DOC与POC耦合柴油机燃用调合生物柴油颗粒物的排放特性

2017-12-15 02:47杜家益张登攀袁银男逄大庆
农业工程学报 2017年22期
关键词:燃用转化率颗粒物

杜家益,魏 松,张登攀,袁银男,逄大庆



DOC与POC耦合柴油机燃用调合生物柴油颗粒物的排放特性

杜家益1,魏 松1,张登攀1,袁银男2,逄大庆3

(1. 江苏大学汽车与交通工程学院,镇江 212013; 2. 苏州大学能源学院,苏州 215006; 3. 常柴股份有限公司,常州 213001)

在一台高压共轨柴油机上进行燃用调合生物柴油(B0、B10和B20)台架试验,利用MOUDI颗粒分级采样系统和气相色谱-质谱联用仪(GC-MS)分别研究氧化催化器(diesel oxidation catalyst,DOC)结合颗粒氧化催化器(particle oxidation catalyst,POC)对颗粒物的粒径质量浓度分布和可溶性有机组分(SOF)的影响。结果表明:随着生物柴油的掺混比增加,各粒径范围的排气颗粒物质量浓度均下降,质量浓度峰值均在0.18~0.32m;颗粒物SOF中脂类、酸类质量分数增加,烷烃类、芳香烃、酚类物质质量分数减少;B0和B20的碳原子数质量分数均呈现近似以C16为峰值的正态分布。加装DOC+POC后,3种燃料颗粒物的质量浓度均降低,聚集态颗粒的质量浓度转化率高于粗颗粒态,其中B20聚集态转化率最高,为58.36%;随着生物柴油的掺混比增加,DOC+POC对SOF的转化率增大,其中B20颗粒中SOF转化率达65.15%;DOC+POC对脂类和酸类物质净化作用明显,加装DOC+POC后,B20脂类和酸类物质的质量分数降幅分别为55.45%和43.27%;DOC+POC对B20颗粒物中SOF的C12~C18氧化作用明显。

柴油机;生物柴油;颗粒物;排放特性;氧化催化器;颗粒物氧化催化器

0 引 言

生物柴油作为柴油机比较理想的替代燃料,具有十六烷值高、含氧量高、含硫量低和可再生等优点[1-2]。随着全球石化能源的日益短缺,采用一定比例的生物柴油与石化柴油掺混燃烧的方法,对解决石油能源短缺具有重要意义[3]。研究表明柴油机燃烧生物柴油能明显降低颗粒物排放,同时还可减少CO、HC的排放[4-10]。

随着排放法规日趋严格,采用后处理装置控制柴油机颗粒排放已必不可少。目前常见的降低柴油机颗粒物的后处理装置有颗粒氧化催化器(particle oxidation catalyst,POC)和颗粒物滤清器(diesel particulate filter,DPF)。POC的结构是一个多褶皱不堵塞的通道,通常与氧化催化器(diesel oxidation catalyst,DOC)组合应用(以下简称DOC+POC),对颗粒物的净化效率较好,最高质量浓度转化率达89.0%[11-14],与DOC+DPF组合系统相比,DOC+POC具有低排气背压、成本低、标定过程简单等优点。

目前,国内外研究DOC+POC对纯柴油的排放特性影响较多[15-19],对生物柴油的排放特性的影响研究较少[20-21],且多集中在对常规排放以及颗粒物的净化效率方面。本文研究重点是排放后处理技术对燃烧生物柴油颗粒物中可溶有机物组分(soluble organic fractions,SOF)的影响,分析DOC+POC对SOF中各组分的占比变化以及对碳原子数的变化规律。通过柴油机燃用调合生物柴油台架试验,利用微孔均匀沉积冲击式采样器(micro-orifice uniform deposition impactor,MOUDI)对DOC+POC作用前后的颗粒物进行采样,利用微克天平进行称质量,获得颗粒物的质量浓度和粒径分布,借助气相色谱-质谱联用仪(gas chromatography-mass spectrometer,GC-MS)对颗粒物中SOF进行分析。研究结果可为生物柴油排放颗粒物后处理技术提供基础性数据,同时有助于DOC+POC装置的改进与优化。

1 试验发动机与方案

1.1 发动机与燃料

试验所用发动机为某型号直列四缸高压共轨柴油机,该机缸径和行程分别为84和90 mm,额定功率(转速)为60 kW/(3 200 r/min),最大转矩(转速)为201(N·m)/(2 200 r/min),排量为1.995 L。

试验所用DOC和POC为安徽艾可蓝节能环保科技公司提供,表1所列为DOC和POC后处理装置的主要参数。

表1 DOC和POC后处理装置的主要参数

注:DOC为氧化催化器,POC为颗粒氧化催化器。

Note: DOC is diesel oxidation catalyst; POC is particle oxidation catalyst.

