越冬期广玉兰阳生叶和阴生叶PSⅡ功能及捕光色素分子内禀特性的比较研究

2017-11-09 13:37胡文海叶子飘闫小红杨旭升
植物研究 2017年2期
关键词:广玉兰强光越冬

胡文海 叶子飘 闫小红 杨旭升

(1.井冈山大学生命科学学院,吉安 343009; 2.江西省生物多样性与生态工程重点实验室,吉安 343009; 3.井冈山大学数理学院,吉安 343009)

越冬期广玉兰阳生叶和阴生叶PSⅡ功能及捕光色素分子内禀特性的比较研究

胡文海1,2叶子飘2,3闫小红1,2杨旭升1

(1.井冈山大学生命科学学院,吉安 343009; 2.江西省生物多样性与生态工程重点实验室,吉安 343009; 3.井冈山大学数理学院,吉安 343009)

捕光色素分子的内禀特性不仅决定了光能的吸收与传递,也将影响到激发能向光化学反应、热耗散和叶绿素荧光的分配。本文采用叶绿素荧光技术和光合电子流对光响应机理模型,研究了越冬期广玉兰(Magnoliagrandiflora)阳生叶和阴生叶两种不同光环境下叶片PSⅡ功能及其捕光色素分子内禀特性的差异,以探索广玉兰越冬的光保护策略。结果表明:越冬期低温导致叶片轻微光抑制的发生,全光照加剧了阳生叶光抑制程度,而弱光环境有利于阴生叶光抑制的恢复。阳生叶可通过降低叶绿素含量和捕光色素分子数量以减少对光能的吸收,并且具有较强的光化学和热耗散能力以保护光合机构免受低温强光伤害。而阴生叶虽然其光化学反应能力相对较弱,但具有较强的热耗散能力,可有效地保护其免受短时曝露在强光下的伤害。

广玉兰;越冬期;PSⅡ功能;捕光色素分子内禀特性,光保护策略

植物光合作用包括光反应和暗反应两个过程,叶绿素分子吸收光能后裂解水分子,同时形成质子梯度和驱动电子流形成ATP和NADPH并用于碳同化。当叶片吸收光能超出了碳同化所需时,过剩的激发能可形成三线态的叶绿素分子用于产生活性氧,并对光合机构造成伤害[1~2]。分布于亚热带及其以北地区的常绿植物在冬季常处于低温强光的生长环境[3],低温抑制了光合碳同化的进行,但未影响叶片对光能的吸收与传递,光能吸收与利用的失衡增加了光抑制甚至光氧化伤害的潜在风险[4~7]。因此,常绿植物必然拥有一系列光保护策略以顺利越冬[1]。一方面,常绿植物能够通过叶片运动和卷曲[8~9]、叶绿素含量减少[10]等来减少对光能的吸收[11];另一方面,常绿植物通过依赖于叶黄素循环的热耗散[1,6,10]、PSⅡ反应中心功能下调[12~13]、围绕PSⅠ的环式电子传递[14]等能量耗散途径以保护光合机构。常绿植物能否免受光抑制顺利越冬,既取决于植物本身的光系统功能和光保护途径强弱,也受到环境因素的影响[15~16]。此外,植物叶片对光能的吸收、激发、传递和转换等过程受捕光色素分子的空间结构和电荷分布等内禀特性所决定,不同的植物以及同种植物在不同环境下其内禀特性也不相同,从而影响到其对光能的吸收与利用[17~20]。目前相关研究主要集中于常绿植物叶片对冬季低温强光长期适应后的光保护策略,而对处于不同光环境下的阳生叶和阴生叶PSⅡ功能以及捕光色素分子内禀特性的差异,及其对光强变化的快速响应过程研究相对较少。为此,我们选择园林绿化中常见的常绿植物广玉兰(MagnoliaGrandifloraL.)为材料,利用叶绿素荧光技术对越冬期广玉兰阳生叶和阴生叶的PSⅡ功能开展研究,以期从光合机构的内禀特性及其环境适应性的角度来探索广玉兰的越冬光保护策略。

