王 超,张 蕊,杜 欣,张晨贵,栾春红,姜 晶,胡 强,王军喜,杜志游,李天笑,马铁中,严 冬,尹志尧
新型热电材料综述
王 超1,2,张 蕊1,2,杜 欣1,2,张晨贵1,2,栾春红1,2,姜 晶1,2,胡 强3,王军喜4,杜志游5,李天笑5,马铁中6,严 冬6,尹志尧5
(1. 电子科技大学微电子与固体电子学院 成都 611731;2. 电子科技大学电子薄膜与集成器件国家重点实验室 成都 611731;3. 广东省中科宏微半导体设备有限公司 广州 510530;4. 中国科学院半导体研究所 北京海淀区 100083; 5. 中微半导体设备(上海)有限公司 上海浦东区 201201;6. 北京智朗芯光科技有限公司 北京昌平区 102206)
热电材料能够实现热能和电能之间的相互转化,利用温度差进行发电是一种潜在的能源利用的方法,另外利用电学对热量的转化,可以进行温度的精确控制,在传感器和集成电路中有着广阔的应用前景。该文综述了近年来几类热电材料的种类、发展历程和研究现状,包括碲化物、硫族层状化合物、氧化物、笼合物,Half-Heusler材料,方钴矿材料、Zintl相热电材料以及铜硫族类材料。另外,对热电材料的应用做了一些归纳总结,希望能扩展热电器件的应用,实现未来的规模产业化。
新型热电材料; 功率因子; seebeck系数; 热电器件; 热电性能
随着半导体光刻技术和密集封装技术的发展,半导体芯片上的热能产生已经达到将近100 W/cm2[1]。文献[2]提出温度每升高2 K,硅芯片的稳定性将会降低10%。文献[3]的研究也表明了超过一半的电路实验失败与温度有关。热问题制约着互补金属氧化物半导体(complementary metal oxide semiconductor, CMOS)的发展,解决热问题对于片上系统的设计也变得至关重要。一直以来,热电材料都以其体积小、重量轻、坚固、无噪音、无污染、寿命长、易于控制等优点而备受关注[4]。不仅可运用于热能回收发电、制冷,也可将其运用于集成电路,解决芯片热问题。
热电现象最早是在1823年由德国人Seebeck发现的。当两种不同导体构成闭合回路时,如果两个接点的温度不同,则两接点间有电动势产生,且在回路中有电流通过,即温差电现象或Seebeck效应。Seebeck系数可表示为:
式中,表示电势;表示温度,的大小和符号取决于两种材料和两个结点的温度。原则上讲,当载流子是电子时,冷端为负,是负值;如果空穴是主要载流子类型,那么热端是负,是正值。
1834年,法国钟表匠Pletier发现了Seebeck效应的逆效应,即电流通过两个不同导体形成的接点时,接点处会发生放热或吸热现象,称为Peltier效应。Peltier系数可表示为:
式中,表示单位时间接头处所吸收(释放)的帕尔贴热;表示外加电源所提供的电流强度。
1854年,Thomson发现当电流通过一个单一导体,且该导体中存在温度梯度时,就会产生可逆的热效应,称为Thomson效应。Peltier效应和Thomson效应都是电制冷(或电制热)效应,但是由于Thomson效应是一种二级效应,实际应用价值不大。
在实际应用过程中,以无量纲的ZT值来衡量材料的热电性能:
常见的改善ZT值的策略有两种,一种是通过掺杂和能带工程,调控迁移率和载流子浓度,改变态密度有效质量,进而最大化功率因子[4-6]。另一种策略是通过纳米结构或声子工程降低晶格热导率K[7-8]。调控载流子浓度,常见的方法是通过掺杂,但掺杂过程不可避免地引入了晶格缺陷和畸变,这极大地影响了材料的物理性质。除了通过掺杂的手段,还可以通过使用电场[9]、磁场[10]、光辐射[11]来激发和调控载流子浓度。传统的热电材料包括低温(300~500 K)的Bi2Te3,中温(500~900 K)PbTe和高温(900~1200 K)的SiGe合金。
随着科技的进步以及材料合成技术的发展,人们除了对传统材料进行进一步研究以及改善其性能外,大量的新型热电材料也备受人们的关注。例如,金属氧化物热电材料克服了传统材料制备困难、成本高、易氧化、强度低等缺点;填充式方钴矿作为一类新型热电材料具有低热导率的优点;金属硅化物型热电材料相比于其他传统的热电材料具有熔点高的特点,并且其原料来源丰富,高温条件下具有较好的抗氧化性。近年来,纳米技术在改善材料热电性能方面起到了举足轻重的作用,形成了一系列新型热电材料,例如:“声子玻璃-电子晶体”(PGEC)热电材料[12]、纳米线和纳米管热电材料、纳米超晶格热电材料等。图1为近年来主要块体热电材料的发展趋势图。
图1 近年来主要热电材料的发展趋势
碲化物材料由于自身具有较低的热导率,因此是被视为一种比较有发展潜力的热电材料。基于Bi2Te3和PbTe的体材料均展现出比较优异的热电性能。Bi2Te3体系[13]适用于低温,在室温附近热电优值达到1(相应的热电转换效率约为7%~8%),被公认为是最好的热电材料,目前大多数制冷元器件都是使用这类材料。PbTe体系[14]适用于500~900 K的中温,热电优值最大可达0.8,主要用于温差发电。这两类热电材料体系目前已经得到了广泛的应用并且研究较为成熟,本文就不再具体讨论。
Ag2Te热电材料是一种具有在一定温度下相转变现象的材料:418 K温度下,单斜相α-Ag2Te是比较稳定的;418~1 075 K温度范围内,面心立方相β-Ag2Te是比较稳定的;1 075~1 233 K温度范围内,γ-Ag2Te是比较稳定的[15]。370 K时,Ag2Te热电材料的优值达到最大值0.27[16]。