试验所用柴油为市售0#柴油,生物柴油由常州悦达卡特新能源有限公司提供,生产原料为餐饮废油。生物柴油是对餐饮废油进行酯化处理后得到的,酯化后的生物柴油十六烷值提高,着火性能改善[22-24]。按照一定的体积比将生物柴油和柴油掺混制备调合生物柴油,其中B0、B10和B20分别表示生物柴油的体积比为0、10%和20%,表2所列为柴油和生物柴油的主要理化参数。

表2 柴油和生物柴油的主要理化参数

1.2 试验设备

试验所用的MOUDI采样器为美国MSP公司生产,其采样粒径分级为8级,分别为0.18~0.32、0.32~0.56、0.56~1.0、1.0~1.8、1.8~3.2、3.2~5.6、5.6~10和10~18m,所采用的滤膜为聚四氟乙烯滤膜,该滤膜具有耐高温、不溶于有机溶剂的特点,便于后期对颗粒物中SOF组分萃取。

试验所用GC-MS为Thermo Scientific公司生产的ITQ1100型,分析条件设定为:采用全扫描方式;色谱柱为HP-5MS型;载体为高纯度氦气,流量为1 mL/min;进样方式为不分流进样,进样量为1L。

1.3 试验方案

试验选择发动机工况为3 200 r/min,100%负荷,保持喷油提前角不变,分别燃用B0、B10和B20调合生物柴油,利用MOUDI对DOC+POC作用前后的颗粒物进行采样,采样时间为1 h,气体流量为30 L/min。采样前后对所用的聚四氟乙烯滤膜需置于干燥箱内保持温湿度平衡6 h,再利用微克天平对颗粒物进行精确称质量。

利用GC-MS检测颗粒物中SOF组分,需要预先对滤膜上颗粒物进行萃取,SOF溶液提取采用超声波震荡法结合索氏萃取法,将溶液旋转蒸发至1 mL后冷冻保存。取样1L滤液进行GC-MS分析,升温程序设定为:初始温度为80 ℃,恒温2 min,以20 ℃/min的升温速率升温至160 ℃,再以8 ℃/min的升温速率升温至280 ℃,恒温14 min。

2 结果与分析

2.1 颗粒物质量浓度与粒径分布

柴油机排放的颗粒物主要以核态(5~50 nm)、聚集态(100~1 000 nm)和粗颗粒态(>1 000 nm)3种模态存在。图1所示为燃用B0、B10和B20燃油在发动机转速为3 200 r/min下的颗粒物质量浓度分布曲线。由图可见,B0、B10和B20颗粒物质量浓度皆呈单峰分布,且峰值均在0.18~0.32m范围内,B10和B20的颗粒物质量浓度明显低于B0。这是因为生物柴油含氧特性、十六烷值高,改善缸内燃烧,减少颗粒物排放。随着掺混比增加,B20较B10质量浓度下降不明显,这是因为较大的掺混比导致燃油运动黏度变大,影响了燃油雾化混合及燃烧过程。加装DOC+POC后,3种燃料的颗粒物质量浓度均明显下降,B0、B10和B20排气颗粒物的总质量浓度分别由18.707、5.071和4.17 mg/m3降低至10.743、2.591和1.991 mg/m3,转化率分别为42.57%、48.91%、52.25%。随着生物柴油掺混比增加,颗粒物质量浓度的转化率逐渐增大。对比图1曲线可以看出,DOC+POC对粒径0.18~1m的颗粒物净化效率更高,主要因为SOF组分多数以小颗粒物存在,而DOC主要通过氧化SOF来降低颗粒物排放[25-26],因此对于小粒径颗粒物作用明显。