1 材料与方法

1.1 试验材料

试验于2015年1月在井冈山大学校园内进行,供试广玉兰(MagnoliagrandifloraL.)植株高约4 m,一面向阳,一面背阴靠近山坡。于晴天6:00和9:00选择阳生叶和阴生叶各5片,带枝剪下插入水中带回实验室进行叶绿素荧光的测定。其中阳生叶自7:00~16:30有太阳光直射到叶片,12:00时叶表光照强度约为1 470 μmol·m-2·s-1;阴生叶全天无直射阳光,12:00叶表面光照强度约为40 μmol·m-2·s-1。试验期间为连续晴天,气温为4~14℃。

1.2 测定项目和方法

1.2.1 叶绿素含量的测定

将进行了叶绿素荧光测定的叶片打孔取样,按Arnon的方法[21],采用丙酮法进行叶绿素含量的测定。

1.2.2 叶绿素荧光参数的测定

采用Dual-PAM-100/F(Heinz Walz GmbH,Effeltrich,Germany)进行叶绿素荧光的测定。暗适应叶绿素荧光参数的测定分别在6:00和9:00采集的叶片上进行,首先将叶片暗适应30 min后,分别测定其最小荧光(Fo)和最大荧光(Fm),并计算PSⅡ最大光化学效率:

Fv/Fm=(Fm-Fo)/Fm

(1)

叶绿素荧光快速光曲线(Rapid light curves,RLCs)的测定依据Dual-PAM-100使用说明,在9:00采集的叶片上进行。在试验中我们分别采用光化光诱导10s(AL10s)和诱导120s(AL120s)两种测量条件下进行了RLCs的测定。首先进行AL120s测量条件下的测定,将叶片暗适应30 min后测定Fo和Fm,再依次开启7~918 μmol·m-2·s-1的光化光,每个梯度的光化光照射叶片120 s,并由仪器直接记录该测量条件下荧光快速光曲线。然后再进行AL10s测量条件下的测定,将叶片再次进行暗适应30 min,测定Fo和Fm后再依次开启7~918 μmol·m-2·s-1的光化光,此次每个梯度的光化光照射叶片10s,并记录该测量条件下荧光快速光曲线。光化光由仪器内置的LED光源提供635 nm波长光,由仪器测定软件直接给出光化学猝灭系数(qP)、非光化学猝灭系数(NPQ)和PSⅡ光合电子流(J)等叶绿素荧光参数。

1.2.3 光合生理参数的计算

1.2.4 数据统计

采用SPSS11.5软件进行方差分析,独立样本组间比较采用Independent-Samples T Test,单一因素两两比较采用one-way ANVOA的最小显著性差异(LSD)检验,分别在P<0.05水平上进行分析。数据为平均值±标准误差,表中不同字母表示在5%水平上处理间具有显著性差异。

2 实验与分析

2.1越冬期阳生叶和阴生叶PSⅡ光化学效率和热耗散的比较

越冬期,阳生叶和阴生叶Fv/Fm在6:00测定值没有显著差异,经过阳光照射后阳生叶的Fv/Fm稍有下降,阴生叶则略有增加(图1)。阳生叶的qP显著高于阴生叶,光适应时间的延长可促进这两种叶片qP的上升,尤其是阳生叶qP的增加更为明显。NPQ则表现为AL10s测量条件下阳生叶明显高于阴生叶,而AL120s下当光强低于600 μmol·m-2·s-1时阴生叶高于阳生叶(图2)。

图1 越冬期广玉兰阳生叶和阴生叶PSⅡ最大光化学效率(Fv/Fm)的比较Fig.1 The maximal quantum efficiency of PSⅡ(Fv/Fm) for sun- and shading-leaf of M.grandiflora during overwintering

图2 越冬期广玉兰阳生叶和阴生叶光化学猝灭(qP)和非光化学猝灭(NPQ)对光的响应曲线Fig.2 Light-response curves of photochemical quenching(qP) and non-photochemical quenching(NPQ) for sun- and shading- leaf of M.grandiflora during overwintering