Sb元素替换部分Ag元素形成的AgSbTe2热电材料具有较好的热电性能。AgSbTe2的热电优值随着烧结技术的不同而展现出巨大差异。等离子辅助烧结技术(plasma assisted sintering, PAS)制备的AgSbTe2材料,温度为300 K时,热电优值的最大值为0.29[17]。高温高压技术制备的AgSbTe2材料,温度为513 K时,材料热电优值的最大值为1.07[18-19]。通过熔融纺丝和SPS工艺制备的AgSbTe2材料的热电性能比用传统的熔融和自然冷却方法制备的热电性能好,温度为570 K时,热电优值的最大值可达1.65[20]。通过掺杂或替代的方法可以有效改善AgSbTe2材料的热电性能。例如,在Ag0.99Na0.01SbTe2.02材料中,Na原子取代部分Ag原子占据晶格点,温度为570 K时热电优值达到1.50,比未掺杂的AgSbTe2的热电性能提升了很多[21]。除此以外,在AgSbTe2中掺杂NaSe、TlTe等也可以提高材料的热电性能[22-24]。
TAGS是由碲、锑、锗、银组成的,是碲化银在碲化锗中的固溶体,其组分为(AgSbTe2)1−x(GeTe),是P型材料。研究发现当在0.8~0.85范围内时,P型TAGS材料的热电性能最好,因为此时材料的热导率最小[16](=0.8, 称之为TAGS80;=0.85, 称之为TAGS85)。温度为773 K时,热压法制备的TAGS80的热电优值可达1.75,TAGS85的热电优值也可以达到1.4[25]。目前,TAGS85已经被应用于空间放射性同位素热电发电机。
TAGS热电材料中的Sb2Te3替换部分Ag2Te可以形成一种新的P型热电材料 (GeTe)0.8[(Ag2Te)0.4(Sb2Te3)0.6]0.2,700 K时,热电优值约为1.47[26]。同时,制备样品时的环境条件会对TAGS材料的热电性能产生一定的影响,实验表明氩气氛围下制备出的TAGS材料具有最大的热电优值[27]。掺杂也可以改善TAGS材料的热电性能,通过向TAGS85材料中加入磁性稀土元素可以形成稀磁半导体,从而提高材料的塞贝克系数,改善材料的热电性能(730 K时,加入磁性稀土元素的TAGS85的热电优值大于1.5)[28-29]。
Sb2Te3材料的塞贝克系数比较小,因此热电性能不是特别的突出,但是通过合金化或掺杂的手段可以有效提高材料的塞贝克系数,从而改善材料的热电性能。
冷压技术制备的CuBi0.5Sb1.5−xTe3(= 0−0.4)合金的热电性能强烈地依赖于Cu离子的含量,温度为442 K,在0.05~0.1范围时,合金CuBi0.5Sb1.5−xTe3的最大热电优值可达0.74[30]。通过SPS(spark plasma sintering)技术制备的(Cu4Te3)-(Bi0.5Sb1.5Te3)1−x材料具有较大的电导率、低的晶格热导率,同时,材料的塞贝克系数随着温度的升高而线性增加,当=0.025,温度为474 K时材料展现出较好的热电性能,此时热电优值达到1.26[31]。Sb2Te3材料与Ag元素形成的合金具有比较优异的热电性能,478 K时,材料(Ag0.365Sb0.558Te)0.025-(Bi0.5Sb1.5Te3)0.975的热电优值为1.1[32]。Sb2Te3材料中掺杂S元素也可以改善它的热电性能,423 K时,Sb2Te3材料中掺杂0.1%~0.5%的S元素时,热电优值为0.95[33]。
SnSe晶体在室温环境下具有层状斜方晶系结构。这种晶体材料的原料来源比较丰富,且所含元素对环境无毒无污染,是一种环境友好型热电材料,同时具有非常低的热导率和比较理想的热电性能[34]。实验发现SnSe热电材料的晶体结构还具有各向异性,如图2所示,3幅图分别是SnSe晶体沿、、轴方向看过去的晶体结构,由于沿各个轴的晶体结构是不相同的,因此SnSe的热电性能也具有各向异性,923 K时,沿轴方向的热电优值为0.8,沿轴方向的热电优值为2.3,沿轴方向的热电优值高达2.62;室温条件下,SnSe晶体材料沿轴方向的热电优值也可以达到0.12[34]。
SnSe热电材料在高温条件下会发生相变[35-36]。室温环境下,SnSe具有pbmn空间群Å,Å,Å)结构,800 K时,晶体结构发生变化,变为Cmcm空间群Å,Å,Å)结构。接近相变温度或者高于相变温度时,轴可以强烈的散射声子获得很低的热导率而保持比较高的电导率,因此SnSe晶体材料成为近年来研究的热点[37]。
掺杂可以改善单晶SnSe的热电性能,并且还可以拓宽它的温度应用范围。单晶SnSe材料中掺杂Na元素可以改变材料的费米能级EF,如图3所示[38],材料的费米能级EF(图中虚线所示)随着Na元素含量的增加而降低,但是材料的能带结构不随掺杂而发生改变。因此,Na元素的引入可以有效改善SnSe材料的热电性能(沿轴方向的热电优值),特别是重掺杂的Sn0.97Na0.03Se热电材料,800 K时,Sn0.97Na0.03Se材料的热电优值甚至超过2;300~800 K的温度范围内,材料Sn0.97Na0.03Se的平均热电优值为1.17[38],这个值比目前正在探索研究的大部分热电材料在300~800 K温度范围内的平均热电优值要高[14,29,34,39-44]。单晶SnSe材料中掺杂Ag元素也可以改善其热电性能,但是效果没有掺杂Na元素的改善效果好。