注:B0,B10,B20分别为生物柴油的体积比为0,10%,20%。

由图2可知,随着生物柴油掺比增加,聚集态和粗颗粒态的转化率均呈增大趋势,且对聚集态的转化率高于粗颗粒态。B20聚集态转化率最高,达58.36%,主要因为随着生物柴油掺混比增加,燃料黏度变大,雾化效果变差,造成燃料的不充分燃烧,产生较多以SOF为主体的聚集态颗粒,DOC+POC对这部分颗粒的净化效果较好。由图2b可知,DOC+POC对B20的粗颗粒态转化率最高,为38.5%。这是因为生物柴油的含氧特性,在高温富氧的环境产生较多的NOx,经过DOC将部分NO氧化成强氧化性气体NO2,提高了POC对粗颗粒态中碳烟颗粒的转化率[27-30]。

图2 DOC+POC对聚集态与粗颗粒态的颗粒转化率

2.2 颗粒物中SOF的研究

2.2.1 SOF的质量浓度

图3所示为DOC+POC对颗粒物中SOF的转化率。加装DOC+POC后,3种燃料的排气颗粒中的SOF质量浓度均降低,对B0,B10和B20排气颗粒物中SOF的转化率分别为53.27%,60.02%和65.15%。随着生物柴油掺混比增加,DOC+POC对SOF的转化率呈增大趋势,B20的转化率最高。虽然生物柴油的十六烷值高,在相同工况下滞燃期缩短,排气温度较柴油略有下降[31],但本文试验工况为额定转速3 200 r/min,100%负荷,燃用B0,B10和B20排气温度仍均较高,后处理装置中催化剂活性均较强,同时生物柴油中含氧,气缸内消耗的氧气量减少,排气中的氧浓度增加,DOC+POC对SOF的转化率提高[30]。

图3 DOC+POC对颗粒物中SOF的转化率

2.2.2 SOF的组分分析

通过对不同燃料颗粒物中SOF溶液试样进行GC-MS分析,得到SOF总离子流色谱,结合总离子流图检索NIST谱图,对SOF组分进行定量分析。表3所示为颗粒物中SOF经GC-MS检测,得到的各组分的质量分数,由表3可知,无论是原机还是加装DOC+POC后,3种燃料的排放颗粒物中SOF组分皆以烷烃类、芳香烃、酚类、脂类和酸类为主。表中的其他组分为少量的醇类、醛类和醚类等,因组分占比较少,本文不列入研究。未加装DOC+POC时,随着生物柴油掺混比增加,SOF组分中脂类、酸类物质质量分数增加,烷烃类、芳香烃和酚类物质质量分数减少,这是因为生物柴油的主要成分是脂肪酸甲脂,随着掺混比增大,生物柴油的不完全燃烧造成脂类和酸类物质增加;生物柴油不含苯环,因此随着生物柴油掺混比增加,含有苯环结构的芳香烃和酚类物质质量分数略有降低。加装DOC+POC后,燃用B0,B10和B20排气颗粒中SOF组分中烷烃类、脂类和酸类物质质量分数呈减少趋势,且在燃用B20时脂类和酸类物质质量分数降幅最大,分别为55.45%和43.27%,可以看出DOC+POC对燃用生物柴油排气颗粒中SOF组分中脂类和酸类物质净化作用明显。而芳香烃类和酚类物质质量分数呈上升趋势,主要因为芳香烃和酚类物质分子结构中含有难以氧化的苯环,相对于其他物质,芳香烃和酚类物质氧化速率低,导致质量分数的增加。

