黄 响 唐世阳 张林让 谷亚彬
一种基于高效FrFT的LFM信号检测与参数估计快速算法
黄 响 唐世阳*张林让 谷亚彬
(西安电子科技大学雷达信号处理国家重点实验室 西安 710071)
针对传统方法对线性调频(LFM)信号检测与参数估计运算量大的问题,该文提出一种基于高效FrFT的快速算法。首先,分析了高效FrFT原理,指出高效FrFT存在旋转角度的选取、易受初始频率影响以及抗噪性能差等问题。针对以上问题,该文利用修正的功率谱平滑滤波方法对高效FrFT进行改进。理论分析表明,该文提出的改进算法仅用3次旋转角度即可实现较低信噪比下LFM信号的检测和参数估计。与传统的FrFT相比,在保证参数估计精度不变的情况下,运算复杂度大大降低,更符合工程上实时处理的要求。仿真结果验证了该算法的有效性。
高效FrFT;LFM信号;修正的功率谱平滑滤波
本文在以上研究基础上,针对LFM信号的检测和参数估计存在的工程上实时应用问题,提出一种基于高效FrFT的LFM信号检测和参数估计方法。该方法利用旋转角度与对应FrFT域归一化投影长度的几何关系,仅用3次角度搜索即可实现LFM信号的检测与参数估计。为了进一步提升高效FrFT的抗噪性,本文运用修正的平滑滤波方法进行改进。与传统FrFT方法相比,本文所提算法避免了冗余旋转角度下的2维搜索,能够显著提高LFM信号检测和参数估计的实时处理性能。
不考虑噪声时,典型的LFM信号模型可表示为
图1 高效FrFT原理示意图
整理得
由以上分析可知,高效FrFT充分利用了LFM信号在不同旋转角度下时频长度的投影信息,根据数学关系估计出FrFT的最优旋转角度。该方法仅需要进行3次FrFT即可实现LFM信号的检测与估计,与传统的遍历搜索方法相比,大大降低了运算复杂度,利于工程上的实时应用。
第2节阐明了高效FrFT的原理,但在实际工程应用中,还需要考虑FrFT旋转角度的选取,初始频率及噪声的影响等问题,本节分别对这3个方面进行分析,最后给出相应的改进方法及实现步骤。
图2 旋转角度搜索下的FrFT
在量纲归一化下,调频斜率的估计更改为
在奈奎斯特采样定理要求下,需满足:
将式(10)代入式(11)可得
为了降低中心频率及噪声对高效FrFT的影响,本文利用修正的功率谱平滑滤波方法对高效FrFT方法进行改进。修正的功率谱平滑滤波公式表示为
传统的功率谱平滑滤波公式表示为[14]
图4 信噪比为3 dB 时的估计
基于高效FrFT的LFM信号的检测和估计具体实现步骤如下:
图5 改进的高效FrFT对LFM信号的检测和参数估计仿真图
图6 所提算法对LFM信号的检测性能和参数估计性能曲线
表1高效FrFT与传统FrFT对比仿真结果
方法(Hz/s)(Hz)(%)(%)运算时间(s) 传统FrFT0.01002070.90510.613.552.12 0.752 传统FrFT0.00101989.10501.640.550.33 7.102 传统FrFT0.00011997.30501.720.140.3474.175 高效FrFT-2007.00501.810.350.36 0.027 改进的高效FrFT-2002.80501.770.140.35 0.037
[1] SAHA S and KAY A M. Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling[J]., 2002, 50(2): 224-230. doi: 10.1109/78.978378.
[2] CZARNECKI K and MOSZYNSLI M. A novel method of local chirp-rate estimation of LFM chirp signals in the time-frequency domain[C]. International Conference on Telecommunications and Signal Processing, Italy, Rome, 2013: 704-708. doi: 10.1109/TSP.2013.6614028.
[3] 李秀坤, 吴玉双. 多分量线性调频信号的Wigner-Ville分布交叉项去除[J]. 电子学报, 2017, 45(2): 315-320. doi: 10.3969/ j.issn.0372-2112.2017.02.008.
LI Xiukun and WU Yushuang. Cross-term removal of Wigner-Ville distribution for multi-component LFM signals [J]., 2017, 45(2): 315-320. doi: 10.3969/j.issn. 0372-2112.2017.02.008.
[4] BOASHASH B and OUELHA S. An improved design of high-resolution quadratic time-frequency distribution for the analysis of nonstationary multicomponent signal using directional compact kernels[J]., 2017, 65(10): 2701-2713. doi: 10.1109/TSP.2017.2669899.
[5] WOOD J C and BARRY D T. Radon transformation of time-frequency distributions for analysis of multicomponent signals[J]., 1994, 42(11): 3166-3177. doi: 10.1109/78.330375.
[6] BARBAROSSA S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform[J]., 1995, 43(6): 1511-1515. doi: 10.1109/78.388866.