图3 越冬期广玉兰阳生叶和阴生叶的光合电子流光响应(J-PAR)曲线Fig.3 Light-response curves of photosynthetic electron flow(J-PAR) for sun- and shading- leaf of M.grandiflora during overwintering

2.2 光合电子流光响应的比较

越冬期,广玉兰阳生叶J高于阴生叶,并且在AL120s下的差异较AL10s下更显著(图3)。通过对J-PAR曲线拟合得到α、Jmax和PARsat等光合参数。结果表明,阴生叶的α、Jmax和PARsat在AL120s和AL10s间无显著差异;而阳生叶的Jmax和PARsat在AL120s下明显高于AL10s;但AL10s下阳生叶的Jmax和PARsat与阴生叶间无显著差异(表1)。

表1越冬期广玉兰阳生叶和阴生叶的初始斜率(α)、最大光合电子传递速率(Jmax)和饱和光强(PARsat)

Table1Initialslope(α),maximumphotosyntheticelectronflow(Jmax)andmaximumirradiance(PARsat)forsun-andshading-leafofM.grandifloraduringoverwintering

参数Parameters阳生叶Sun-leaf阴生叶Shading-leafAL120sAL10sAL120sAL10sα0.288±0.059ab0.230±0.026b0.319±0.014a0.311±0.021aJmax(μmolelectrons·m-2·s-1)40.3±3.1a15.2±3.0b16.9±1.8b12.1±1.9bPARsat(μmolphotons·m-2·s-1)576.4±30.4a423.1±28.5b418.7±31.6b348.5±41.5b

2.3 捕光色素分子内禀特性的比较

由表2可知:越冬期,广玉兰阴生叶叶绿素含量为阳生叶的1.74倍,其Chla/b比值则为阳生叶的76.7%,N0也高出阳生叶70.3%。阳生叶的σik高于阴生叶,并且不受光适应时间长短的影响;τmin则表现为阳生叶明显低于阴生叶,且τmin值大小受到光适应时间长短的影响,无论是阴生叶还是阳生叶在AL120s测量条件下的τmin均低于AL10s。

表2越冬期广玉兰两种生态型叶片的叶绿素含量和捕光色素分子物理参数

Table2Chlorophyllcontentandphysicalparametersoflight-harvestingpigmentmoleculesfortwoeco-typesleavesofM.grandifloraduringoverwintering

参数Parameters阳生叶Sun-leaf阴生叶Shading-leafAL120sAL10sAL120sAL10s叶绿素含量Chlorophyllcontent(mg·m-2)135.2±8.5b235.7±25.8aChla/b5.12±0.04a3.92±0.18bN0(×1015)4.61±0.25b7.85±0.78aσik(×10-21m2)8.67±0.70a8.64±1.34a5.73±0.41b5.53±0.25bτmin(ms)12.32±1.36d42.17±5.42c64.70±2.27b98.95±11.38a

注:N0.捕光色素分子总数;σik.本征光能吸收截面;τmin.处于激发态的捕光色素分子最小平均寿命

Note:N0.Numbers of light-harvesting pigment molecules;σik.Eigen-absorption cross-section;τmin.Minimum average lifetime in an excite state

图4 越冬期广玉兰两种生态型叶片的有效光能吸收截面和与本征光能吸收截面之比对光的响应曲线Fig.4 Light-response curves of the effective light absorption cross-section() and the ratio of and eigen-absorption cross-section(/σik) for two eco-types leaves of M.grandiflora during overwintering

Nk和Nk/N0则随着光强的增加而非线性增加。虽然阳生叶的Nk明显低于阴生叶,但其Nk/N0却高于阴生叶;AL120s测量条件下阳生叶的Nk和Nk/N0均低于AL10s;而阴生叶仅有Nk在AL120s下略低于AL10s,Nk/N0则没有差异(图5)。