表3 柴油机排气颗粒中SOF各组分质量分数

2.2.3 SOF的碳原子数

图4所示为B0和B20颗粒中SOF组分的碳原子数分布图。未加装DOC+POC时,B0和B20的SOF碳原子数质量分数均呈现近似以C16为峰值的正态分布,分布区间为C3~C33。其中B0颗粒物中C15和C16占比最高,质量分数分别为18.62%和20.78%;B20颗粒物 C16占比最高,质量分数为28.29%。对比2种燃料排放颗粒物中SOF碳原子数可以发现,燃用B0和B20燃料的SOF碳原子数在C25~C33之间的质量分数分别为14.9%和7.72%,随着生物柴油的添加,C25~C33的质量分数减少,这是因为生物柴油的氧含量高,促进高碳原子分子氧化成中低碳原子分子。加装DOC+POC后,B0和B20颗粒中SOF的峰值碳原子数均下降,B20颗粒中SOF的峰值碳原子数C16下降明显,由28.29%下降至14.03%,降幅为50.41%。与B0相比,B20颗粒中SOF碳原子数向C25~C33聚集,C12~C18质量分数降低。B20排气颗粒物中SOF中C12~C18质量分数降幅由B0的9.89%增大为35.15%,C25~C33由B0降幅31.54%变为增幅212.69%。由此可知,DOC+POC对燃用B20颗粒物中SOF的C12~C18氧化作用明显,对C25~C33转化效率较差。一方面因为燃用B20排放出较多的脂类物质,且脂类物质较多以低碳原子数存在,如邻苯二甲酸二丁酯等,DOC+POC对脂类物质氧化作用明显;另一方面燃用B20排放出较多的NOx,经DOC后氧化成强氧化性气体NO2,在后处理装置中进一步对SOF组分氧化,由于高碳原子分子氧化需要更多的活化能,相对于中低碳原子分子氧化速率较慢。

图4 颗粒物中SOF碳原子数分布图

3 结 论

1)随着生物柴油的掺混比增加,DOC+POC对颗粒物的转化率提高,B0,B10和B20总质量浓度转化率分别为42.57%、48.91%和52.25%。

2)DOC+POC对聚集态颗粒物转化率优于粗颗粒态,对B20聚集态的转化率达58.36%。

3)随着生物柴油掺混比增加,SOF组分中脂类、酸类物质质量分数增加,烷烃类、芳香烃、酚类物质质量分数减少。加装DOC+POC后,DOC+POC对B0、B10和B20颗粒物中SOF的转化率呈增大趋势,其中对B20颗粒物中SOF转化率达到65.15%;DOC+POC对脂类和酸类物质净化作用明显,在燃用B20时脂类和酸类物质质量分数降幅分别为55.45%和43.27%。

4)燃用B20可以明显减少SOF中C25~C33的质量分数,DOC+POC对B20排气颗粒中SOF的C12~C18氧化作用明显,对C25~C33氧化速率较慢。

[1] 王常文,崔方方,宋宇. 生物柴油的研究现状及发展前景[J]. 中国油脂,2014(5):44-48.

Wang Changwen, Cui Fangfang, Song Yu. Research situation and development prospect of biodiesel[J]. China Oils and Fats, 2014(5): 44-48. (in Chinese with English abstract)

[2] Basha S A, Gopal K R, Jebaraj S. A review on biodiesel production, combustion, emissions and performance[J]. Renewable & Sustainable Energy Reviews, 2009, 13(6/7):1628-1634.

[3] Milazzo M F, Spina F, Primerano P, et al. Soy biodiesel pathways: Global prospects[J]. Renewable & Sustainable Energy Reviews, 2013, 26(10): 579-624.

[4] Fattah I M R, Masjuki H H, Liaquat A M, et al. Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions[J]. Renewable & Sustainable Energy Reviews, 2013, 18(2): 552-567.

[5] Mofijur M, Atabani A E, Masjuki H H, et al. A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation[J]. Renewable & Sustainable Energy Reviews, 2013, 23(11): 391-404.

[6] 李小昱,韩鹤友,王为,等. 柴油机应用不同配比生物柴油的经济性和排放特性[J]. 农业工程学报,2009,25(5):177-182.

Li Xiaoyu, Han Heyou, Wang Wei, et al. Economy and emission characteristic of different proportions of biodiesel from diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 177-182. (in Chinese with English abstract)

[7] 梅德清,王忠,袁银南,等. 生物柴油发动机尾气中的颗粒物特性分析[J]. 农业工程学报,2006,22(12):113-116.

Mei Deqing, Wang Zhong, Yuan Yinnan, et al. Analysis of the features of the particulate matters generated from diesel engine fueled with biodiesel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(12): 113-116. (in Chinese with English abstract)

[8] 楼狄明,石健,赵杰,等. 共轨柴油机燃用不同配比生物柴油的性能与排放特性[J]. 内燃机工程,2009,30(6):21-25.