SnS具有和SnSe结构类似的层状结构,如图4所示[45],每个原胞内含有8个原子,这8个原子构成双层结构[46-47],每层中的Sn原子和S原子由共价键连接在一起,层与层之间的结合力主要来源于Sn和S原子之间长键的相互作用力,键能比较小,因此层与层之间的联系比较弱。SnS材料由于其原料来源丰富、价格低廉、无毒无污染而备受业内人士青睐,过去几十年有关于SnS材料的研究主要集中在它的光学性能上,包括光电导性和折射率[48-50]。
室温条件下,SnS是一种具有pbmn空间群结构的斜方晶系[51],835 K时,SnS材料会发生相变,由斜方晶系变为正方晶系[51-52]。文献[51]通过第一性原理计算了SnS材料的能带结构,指出SnS材料是一种具有较大塞贝克系数和较小热导率的间接半导体。最近,文献[53]也通过计算指出SnS材料是一种很有发展潜力的热电材料。由于SnS材料的电导率比较小,温度为873 K时,材料SnS的最大热电优值仅仅接近0.16[45]。
掺杂可以明显改善SnS材料的热电性能。文献[45]的实验表明:SnS掺杂Ag离子,虽然材料的晶格常数不会发生变化,这可能与Ag离子和Sn离子的半径长度大致相同有关,但是材料的电导率会显著增加。SnS材料中掺杂0.5%的Ag元素时,材料的热电性能得到大幅度提升,温度为923 K时,热电优值达到0.6。SnS-SnSe形成的固溶体也可以改善材料的热电性能。固溶体SnS1-xSe中,随着Se元素的增加,固溶体的热电优值也随之增加,823 K时,固溶体SnS0.2Se0.8的热电优值可达0.82[54]。
氧化物自身的电导率比较小,但是碱金属或碱土金属的层状钴化物由于具有特殊的晶体结构(由A层和CoO2层沿轴方向交替排列而成。A离子在两层CoO2层之间呈50%~70%的无规则分布。CoO2层负责导电,A离子层起到散射声子、降低氧化物热导率的作用)从而改善了氧化物自身的电导率较小的缺点,如图5所示[55],使得层状钴化物成为一种典型的氧化物热电材料。
实验发现[41,43,56-69]:相对于合金体系的热电材料,氧化物的热电性能相对较低,如图6所示。该图展示了在一个较宽的温度范围内,氧化物及合金体系热电性能随温度的变化趋势,对比两图可以发现在整个温度范围内氧化物的热电优值都没有合金化合物的热电优值大。但是氧化物在高温领域表现出来的化学稳定性及热稳定性促使人们更多的关注其热电性能的优化。
图5 层状钴化物的晶体结构
a. 合金体系热电材料的热电优值
b. 氧化物体系热电材料的热电优值
图6 两种体系热电材料的热电优值
NaCo2O4化合物是典型的氧化物热电材料,根据化合物中Na元素含量的不同,NaCo2O4化合物会有4种不同的结构[70]:在1.8~2.0范围时,具有-NaCo2O4结构;等于1.5时,具有-NaCo2O4结构;在1.1~1.2范围时,具有-NaCo2O4结构;在1.0~1.4范围时,具有-NaCo2O4结构。其中,-NaCo2O4结构的化合物具有最好的热电性能[71]。
NaCo2O4是一种层状结构的过渡金属氧化物,由Na层和CoO2层沿轴方向交替排列而成。Na离子在两层CoO2层之间呈50%~70%的无规则分布[72]。CoO2层负责导电,Na离子层起到散射声子、降低氧化物热导率的作用,这实际上相当于形成了一种新的“声子玻璃-电子晶体”。因此,NaCo2O4化合物具有较好的热电性能,300 K时,该氧化物的塞贝克系数为100 V/K,电阻率为200W·cm,载流子浓度在1021~1022cm-3范围内。
掺杂可以改善NaCo2O4化合物的热电性能。Rh元素的加入会使NaCo2O4的热导率减小;Pd元素的加入可以增加NaCo2O4的电导率,723 K时,化合物NaCo1.9Pd0.1O4的热电优值可达到0.045[73]。掺杂Ni元素可以减小材料的晶粒尺寸,从而降低热导率,另外,Ni元素的添加还可以优化塞贝克系数,因此起到提高NaCo2O4化合物热电性能的作用,673 K时,NaCo0.9Ni0.1O2的热电优值为0.176[74]。Zn元素替换部分Co元素可以增加材料的电导率和塞贝克系数,从而改善材料的热电性能[75]。
NaCo2O4化合物的化学性质不太稳定,在空气中容易潮解,而且高温时该氧化物的性质也不是很稳定,超过800℃时,Na离子容易挥发,因此NaCo2O4氧化物的应用受到了很大的限制。于是,人们开始研究另外一种新的氧化物热电材料。
文献[76]首先发现了Ca3Co4O9材料具有较好的热电性能,直至今日,层状钴化物Ca3Co4O9仍然一直受到人们的广泛关注[77-79]。层状钴化物Ca3Co4O9具有和NaCo2O4化合物类似的晶体结构,如图7所示,Ca3Co4O9比NaCo2O4的结构稳定性要好,但其热电性能不如NaCo2O4化合物。单晶Ca3Co4O9在973 K时,热电优值为0.87[80]。
制备方法可以影响Ca3Co4O9的热电性能。用传统烧结方法制备的Ca3Co4O9晶体,700 ℃时,材料的热电优值为0.052,但用放电等离子烧结(SPS)技术制备的Ca3Co4O9晶体,其电导率和功率因子显著提高,从而达到优化晶体热电性能的作用,700 ℃时,材料Ca3Co4O9的热电优值为0.16[81]。采用放电等离子烧结技术制备Ca3Co4O9晶体时,加工过程中施加的压力和保温温度会对材料的热电性能产生影响,但冷却速率却对材料的热电性能没有显著的影响[82]。在一定温度及压力范围内,材料的热电性能随温度和压力的增加而增加,温度为900 ℃、压力为50 MPa时,材料的热电性能达到最优值。
图7 Ca3Co4O9的晶体结构