图5 越冬期广玉兰两种生态型叶片处于最低激发态的捕光色素分子数(Nk)和Nk与总捕光色素分子的比值(Nk/N0)对光的响应曲线Fig.5 Light-response curves of the photosynthetic pigment numbers in the lowest state(Nk) and the ratio of Nk and the photosynthetic pigment numbers in the ground state(Nk/N0) for two eco-types leaves of M.grandiflora during overwintering

3 讨论

冬季低温抑制了常绿植物叶片Calvin-Benson循环中光合酶活性,但并未对原初反应光能吸收与传递产生影响[4,13]。因此,处于低温强光环境下的阳生叶遭受光抑制的风险远大于弱光环境下的阴生叶[22]。然而,冬季的低温强光并不会造成在其适生地的常绿植物发生不可逆的光抑制伤害。我们的研究结果表明,越冬期阳光照射导致了广玉兰阳生叶轻微的可逆光抑制发生,经过夜间黑暗后可得到一定程度的恢复;而处于弱光环境下的阴生叶夜间低温会导致叶片可逆光抑制的发生,在白天温度回升后其光抑制可得到完全恢复(图1)。由此可见,越冬期低温是导致广玉兰叶片发生光抑制的直接原因,太阳光直接照射可加剧叶片光抑制程度,但是广玉兰阳生叶和阴生叶光抑制均为可逆光抑制,说明越冬期低温和强光并未对广玉兰叶片光合机构造成伤害[23]。

植物防御光抑制的策略可通过减少光能的吸收,和(或)增强光能耗散两方面来实现。原初反应的光能吸收、传递和退激发等过程受天线色素分子的内禀特性所决定,是一个纯粹的物理过程[24~25]。捕光色素分子吸收光能后由基态跃迁至激发态,激发能主要分配到相互竞争的光化学反应、热耗散和叶绿素荧光三条途径[26],因此,捕光色素分子的内禀特性不仅决定了光能的吸收与传递,也将影响到其后激发能的分配。

叶绿素荧光快速光曲线是近年发展出来的一种荧光光响应测定方法。在试验中我们分别采用光化光诱导10 s(AL10s)和120 s(AL120s)两种测量条件对RLCs进行了测定。在AL10s测量条件下,由于每个梯度的光化光照射时间短至10 s,不足以启动该梯度光化光照射下碳同化的顺利运转,因此所反映的叶绿素荧光对光强变化的瞬间响应受碳同化的影响较小,与光合机构的内在功能直接相关[29~30]。而在AL120s测量条件下,由于每一梯度光化光诱导时间延长至120 s,已部分或稳定启动了其后碳同化过程,因此反映了光反应和暗反应协同作用下光合机构的功能。通过比较这两种测量条件下的RLCs将有助于判断越冬期常绿植物光保护的内在特性及其对光强的响应差异。

我们发现,在AL10s和AL120s的测量条件下,阳生叶的qP和J均高于阴生叶,并且光诱导时间的延长对阳生叶qP和J的促进作用也明显高于阴生叶(图2~3),这表明阳生叶具有比阴生叶更强的PSⅡ光化学能力,而且碳同化的启动有利于诱导其对光能的利用能力。相应的,AL120s测量条件下阳生叶的Jmax和PARsat均显著高于阴生叶和AL10s下的阳生叶(表1),这也说明了光照可有效诱导阳生叶对强光的利用能力。

此外,两种类型叶片均表现出NPQ随着诱导光强的增加而迅速上升(图2),说明广玉兰本身具有较强的热耗散能力以防御强光伤害。同时,我们发现AL10s测量条件下阳生叶NPQ对光强的响应显著高于阴生叶(图2),这表明阳生叶具有很强的防御瞬间强光能力。然而,在AL120测量条件下阴生叶NPQ对光强的响应显著高于阳生叶(图2),这表明较长时间的光照可诱导阴生叶高热耗散能力以减轻强光伤害。并且,阳生叶的Chla/b比值是阴生叶的1.31倍(表2),表明阳生叶的光反应中心(PSⅡ和PSⅠ)数量比阴生叶多,较长时间的光诱导(AL120s)后碳同化的启动也有利于阳生叶光化学反应的进行(图2),从而减少了吸收光能分配给热耗散部分,这可能是AL120s测量条件下阳生叶NPQ对光强的响应低于阴生叶的原因所在。