Lou Diming, Shi Jian, Zhao Jie, et al. Performance and emission characteristics of a common rail diesel engine fuelled with different proportion bio-diesel blends[J]. Chinese Internal Combustion Engine Engineering, 2009, 30(6): 21-25. (in Chinese with English abstract)

[9] Kousoulidou M, Fontaras G, Ntziachristos L, et al. Biodiesel blend effects on common-rail diesel combustion and emissions[J]. Fuel, 2010, 89(11): 3442-3449.

[10] 楼狄明,孔德立,强蔷,等. 国V柴油机燃用柴油/生物柴油排放性能试验[J]. 农业机械学报,2014,45(9):25-30.

Lou Diming, Kong Deli, Qiang Qiang, et al. Emission experiment on a chinese V diesel engine fueled with diesel /biodiesel[J]. Transactions of The Chinese Society for Agricultural Machine, 2014, 45(9): 25-30. (in Chinese with English abstract)

[11] Murtonen T, Aakko-Saksa P, Kuronen M, et al. Emissions with heavy-duty diesel engines and vehicles using FAME, HVO and GTL fuels with and without DOC+POC after treatment[J]. Environmental Science & Technology, 2009, 2(2). DOI: 10.4271/2009-01-2693

[12] Kinnunen T, Matilainen P, Scheder D, et al. Particle oxidation catalyst (POC®)-From diesel to GDI-studies on particulate number and mass efficiency[J]. Sae Technical Papers, 2012: 2012-01-4271.

[13] 马志豪,任源,李磊,等. POC、DOC对柴油机气体排放的影响[J]. 小型内燃机与摩托车,2013,42(2):59-63.

Ma Zhihao, Ren Yuan, Li Lei, et al. The effects of POC and DOC on the gas emissions of diesel engine[J]. Small Internal Combustion Engine and Motorcycle, 2013, 42(2): 59-63. (in Chinese with English abstract)

[14] 冯向字,葛蕴珊,马朝臣,等. 颗粒物氧化催化转化器对柴油机排放的影响研究[J]. 内燃机工程,2015,36(5):63-68. Feng Xiangyu, Ge Yunshan, Ma Chaochen, et al. Effects of particulate oxidation catalyst on emissions characteristic of diesel engines[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(5): 63-68. (in Chinese with English abstract)

[15] Lehtoranta K, Matilainen P, Åsenbrygg J M, et al. Particle oxidation catalyst in light duty and heavy duty diesel applications[C]// International Conference on Engines for Automobiles, 2007: 67-74.

[16] 李树会. POC-轻型柴油车国Ⅲ/国Ⅳ后处理方案[J]. 内燃机,2008(6):40-42.

Li Shuhui. POC—an aftertreatment plan for light-duty diesel vehicle GBⅢ/GBⅣ[J]. Internal Combustion Engines, 2008(6): 40-42. (in Chinese with English abstract)

[17] Lehtoranta K, Matilainen P, Kinnunen T J J, et al. Diesel particle emission reduction by a particle oxidation catalyst[C]// SAE 2009 Powertrains Fuels and Lubricants Meeting. 2009.

[18] 楼狄明,林浩强,谭丕强,等. 氧化催化转化器对柴油机颗粒物排放特性的影响[J]. 同济大学学报:自然科学版,2015,43(6):888-893.

Lou Diming, Lin Haoqiang, Tan Piqiang, et al. Effects of diesel oxidation catalyst technoloy on characteristics of particle from a diesel engine[J]. Journal of Tongji University: Natural Science, 2015, 43(6): 888-893. (in Chinese with English abstract)

[19] 霍少峰. 柴油机氧化催化器及颗粒物氧化催化器对排放特性的影响[D].天津:天津大学,2010.

Huo Shaofeng. Effects of DOC and/or POC on the Exhaust Emissions from Diesel Engine[D]. Tianjin: Tianjin University, 2010. (in Chinese with English abstract)

[20] 姚笛,楼狄明,谭丕强,等. 基于生物柴油发动机的不同后处理装置颗粒物数量排放特性[J]. 内燃机工程,2014,35(1):8-12.

Yao Di, Lou Diming, Tan Piqian, et al. Particle number emission characteristics of biodiesel engine equipped with different after-treatments[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(1): 8-12. (in Chinese with English abstract)

[21] 楼狄明,高帆,姚笛,等. 不同后处理装置生物柴油发动机颗粒多环芳烃排放[J]. 内燃机工程,2014,35(4):31-35.