掺杂或是替换某些元素也可以提高Ca3Co4O9晶体材料的热电性能。少量Cr元素替换Ca3Co4O9晶体中的Co元素可以显著提高材料的热电性能[83],材料Ca3Co4-xCrO9(≤0.05)的热电性能比不掺杂的Ca3Co4O9晶体的热电性能提升了25%;Bi元素的掺杂也可以提升材料的热电优值[84],Bi离子替代部分Ca离子可以增大Ca3Co4O9晶体的电导率和塞贝克系数,同时降低材料的热导率,700℃时,材料(Ca0.95Bi0.05)3Co4O9的热电优值高达0.25。添加Ag元素对Ca3Co4O9晶体材料热电性能的改善作用是最明显的,少量Ag元素的掺杂可以增加材料的电导率和功率因子,从而起到改善热电性能的效果,1000 K时,材料Ca2.7Ag0.3Co4O9的热电优值达到0.5[63]。
笼合物是一类具有典型“电子晶体-声子玻璃”特性的热电材料[12]。笼合物热电材料可以分为4大类:Ⅰ型笼合物、Ⅱ型笼合物、Ⅲ型笼合物、Ⅷ型笼合物,其中,Ⅷ型笼合物的热电性能相比于其他3类要好一些。因此,本文仅就Ⅷ型笼合物来讨论它的热电性能。Ⅷ型笼合物包含4种化合物:Ba8Ga16Sn30,a-Eu8Ga16Ge30,Sr8Ga16-xAlGe30(6≤≤10),Sr8Ga16-xAlSi30(8≤≤10),其中,Ⅷ型笼合物Ba8Ga16Sn30的热电性能最好[85-88]。
研究发现,Ga和Sn元素在Ⅷ型笼合物Ba8Ga16Sn30中的化学计量比可以决定材料的载流子类型[89-90],当Ga元素过量时,Ⅷ型笼合物Ba8Ga16Sn30表现为P型半导体的性能;当Sn元素过量时,Ⅷ型笼合物Ba8Ga16Sn30表现为N型半导体的性能。450~500 K的温度范围内,P型单晶笼合物Ba8Ga16Sn30的最大热电优值为1.0,N型单晶笼合物Ba8Ga16Sn30的最大热电优值为0.9[89]。
通过掺杂或是替换某些元素可以改善Ⅷ型笼合物Ba8Ga16Sn30的热电性能。Sb元素替换单晶笼合物Ba8Ga16Sn30中的部分Sn元素会使Ga含量增加,从而改变材料的热电性能,本文将这种材料记为Ba8Ga16+xSn30−x−ySb(< 0.9,< 0.9),当==0.7,温度为480 K时,材料的热电优值为1.0[89]。通过Ge元素取代Sn元素可以制备出P型单晶笼合物Ba8Ga15.9Sn30.1−xGe(0≤≤4.73),其塞贝克系数和电阻率显著增加,相比不掺杂的笼合物,Ge元素的引入会使材料的塞贝克增加1.3倍,电阻率增加2倍,当=0.07,温度为540 K时,材料的最大热电优值达到0.87[91]。掺杂Cu元素也可以改善P型单晶笼合物Ba8Ga16Sn30的热电性能[92],材料的电导率及载流子迁移率均随着Cu元素含量的增加而增加,实验显示:300 K时,当增加到0.033,笼合物Ba8Ga16-xCuSn30(0≤≤0.033)的电阻率相比于没有掺杂的Ba8Ga16Sn30材料的电阻率减小39%,载流子迁移率增加两倍,塞贝克系数仅下降10%;540 K时,P型单晶笼合物Ba8Ga16-xCuSn30(=0.033)的热电优值可达1.35。P型多晶笼合物Ba8Ga16Sn30中引入Ge元素,可以提高材料的载流子迁移率,从而改善笼合物的热电性能。550 K时,多晶笼合物Ba8Ga16.4Sn25.0Ge4.6的最大热电优值为0.62;600 K时,多晶笼合物Ba8Ga16.9Sn19.8Ge9.3的最大热电优值为0.63[93]。
Half-Heusler体系是一种典型的窄带隙半金属材料,适用于中高温范围,由于其高温稳定性和良好的机械性能而备受关注。Half-Heusler的通式为ABX,其中A是元素周期表中左边的过渡元素(钛或钒族),B为元素周期表中右边的过渡元素(铁,钴,镍族),X为主族元素(镓、锡、或锑),其为立方MgAgAs型结构,晶体结构如图8所示[94]。
图中大、小2种实心圆圈分别代表A和B原子,空心圆圈代表X原子,B原子占据AX亚结构立方间隙的一半[94]。A原子格子和B原子格子一起构成NaCl型结构,形成4个小立方体,若4个小立方体的所有空隙中心均被B原子填满,则材料的结构为ABZX,即所谓的Heusler结构化合物,但图中小立方体的空隙中心只有一半被B原子占据,另一半是空的,因此称之为Half-Heusler合金。A、B和X晶格位置都具有高的可替代性,由于质量起伏和应力起伏效应,对A、B元素的取代可降低晶格热导率,同时X的取代也可调整载流子浓度,进一步调控seebeck和电导率。N型Half-Heusler合金MNiSn和MCoSb(M=Ti, Zr, Hf)是被研究的最多的[95-96],P型材料也有如MCoSb[97-98],LnPdSb[99],ErNiSn[100-101],HfPtSn[102-103],ZrPtSn[104]等。
工业和汽车排放的尾气平均温度为500~600 ℃[105],这使得中高温热电材料更具有工业应用价值,中高温热电材料的代表为PbTe、方钴矿和Half-Heusler体系。Half-Heusler材料的应用温度贴近于绝大部分的工业热源,PbTe材料具有毒性,且机械效率差,方钴矿的热稳定性差,Half-Heusler的优势在于没有这类缺点,但高热导率一直制约着它的发展。人们通过以下4种方法来降低其热导率。
1) 最常见的是通过化学替位掺杂来降低其晶格热导率。如ZrNiSn,其晶格热导率为10 W/Mk,人们通过形成固溶体Zr0.5Hf0.5NiSn有效的减少了其晶格热导率[95]。