捕光色素分子吸收光能后从基态跃迁到激发态,如果过多的捕光色素分子处于激发态且不能及时通过光化学反应、热耗散和荧光退激发,将会对植物产生光抑制伤害[11,31]。高光强将导致捕光色素分子中处于激发态的数量增多,但光诱导时间的延长显著降低了阳生叶的Nk、Nk/N0和τmin,但阴生叶下降不明显(表2,图5)。这意味着光诱导时间的延长有效地启动了阳生叶的光化学反应(图2),使更多的激发能流向光系统,从而有利于减轻强光对植物叶片光抑制伤害的风险。对阴生叶而言,虽然光诱导时间的延长可以诱发其热耗散能力增强,但并未有效启动光化学反应(图2),这可能是长期处于弱光环境下导致阴生叶光合器官在形态结构和生理功能上形成了对低光强环境的适应性,短暂改变入射光强对其光能的吸收和利用进程影响较小[32~33]。因此,如果将阴生叶转移至强光下一段时间将会增加其发生光抑制的风险。

由此可见,越冬期的广玉兰阳生叶具有较强的光化学和热耗散能力,能快速地将处于激发态的捕光色素分子退激发以保护光合机构免受低温强光光抑制伤害;而阴生叶虽然其光化学能力相对较弱,但具有较强的热耗散能力,可有效地保护其短时暴露在强光下时免受光抑制伤害。

1.Adams Ⅲ W W,Zarter C R,Ebbert V,et al.Photoprotective strategies of overwintering evergreens[J].Bio Science,2004,54(1):41-49.

2.孙瑞雪,杨春虹.光系统Ⅱ的结构与功能以及光合膜对环境因素的响应机制[J].生物物理学报,2012,28(7):537-548.

Sun R X,Yang C H.Structure and function of photosystem Ⅱ and the environmental response of photosynthetic membrane[J].Acta Biophysica Sinica,2012,28:537-548.

3.Martínez-ferri E,Manrique E,Valladares F,et al.Winter photoinhibition in the field involves different processes in four co-occurring Mediterranean tree species[J].Tree Physiology,2004,24(9):981-990.

4.Öquist G,Huner N P A.Photosynthesis of overwintering evergreen plants[J].Annual Review of Plant Biology,2003,54(1):329-355.

5.Arora R,Rowland L J.Physiological research on winter-hardiness:deacclimation resistance,reacclimation ability,photoprotection strategies,and a cold acclimation protocol design[J].Hortscience,2011,46(8):1070-1078.

6.Telfer A.Singlet oxygen production by PSⅡ under light stress:mechanism,detection and the protective role of β-carotene[J].Plant & Cell Physiology,2014,55(7):1216-1223.

7.Zhang S R,Apel K,Kim C.Singlet oxygen-mediated and EXECUTER-dependent signalling and acclimation ofArabidopsisthalianaexposed to light stress[J].Philosophical Transactions of the Royal Society of London.Series B,Biological Sciences,2014,369(1640):20130227.

8.Nilsen E T.Seasonal and diurnal leaf movements ofRhododendronmaximumL.in contrasting irradiance environments[J].Oecologia,1985,65(2):296-302.

9.Wang X,Peng Y H,Singer J W,et al.Seasonal changes in photosynthesis,antioxidant systems andELIPexpression in a thermonastic and non-thermonasticRhododendronspecies:a comparison of photoprotective strategies in overwintering plants[J].Plant Science,2009,177(6):607-617.

10.Han Q,Shinohara K,Kakubari Y,et al.Photoprotective role of rhodoxanthin during cold acclimation inCryptomeriajaponica[J].Plant,Cell & Environment,2003,26(5):715-723.