Lou Diming, Gao Fan, Yao Di, et al. Particle PAHs emissions of biodiesel engine equipped with different after-treatments[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(4): 31-35. (in Chinese with English abstract)

[22] 吴培振. 调合生物柴油对柴油机燃烧及颗粒物组分的影响研究[D]. 镇江:江苏大学,2016.

Wu Peizhen. Study on Combustion and Particulate Matter Components for a Diesel Engine Fueled with Blending Bbiodiesel[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)

[23] 李瑞娜,王忠,李铭迪,等. 酯类燃料十六烷值估算方法的改进[J]. 石油学报:石油加工,2013,29(5):899-904.

Li Ruina,Wang Zhong, Li Mingdi, et al. The improved estimation method of esters fuel cetane number[J]. Acta Petrolei Sinica, 2013, 29(5): 899-904. (in Chinese with English abstract)

[24] 孔德芳,沈颖刚,彭益源,等. 生物柴油的理化特性对柴油机性能的影响研究[J].内燃机,2009(1):25-28.

KongDefang,Shen Yinggang,Peng Yiyuan, et al. Research on the influences of characteristics of biodiesel exserted on diesel engine performance[J]. Internal Combustion Engines, 2009(1): 25-28. (in Chinese with English abstract)

[25] Lehtoranta K, Matilainen P, Kinnunen T J J, et al. Diesel particle emission reduction by a particle oxidation catalyst[C]// SAE Paper, 2009(1): 2705-2711.

[26] 邹建国,钟秦. 柴油机排放颗粒物净化技术研究进展[J]. 环境工程学报,2005,6(9):7-11.

Zou Jianguo, Zhong Qin. Review of purification method of diesel engine part iculatematter[J]. Chinese Journal of Environmental Engineering, 2005, 6(9): 7-11. (in Chinese with English abstract)

[27] 李博,楼狄明,谭丕强,等. 发动机燃用生物柴油的常规和非常规排放特性[J].内燃机工程,2009,30(5):22-26.

Li Bo, Lou Diming, Tan Piqian, et al. Regulated and non-regulated emission characteristics of an engine fuelled with bio-diesel[J]. Chinese Internal Combustion Engine Engineering, 2009, 30(5): 22-26. (in Chinese with English abstract)

[28] Mulla S S, Chen N, Delgass W N, et al. NO inhibits the catalytic reaction of NO and O over Pt[J]. Catalysis Letters, 2005, 100(3/4): 267-270.

[29] Min J S, Lee C Q, Kim S H, et al. Development and performance of catalytic diesel particulate filter systems for heavy-duty diesel vehicles[J]. International Migration, 2005, 25(4): 325-334.

[30] 管伟,孙付胜,王肇胤. 商用车柴油机DOC+POC后处理技术介绍[J]. 内燃机与配件,2012(11):32-35.

Guan Wei, Sun Fusheng, Wang Zhaoyin, Introduction of DOC+POC after treatment technology for commercial diesel engine[J]. Internal Combustion Engine & Parts, 2012(11): 32-35. (in Chinese with English abstract)

[31] 谭满志,李小平,徐振波,等. 电控高压共轨柴油机燃用生物柴油的燃烧特性[J]. 车用发动机,2009(3):36-39.

Tan Manzhi, Li Xiaoping, Xu Zhenbo, et al. Combustion characteristic of electronically controlled high pressure common rail diesel engine fueled with biodiesel[J]. Vehicle Engine, 2009(3): 36-39. (in Chinese with English abstract)

杜家益,魏 松,张登攀,袁银男,逄大庆. DOC与POC耦合柴油机燃用调合生物柴油的颗粒物排放特性[J]. 农业工程学报,2017,33(22):69-74. doi:10.11975/j.issn.1002-6819.2017.22.009 http://www.tcsae.org

Du Jiayi, Wei Song, Zhang Dengpan, Yuan Yinnan, Pang Daqing. Effects of DOC+POC on characteristics of particulate matter from diesel engine fueled with biodiesel blends[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 69-74. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.009 http://www.tcsae.org

Effects of DOC+POC on characteristics of particulate matter from diesel engine fueled with biodiesel blends

Du Jiayi1, Wei Song1, Zhang Dengpan1, Yuan Yinnan2, Pang Daqing3

(1.,,212013,; 2.,,215006,; 3.,213001,)