2) 另外还可以通过形成纳米结构来降低晶格热导率。文献[96]通过高能球磨加直流热压法制成纳米复合相Half-Heusler材料增加了声子散射,降低了晶格热导率,使P型Zr0.5Hf0.5CoSb0.8Sn0.2的ZT值从0.5上升到0.8,N型的Hf0.75Zr0.25NiSn0.99Sb0.01的ZT值从0.8增加到1.0[106]。值得注意的是,纳米复合材料中载流子迁移率并无显著降低,但热压后的晶粒尺寸会变大,这制约了热导率的进一步降低。
3) 随后人们通过增大原子之间质量和尺寸的差异来进一步降低热导率。文献[107]利用原子质量和尺寸相差更大的Hf-Ti组合代替Hf-Zr组合进一步降低热导率,在800 ℃时P型HH材料的ZT值达1.0。之后,文献[108]用价格更低廉的Ti取代Hf得到的N型Hf0.75-xTiZr0.25NiSn0.99Sb0.01实现了500 ℃下ZT值达到1,有利于中温区域(汽车尾气回收)的应用。
4) 此后人们又着眼于Half-Heusler的三元合金材料的研究,文献[109]在之前的研究基础上着手于三元合金(Ti,Zr,Hf)CoSb0.8Sn0.2的研究,得到其800℃下的ZT值大于1。此后文献[110]减少了Hf的用量同样使ZT值在700 ℃达到了1.0。文献[111]对N型Half-Heusler体系进行研究,减少Hf的用量为之前的三分之一,同样获得了1.0的ZT值,且其成本仅为之前的一半。
目前,对于Half-Heusler体系的热电性能的研究仍在不断进行。例如,文献[112]探索了P型NbFeSb基的HH得到的ZT值在700 ℃达到1.0,随后文献[97]发现P型FeNb0.88Hf0.12Sb和FeNb0.86Hf0.14Sb合金的ZT值在1 200 K时可接近1.5,原型器件的功率密度达2.2 W/cm2。文献[113]通过将接近熔点附近的材料快速退火这种方式减小结构的无序性,提升了功率因子,制得了非纳米结构但ZT值达1.2的(Hf, Zr)NiSn合金。但ZT值距离3.0的目标依旧很远。文献[114]系统地调查了大量Half-Heusler化合物的热导率,发现LaPtSb的热导率低至1.72 W/mk。文献[115]通过理论计算预测了LaPtSb这种N型Half-Heusler合金的ZT值可达2.2。文献[116]发现HH拓扑绝缘体LaPtBi在单轴拉伸应变下具有不错的热电性质,预测了Half- Heusler拓扑绝缘体作为热电材料的潜质。
通过纳米复合技术、增强合金散射、三元合金等措施,Half-Heusler的最高ZT值大幅增加了。
具有Skutterudite晶体结构的热电材料,又称为方钴矿材料,最初在挪威小镇Skutterud以矿物形式被发现的。是一类通式为MX3的化合物(其中M是金属元素,如Ir、Co、Rh、Fe等;X是V族元素,如P、As、Sb等)[117],适用于中温区(400~600 K)。是PGEC(phonon glass electron crystal)设计理念的典型体现。方钴矿为立方晶格结构,最初来源于CoAs3矿物,而后扩展到相同族的其他化合物中。一个单位晶胞包含了8个AB3分子,共32个原子,每个晶胞内还有两个较大的空隙[1],通过往空隙内填充原子形成填充式方钴矿,进而减少晶格热导率,而电子输运情况基本不受影响,以下几种方式可以提升其热电效率。
1) 元素置换,形成固溶体合金。在CoSb3化合物中,Co的位置可被Fe、Ni、Ir等取代,Sb的位置可被Te、Se、Sn等替代。文献[118]通过用Ge、Te来部分替代Sb,实现了在750 K下ZT值约为1.1,文献[119]用Sn、Te替代Sb,实现了约550℃下ZT值为1.1。对Co位用Fe部分或全部替代也同样是研究的热点[120-121]。
2) 通过形成填充式方钴矿材料来降低热导率。这种填充式方钴矿材料通式为RM4X12,其中X为磷、砷或锑;M为铁、钌、锇;而R为填充元素。CoSb3基方钴矿材料RxCo4Sb12是一种优秀的n型热电材料,其具有高电子迁移率、高有效质量、低热导率。R可以为碱金属[122-123]、碱土金属[124-125]、稀有金属[126]和一些其他元素如铊[127]、锡[128]等。在850 K温度下,通过掺Na可实现ZT值为1.25[123],掺Ba可实现ZT值为1.1[125]。0 K下,掺In可实现ZT值达1.2[129]。文献[130]通过掺Yb实现了Yb0.3Co4Sb12在850 K下的ZT值为1.3,随后又用更加便宜的Ce代替Yb,实现了Ce0.14Co4Sb12在相同温度下同样的ZT值[131]。
3) 除了单填以外,还可以进行多填。文献[132]通过往CoSb3中填充Ba、La、Yb元素实现了850 K下ZT值达1.7。文献[133]通过填充Sr,Ba,Yb实现了823 K温度下ZT值达到1.4。除了可对CoSb3进行填充外,最近文献[134]开始对与CoSb3具有相似性质的IrSb3进行单原子填充得到N型半导体,得到685 K时最大ZT值为0.44,这个值能够通过多原子填充进一步提高。
4) 对材料低维化处理:将热电材料制成多晶材料,并减小晶粒尺寸,增大晶界密度,形成纳米化材料。纳米材料的高密度晶界可以强烈地散射声子,减少热导率。文献[135]利用放电等离子体烧结(SPS)法制成微纳米级CoSb3,发现随着晶粒尺寸的减小,热电性能得到极大改善。
5) 另外,合成具有微气孔的方钴矿材料也能有效的降低热导率,文献[136]通过对CoSb3基的热电材料引入气孔极大地提升了ZT值。