11.Takahashi S,Badger M R.Photoprotection in plants:a new light on photosystem Ⅱ damage[J].Trends in Plant Science,2011,16(1):53-60.

12.Ottander C,Campbell D,Öquist G.Seasonal changes in photosystem Ⅱ organisation and pigment composition inPinussylvestris[J].Planta,1995,197(1):176-183.

13.Yamazaki J Y,Tsuchiya S,Nagano S,et al.Photoprotective mechanisms against winter stresses in the needles ofAbiesmariesiigrown at the tree line on Mt.Norikura in Central Japan[J].Photosynthetica,2007,45(4):547-554.

14.Ivanov A G,Sane P V,Zeinalov Y,et al.Photosynthetic electron transport adjustments in overwintering Scots pine(PinussylvestrisL.)[J].Planta,2001,213(4):575-585.

15.Porcar-Castell A,Juurola E,Ensminger I,et al.Seasonal acclimation of photosystem Ⅱ inPinussylvestris.Ⅱ.Using the rate constants of sustained thermal energy dissipation and photochemistry to study the effect of the light environment[J].Tree Physiology,2008,28(10):1483-1491.

16.钟传飞,张运涛,武晓颖,等.两种常绿阔叶植物越冬光系统功能转变的特异性[J].生态学报,2012,32(23):7483-7491.

Zhong C F,Zhang Y T,Wu X Y,et al.Specificity of photosystems function change of two kinds of overwintering broadleaf evergreen plants[J].Acta Ecologica Sinica,2012,32:7483-7491.

17.Kühlbrandt W,Wang D N,Fujiyoshi Y.Atomic model of plant light-harvesting complex by electron crystallography[J].Nature,1994,367(6464):614-621.

18.Ye Z P,Robakowski P,Suggett D J.A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules[J].Planta,2013,237(3):837-847.

19.Ye Z P,Suggett J D,Robakowski P,et al.A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem Ⅱ in C3and C4species[J].New Phytologist,2013,199(1):110-120.

20.叶子飘,胡文海,肖宜安,等.光合电子流对光响应的机理模型及其应用[J].植物生态学报,2014,38(11):1241-1249.

Ye Z P,Hu W H,Xiao Y A,et al.A mechanistic model of light-response of photosynthetic electron flow and its application[J].Chinese Journal of Plant Ecology,2014,38:1241-1262.

21.Arnon D I.Copper enzymes in isolated chloroplasts.Polyphenoloxidase inBetavulgaris[J].Plant Physiology,1949,24(1):1-15.

22.Han Q,Katahata S,Kakubari Y,et al.Seasonal changes in the xanthophyll cycle and antioxidants in sun-exposed and shaded parts of the crown ofCryptomeriajaponicain relation to rhodoxanthin accumulation during cold acclimation[J].Tree Physiology,2004,24(6):609-616.

23.许大全.光合作用效率[M].上海:上海科学技术出版社,2002:123-129.

Xu D Q.Photosynthetic Efficiency[M].Shanghai:Shanghai Scientific & Technical Publishers,2002:123-129.

24.Baker N R.Chlorophyll fluorescence:a probe of photosynthesis in vivo[J].Annual Review of Plant Biology,2008,59:89-113.

25.Panitchayangkoon G,Hayes D,Fransted K A,et al.Long-lived quantum coherence in photosynthetic complexes at physiological temperature[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(29):12766-12770.

26.Oxborough K.Imaging of chlorophyll a fluorescence:theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance[J].Journal of Experimental Botany,2004,55(400):1195-1205.

27.Suggett D J,Macintyre H L,Geider R J.Evaluation of biophysical and optical determinations of light absorption by photosystem Ⅱ in phytoplankton[J].Limnology and Oceanography:Methods,2004,2(10):316-332.

28.Brading P,Warner M E,Davey P,et al.Differential effects of ocean acidification on growth and photosynthesis among phylotypes ofSymbiodinium(Dinophyceae)[J].Limnology and Oceanography,2011,56(3):927-938.