Particulate matter (PM) emissions from diesel engines are being recognized as the pollutants having adverse effects on the environment as well as on human health. Therefore, the combination of using clean alternative fuels and particulate matter after-treatment devices is one of the effective ways to reduce particulate emissions. Biodiesel as an alternative fuel can significantly reduce particulate emissions. The diesel oxidation catalysts (DOC) are commonly used to oxidize carbon monoxide (CO) and hydrocarbon (HC) emissions as well as partial particles. The particulate oxidation catalyst (POC) is considered as an alternative PM reduction aftertreatment technology to the wall-flow diesel particulate filter (DPF). The combination of DOC and POC is a commonly and widely used to reduce PM. In order to analyze the influence of biodiesel blending ratio, DOC+POC on PM emissions and components of soluble organic fractions (SOF), bench test was carried out on a high pressure common rail diesel engine fueled with diesel-biodiesel dual fuels (B0, B10 and B20). Particles were collected at rated condition. Particle samples with different size grades were achieved from micro-orifice uniform deposition impactor (MOUDI) and mass concentration was obtained by weighting the particle samples. Using the Soxhlet extraction method to extract SOF component from particulates. The effects of biodiesel blending ratio and DOC+POC on SOF content were studied by gas chromatography-mass spectrometer (GC-MS) analysis. The distribution of carbon atoms of B0 and B20 were obtained by analyzing the GC-MS data. The results showed that when the content of biodiesel percentage was increased, DOC + POC conversion rate of particulate matter was increased,the conversion of total mass concentration of B0, B10 and B20 were 42.57%, 48.91% and 52.25% respectively. The mass concentration within each size grade was decreased. The mass concentration peak value of particulate matter emitted from three fuels all ranged from 0.18 to 0.32m. The mass fraction of lipids and acids components in SOF were increased and alkanes, aromatic hydrocarbons and phenols compounds were decreased. Moreover, the increase of biodiesel percentage promotes the oxidation of high-carbon atoms into low-carbon atoms. the mass fraction of carbon atoms in SOF of B0 and B20 showed a normal distribution with a peak at C16. After the installation of DOC+POC, the mass concentration of particulate matter was decreased and the convert efficiency of accumulation state particles was higher than that of coarse particles. Meanwhile, the convert efficiency of accumulation state particles with B20 reached 58.36%. With the increase of biodiesel percentage, the convert efficiency of SOF was increased, and the convert efficiency of SOF reached 65.15% when B20 fuel was used. DOC+POC had a significant effect on the conversion of lipid and acid substances. The mass fraction of lipid and acid substances changed from 15.4% to 6.86% and 9.43% to 5.35% respectively. Moreover, DOC+POC had obvious effect on the oxidation of C12-C18 in SOF of B20.These results could provide a theoretical basis for the aftertreatment of biodiesel combustion particulates, and it is helpful to improve and optimize of diesel oxidation catalysts and particulate oxidation catalyst,according to the biodiesel emission characteristics.

diesel engines; biodiesel; particulate matter; emission characteristic; diesel oxidation catalyst; particle oxidation catalyst

10.11975/j.issn.1002-6819.2017.22.009

TK6

A

1002-6819(2017)-22-0069-06

2017-07-06

2017-10-28

国家自然科学基金资助项目(51376095);江苏省高校自然科学研究重大项目(13KJA470001);江苏省高校自然科学研究项目(15KJB470002);江苏高校优势学科建设工程资助项目(PAPD)

杜家益,男,博士,副教授,主要从事动力机械工作过程仿真、代用燃料排放控制等研究。Email:jydu@ujs.edu.cn

猜你喜欢
燃用转化率颗粒物
我国全产业领域平均国际标准转化率已达75%
CFB锅炉燃用高热值动力煤的问题和对策
道路空气颗粒物污染与骑行流的相关性研究
F - T 煤制油/ 正丁醇混合燃料对电控柴油机性能的影响
重型车用柴油机燃用煤基代用燃料特性
曲料配比与米渣生酱油蛋白质转化率的相关性
透视化学平衡中的转化率
多层介质阻挡放电处理柴油机尾气颗粒物
影响转化率的因素
关于环境领域英文符号PM2.5 中文名称的建议