Zintl相是一类符合PGEC概念的热电材料,由电负性差别较大的阴阳离子组成。其中阳离子为碱金属、碱土金属、稀有金属。阳离子转移电子给阴离子,而转移过去的电子不能填满阴离子的最外层,阴离子间形成共价键,由此共价键形成稳定的框架结构,起到“电子晶体”的作用。结构内部嵌有的结合较弱的离子区域,可以有效散射声子,起到“声子玻璃”的作用,这种离子键和共价键共存结构就为Zintl相结构[137]。这种化合物通常都是窄带隙半导体,由于其复杂的结构,晶格热导率通常都很低[138]。Zintl相热电材料形式多样,绝大多数为三元化合物,如A14MPn11(A = Ca, Sr, Ba, Eu, Yb; M = Mg, Nb, Mn, Zn, Cd; Pn = P, As, Sb, Bi)这种形式,通常简称为14-1-11。根据Zintl相热电材料不同的阴离子结构,可以分为孤立基团(14-1-11,Zn4Sb3等)[139-141],一维四面体链(5-2-6[142-145], 3-1-3[146-147], 9-4-9[148-149]等),二维层状(1-2-2[150], Mg3Sb2[151-152]等),三维框架结构(包括金属间笼形物[153-154],方钴矿[155],Mo3Sb7[156]等)。
其中研究较多的为Sb基,如Yb14MnSb11[157],Zn4Sb3[140], Mg3Sb2[158], BaGa2Sb2[159], Eu5In2Sb6[160], CaYb1-xZn2Sb2[161], EuZn2Sb2[162], YbCd2-xZnSb2[163]等。CaAl2Si2结构的三元锑化物AX2Sb2(X=Cd, Zn; A =Sr, Ca, Yb, Eu)在中温区具有较好的热电性质。YbCd1.6Zb0.4Sb2在700 K下的ZT值可达1.2[163]。高温区的代表是Yb14MnSb11,相对分子质量为为典型热电材料PbTe的10倍。大分子质量使其拥有的室温热导率非常低。低热导率使其在1 200 K下的ZT值约为1.0[164],可用于深空探测等高温环境工作。这种材料打破了高温热电材料发展的停滞不前,比起SiGe可实现4倍的效率和几乎两倍的ZT值[157],这种材料已经被美国国家航空航天局喷气推进实验室发展作为其下一代的放射性同位素热电发生器(RTG)[165]。
除了Sb基的Zintl相化合物外,Te基的Ag9TlTe5也是Zintl相化合物的典型代表,其弹性模量低,化学键结合相对弱,不利于声子传输。热导率从室温到650 K一直保持相对恒定的低值。其ZT值在673 K可达到1.25[166]。另外,对于Bi基的Zintl相化合物也开始被研究。文献[167]第一次报道了CaMg2Bi2和YbMg2Bi2的热电性质,随后,文献[168]通过球磨热压法合成了ZT值约为1的Bi基化合物。
Cu2-xS(Se,Te)是一类新型的P型热电材料。与传统的热电材料相比,其不含昂贵稀少的重金属元素Pb,Te,Bi,Ge,Co,Sb等,组成的硫族元素(S,Se,Te)和Cu元素均在地壳中含量丰富且无毒。铜硫属化合物虽然有简单的化学式,但其原子排布十分复杂。在高温下,这种化合物主要由占据固定位置的主体晶格结构S(Se, Te)和占据亚晶格结构的可自由移动的铜离子组成。当温度升高时Cu离子可以像液体一样在亚晶格中自由迁移。Cu离子的这种液相行为可以强烈地散射声子,降低声子的平均自由程,使热导率降低,但不会降低载流子的迁移率。文献[169]拓展了原有的“声子玻璃,电子晶体”的概念,提出了“声子液体,电子晶体”来解释这种结构的液相行为。这种非同寻常的结构使得其成为了理想的热电材料。
Cu2-xSe具有高温固液立方相β和低温稳定相α。以Cu2Se为例,低温相的Cu2Se具有单斜晶体结构,薄层状,对称性差,铜离子是固定的,无液相行为[170-172]。当温度上升到400 K左右时,α相的Cu2Se转变为高温β相(空间群为)。在相变过程中,Cu离子沿着<111>方向有序堆叠,形成简单的反萤石结构[173]。这种相变通过降温可逆。文献[169]通过热压和等离子烧结制成的Cu2Se,伴随着升温,Cu离子的高迁移率和液相流动行为使得晶格热导率降低到0.4~0.6 W/mK。ZT值在1 000 K时可以达到1.5。之后,文献[174]发现相变对热电性能的影响很突出,在连续的相变过程中,强烈的结构波动引起临界电子和声子的散射增加,热导率降低,在掺I的Cu2Se中,ZT值增加到400 K附近的2.3左右。文献[25]通过水热法合成了高质量的β相纳米片状Cu2Se,经过放电等离子烧结(SPS)处理后,由于纳米材料小角度高密度的晶界和晶界内部的位移极大增加了声子散射,使得晶格热导率低至约0.2 W/mK,ZT值在850 K左右达到了1.82[175],掺杂Al时达到了2.62[176]。