29.Ralph P J,Gademann R.Rapid light curves:a powerful tool to assess photosynthetic activity[J].Aquatic Botany,2005,82(3):222-237.

30.胡文海,张斯斯,肖宜安,等.两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制[J].植物生态学报,2015,39(11):1093-1100.

Hu W H,Zhang S S,Xiao Y A,et al.Physiological responses and photo-protective mechanisms of twoRhododendronplants to natural sunlight after long term shading[J].Chinese Journal of Plant Ecology,2015,39(11):1093-1100.

31.Niyogi K K,Truong T B.Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis[J].Current Opinion in Plant Biolog,2013,16(3):307-314.

32.Walters R G.Towards an understanding of photosynthetic acclimation[J].Journal of Experimental Botany,2005,56(411):435-447.

33.王玉萍,高会会,刘悦善,等.高山植物光合机构耐受胁迫的适应机制[J].应用生态学报,2013,24(7):2049-2055.

Wang Y P,Gao H H,Liu Y SH,et al.Adaptation mechanisms of alpine plants photosynthetic apparatus against adverse stress:A review[J].Chinese Journal of Applied Ecology,2013,24(7):2049-2055.

National Natural Science Foundation of China(31560069);Project in the Educational Commission of Jiangxi Province(GJJ12724)

introduction:HU Wen-Hai(1973—),male,Professor,PhD,mainly engaged in research of physiological ecology of horticultural plants.

date:2016-10-26

PSⅡFunctionandIntrinsicCharacteristicsofLight-harvestingPigmentMoleculesforSun-andShading-leafinMagnoliagrandifloraDuringOverwintering

HU Wen-Hai1,2YE Zi-Piao2,3YAN Xiao-Hong1,2YANG Xu-Sheng1

(1.School of Life Sciences,Jingganshan University,Ji’an 343009;2.Key Laboratory for Biodiversity Science and Ecological Engineering,Jingganshan University,Ji’an 343009;3.Math and Physics College,Jingganshan University,Ji’an 343009)

Light absorption and energy transfer are determined by intrinsic characteristics of light-harvesting pigment molecules, which also have impacts on distribution of excited energy for photochemical reaction, heat dissipation and chlorophyll fluorescence. We compared the differences of the PSⅡ function and intrinsic characteristics of light-harvesting pigment molecules of sun- and shading-leaves to study the photoprotective strategies in overwinteringMagnoliagrandiflora. The slight photoinhibition was caused in leaves ofM.grandifloraby low temperature during overwintering. Natural sunlight enhanced photoinhibition in sunleaf, however, low light condition was propitious to the recovery of photoinhibition in shading-leaf. Sun-leaf had lower chlorophyll content and the numbers of light-harvesting pigment molecules(N0) to reduce light energy absorption. Sun-leaf also possessed higher photochemical function and thermal energy dissipation in PSⅡ, which would protect photosynthetic apparatus against damage by low temperature and high light. Shading-leaf exhibited lower capability of photochemical reaction, however, possessed greater thermal energy dissipation, which would alleviate photoinhibition of shadingleaf under temporal high light condition during overwintering.

MagnoliagrandifloraL.;overwintering;PSⅡ function;intrinsic characteristics of light-harvesting pigment molecules;photoprotective strategies

国家自然科学基金项目(31560069);江西省教育厅科技计划项目(GJJ12724)

胡文海(1973—),男,教授,博士,主要从事园艺植物生理生态方面的研究。

2016-10-26

Q945.79

A

10.7525/j.issn.1673-5102.2017.02.017

猜你喜欢
广玉兰强光越冬
罗氏沼虾越冬养殖试验
奶牛安全越冬要抓好防寒保温
强 光
强光手电真能点燃物品吗
风中的广玉兰
光控可视电焊面罩
北方园林植物常见越冬防寒措施
流苏越冬种条低温贮藏扦插繁育试验初报
提高广玉兰大苗木移栽成活率的技术
强光治疗及光子嫩肤——激光美容系列讲座七