liu XX,Xia R,et al. SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer[J]. Oncogene,2015,34(45):5648-5661.
79 Yang F,Xue X,Zheng L,et al. Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability[J]. FEBS J, 2014,281(3):802-813.
80 Lyu MH,Tang B,Zeng S,et al. Long noncoding RNA BC032469,a novel competing endogenous RNA, upregulates hTERT expression by sponging miR-1207-5p and promotes proliferation in gastric cancer[J]. Oncogene, 2016,35(27):3524-3534.
81 Liu XH,Sun M,Nie FQ,et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer[J]. Mol Cancer, 2014,13:92.
82 Kong R,Zhang EB,Yin DD,et al. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16[J].Mol Cancer, 2015,14:82.
Research progress of miRNA and lncRNA in gastric cancer
Ma Chaoqun, Zhang Yan. Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China (Ma CQ); Pathology Center, Chinses ACAdemy of Medical Science, Hematonosis Hospital, Tianjin 300020, China (Zhang Y)
Corresponding author: Ma Chaoqun, Email: mcqraphael@sina.com
Gastric cancer is one of the most common cancers and increasingly threatening people's health.Probing the mechanism of gastric cancer is very important to improve the prognosis. In the development of gastric cancer many genes expression and activity have changed, non-coding RNAs including micro RNA (miRNA) and long non-coding RNA (lncRNA) play important roles in gastric cancer progression. MiRNAs regulate gastric cancer progression by participating in the process of tumor cell growth, migration, invasion and apoptosis. Circulating miRNA in blood plays an important role in the diagnosis and treatment of gastric cancer. LncRNA was considered to regulate gastric cancer progression at the transcript and post-transcript level. It’s not only can induce gastric cancer progression by changing chromatin modifcation or regulates messenger RNA (mRNA) stability, but also miRNA can compete with target genes as a competitive endogenous RNA (ceRNA). Therefore, to understand the specific mechanism of miRNA and lncRNA in gastric cancer is conducive to our understanding of the mechanism of gastric cancer, and can provide new ideas for the diagnosis and treatment of gastric cancer.
Gastric cancer; Micro RNA; Long non-coding RNA
300052 天津,天津医科大学总医院医学检验科(马超群);300020 天津,中国医学科学院血液病医院病理中心(张岩)
马超群,Email:mcqraphael@sina.com
10.3969/j.issn.1674-7151.2017.04.016
2017-09-18)
杨程伍 张耘菲)