Cu2-xS不仅是一种有光电材料[177],也是有潜力的热电材料,在自然界中以多种形式存在。在Cu元素丰富的环境下,已经确定的Cu2-xS化合物就有辉铜矿(Cu2S)[178]、久辉铜矿(Cu1.94S)[179]、蓝辉铜矿(Cu1.8S)[180]、斜方蓝辉铜矿(Cu1.75S)[181]。在S的晶格中,Cu原子的位置是不确定的,随着的变化而变化。对于Cu2S,在不同温度下,存在3种辉铜矿相位:低于370 K时为单斜γ相(L铜辉矿),370~700 K为六方形固液杂交[182]β相(H铜辉矿),高于700 K转为带有自由移动Cu离子的立方α相[183]。文献[184]通过热压法和等离子烧结(SPS)制得了液相Cu2-xS,其热导率在300~1 000 K范围内低于0.6 W/mK),在1 000 K时,Cu1.97S的ZT值可达到1.7。该实验除了证明在高温下,Cu2-xS可以达到高ZT值外,在低温下(298 K),Cu2-xS的载流子浓度和塞贝克系数可以低至4.8×1 018 cm-3和0.1 μV/K,相比于其他典型的热电材料,这是相当低的值。之后,文献[185]通过金属固态技术,成功合成了970 K的ZT值约为1.9的高密度a-相Cu2S和Cu1.97S多晶块体材料,其中Cu1.97S不仅展现了很好的热电性能和可重复性,也展现了非常优秀的机械性质,硬度达到约1 Gpa,比起之前的热压法,不但减小了成本,而且在一定程度上避免了Cu离子的迁移。其后,又发现当X位为S和Te两种元素同时固溶时,ZT值可以达到2.1[186]。
热电转换技术是一种利用半导体材料直接将热能与电能相互转换的技术。随着环境保护形势的日益严峻,研究和开发清洁能源已成为全球科学研究的重点领域。其中,热电转换技术凭借系统体积小、可靠性高、不排放污染物质、使用温度范围广等特点,被重点关注[187]。
热电器件主要由P型热电材料、N型热电材料、Cu和Al2O3陶瓷基板组成,如图9所示。目前,热电器件已经实现产业化,国内外有不少厂商在生产和销售热电器件。国外的厂商主要有Marlow、TE Technology、TEC Microsystems等。国内的厂商有广东富信科技股份有限公司、香河东方电子有限公司、上海申和热磁电子有限公司、杭州大和热磁电子有限公司、河南鸿昌电子有限公司、江西纳米克热电电子股份有限公司等。
热电器件的应用主要用于温差发电和制冷两个方面,如图10所示。其中温差发电主要基于Seebeck效应,热电制冷主要基于Peltier效应。
温差发电技术最早开始于20世纪40年代,由于其具有结构简单、坚固耐用、无运动部件、无噪声、使用寿命长等优点,使其在航天、航空、军事等领域得到广泛应用。在深空中,热电器件主要用在放射性同位素热电机(radioisotope thermoelectric generator, RTG),如图11所示。随着化石能源的日趋枯竭,美国、日本、欧盟等发达国家更加重视温差发电技术在民用领域的研究,并取得了长足的进展。目前,温差发电技术可以合理利用太阳能、地热能、工业废热、汽车尾气废热、人体热等低品位能源转换成电能[188-194],如图12和图13所示。
热电制冷技术又称为半导体制冷或温差电制冷。热电制冷器是固体电子元件,具有体积小、加热/制冷迅速、加热制冷切换方便等特点,已经在民用、电子、医疗、光学、计量等几个领域得到广泛的应用[195]。而热电制冷技术的应用又分为热电制冷和精确控温两个方面。
热电制冷主要应用有民用领域的车载冰箱、除湿器、小型饮料机、车用冷杯、冷帽、汽车座椅、化妆品存储箱等[196-197],以及电子领域的主板北桥制冷芯片、CPU测试平台、冷风装置、冷却板、大功率LED散热器、投影仪制冷等[198-207],如图14和图15所示。
热电精确控温主要应用在一些对温度要求高的精密设备或组件中。在光学领域中,热电器件主要用在对红外线探测器、高灵敏度CCD、激光发射器、分光光度计、色谱仪等仪器和部件的温度控制上[208-212]。文献[213]采用内置TEC的激光发射器设计立方星通信系统,在功耗小于10 W的条件下使卫星对地传输高达50 Mbps。文献[214]采用四级热电制冷片研制了星载CCD相机快速制冷系统,能在1 min内将CCD冷却到-73 ℃,精度±0.1 ℃。在医疗领域,热电器件主要用于DNA扩增仪、生物试剂检测装置、低温药剂保存箱以及各种高精度医疗仪器[215-222],如图16所示。
综上所述,近年来热电材料取得了一系列的进展,新的高性能热电材料不断涌现,发现了一些结构上可以大幅降低热导率又同时保持高的电导率的SnSe、SnS类的材料,使ZT值有了进一步的增加。另一方面,热电器件也在扩展到新的领域里面,在对温度控制要求较高的传感器,集成电路中有了新的应用,同时也出现在可穿戴的电子设备上。热电材料的存在已经超过一百年了,其大规模的应用至今尚未形成,其主要原因就是成本过高,这两者相互影响。本文通过对近年来一些新型热电材料和器件的回顾,希望能够促使找到新的应用,从而形成热电材料和器件的规模化产业。
[1] KORDAS K, TOTH G, MOILANEN P, et al. Chip cooling with integrated carbon nanotube microfin architectures[J]. Applied Physics Letters, 2007, 90(12): 123105.
[2] BAR-COHEN A, KRAUS A, DAVIDSON S. Thermal frontiers in the design and packaging of microelectronic equipment[J]. Mech Eng, 1983, 105(6): 53-59.
[3] YEH L. Review of heat transfer technologies in electronic equipment[J]. Journal of Electronic Packaging, 1995, 117(4): 333-339.
[4] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114.