[7] 刘颖, 陈殿仁, 陈磊, 等. 基于周期Choi-Williams Hough变换的线性调频连续波信号参数估计算法[J].电子信息学报, 2015, 37(5): 1136-1140. doi: 10.11999/JEIT140876.
LIU Ying, CHEN Dianren, CHEN Lei.Parameter estimation algorithm of linear frequency modulated continuous wave signals based on period Choi-Williams Hough transform[J].&, 2015, 37(5): 1136-1140. doi: 10.11999/JEIT 140876.
[8] WANG M, CHAN A K, and CHUI C K. Linear frequency- modulated signal detection using Radon-ambiguity transform [J]., 1998, 43(6): 571-586. doi: 10.1109/78.661326.
[9] 齐林, 陶然, 周思永, 等. 基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J]. 中国科学E辑, 2003, 33(8): 750-759. doi: 10.3321/j.issn:1006-9275.2003.08.008.
QI Lin, TAO Ran, ZHOU Siyong,Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform[J].(), 2003, 33(8): 750-759. doi: 10.3321/j.issn:1006- 9275.2003.08.008.
[10] 陈艳丽, 郭良浩, 宫在晓. 简明分数阶傅里叶变换及其对线性调频信号的检测和参数估计[J]. 声学学报, 2015, 40(6): 761-771. doi: 10.15949/j.cnki.0371-0025.2015.06.001.
CHEN Yanli, GUO Lianghao, and GONG Zaixiao. The concise fractional Fourier transform and its application in detection and parameter estimation of the linear frequency- modulated signal[J]., 2015, 40(6): 761-771. doi: 10.15949/j.cnki.0371-0025.2015.06.001.
[11] ZHANG Xuepan, LIAO Guisheng, ZHU Shengqi,Efficient compressed sensing method for moving targets imaging by exploiting the geometry information of the defocused results[J]., 2015, 12(3): 517-521. doi: 10.1109/LGRS.2014. 2349035.
[12] ALMEIDA L B. The fractional Fourier transform and time- frequency representations[J]., 1994, 42(11): 3084-3091. doi: 10.1109/78.330368.
[13] 赵兴浩, 邓兵, 陶然. 分数阶傅里叶变换数值计算中的量纲归一化[J]. 北京理工大学学报, 2005, 25(4): 360-364. doi: 10.3969/j.issn.1001-0645.2005.04.019.
ZHAO Xinghao, DENG Bing, and TAO Ran. Dimensional normalization in the digital computation of the fractional Fourier transform[J]., 2005, 25(4): 360-364. doi: 10.3969/j.issn.1001- 0645.2005.04.019.
[14] 张雯雯, 刘黎平. 一种新的相位编码信号识别方法[J]. 哈尔滨工程大学学报, 2009, 30(10): 1204-1208. doi: 10.3969/ j.issn.1006-7043.2009.10.023.
ZHANG Wenwen and LIU Liping. A new recognition method for phase-shift keying signals[J]., 2009, 30(10): 1204-1208. doi: 10.3969 /j.issn.1006-7043.2009.10.023.
黄 响: 男,1991年生,博士生,研究方向为雷达信号处理、高速目标检测.
唐世阳: 男,1987年生,讲师,博士,研究方向为雷达成像技术、雷达信号处理.
张林让: 男,1966年生,教授,博士生导师,研究方向为雷达信号处理、雷达系统建模、仿真与评估.
A Fast Algorithm of LFM Signal Detection and ParameterEstimation Based on Efficient FrFT
HUANG Xiang TANG Shiyang ZHANG Linrang GU Yabin
(,,’710071,)
A fast algorithm based on the effective FrFT is proposed to realize the detection and parameter estimation of Linear Frequency Modulation (LFM) signal, since the traditional algorithms have a great computational burden. The effective FrFT is first analyzed, and pointed out to have problems in choosing the rotation angles, being easily affected by initial frequency, and poor anti-noise performance.Faced with the above problems, a modified power spectrum smooth filtering method is used to improve the effective FrFT algorithm. The theoretical analysis indicates that the proposed method based on effective FrFT can realize the detection and parameter estimation of LFM signal in low SNR condition with only three rotation angles. Furthermore, the computational cost is greatly reduced under the guarantee of the same parameter estimation accuracy compared to traditional FrFT. The simulation results verify the effectiveness of the proposed algorithm.
Effective FrFT; Linear Frequency Modulation (LFM) signal; Modified power spectrum smooth filtering
TN957.51
A
1009-5896(2017)12-2905-07
10.11999/JEIT170467
2017-05-16;
2017-09-25;
2017-11-01
通信作者:唐世阳 sytang@xidian.edu.cn
国家自然科学基金(61601343, 61671361, 61301285),中国博士后基金面上 (2016M600768)
The National Natural Science Foundation of China (61601343, 61671361, 61301285), China Postdoctoral Science Foundation Funded Project (2016M600768)