[5] PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66-69.
[6] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321(5888): 554-557.
[7] BISWAS K, HE J, BLUM I D,et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416): 414-418.
[8] TOBERER E S, ZEVALKINK A, SNYDER G J. Phonon engineering through crystal chemistry[J]. Journal of Materials Chemistry, 2011, 21(40): 15843.
[9] AHN C, TRISCONE J M, MANNHART J. Electric field effect in correlated oxide systems[J]. Nature, 2003, 424(6952): 1015-1018.
[10] REPAKA D M, MAHENDIRAN R. Giant magnetothermopower in charge ordered Nd0. 75Na0. 25MnO3[J]. Applied Physics Letters, 2013, 103(16): 162408.
[11] OKAZAKI R, HORIKAWA A, YASUI Y, et al. Photo- seebeck effect in ZnO[J]. Journal of the Physical Society of Japan, 2012, 81(11): 114722.
[12] ROWE D M. CRC handbook of thermoelectrics[M]. [S.l.]: CRC, 1995.
[13] LIU C J, LIU Y L, LAI H C, et al. Effects of reaction temperature on thermoelectric properties of p-type nanostructured bi2−xsbte3prepared using hydrothermal method and evacuated-and-encapsulated sintering[J]. Journal of electronic materials, 2013, 42(7): 1550-1554.
[14] BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416): 414-418.
[15] ZUO P, ZHANG S, JIN B, et al. Rapid synthesis and electrochemical property of Ag2Te nanorods[J]. The Journal of Physical Chemistry C, 2008, 112(38): 14825- 14829.
[16] GON ALVES A P, GODART C. New promising bulk thermoelectrics: Intermetallics, pnictides and chalcogenides[J]. The European Physical Journal B, 2014, 87(2): 1-29.
[17] NODA Y, MIZUNO K, KANG Y S, et al. Preparation and properties of thermoelectric materials for intermediate temperature range applications[J]. Journal of the Japan Institute Of Metals, 1999, 63(11): 1448-1453.
[18] MA H, SU T, ZHU P, et al. Preparation and transport properties of AgSbTe2by high-pressure and high- temperature[J]. Journal of Alloys and Compounds, 2008, 454(1): 415-418.
[19] SU T, JIA X, MA H, et al. Enhanced thermoelectric performance of AgSbTe2synthesized by high pressure and high temperature[J]. Journal of Applied Physics, 2009, 105(7): 073713.
[20] DU B, LI H, XU J, et al. Enhanced thermoelectric performance and novel nanopores in AgSbTe2prepared by melt spinning[J]. Journal of Solid State Chemistry, 2011, 184(1): 109-114.
[21] DU B, LI H, TANG X. Enhanced thermoelectric performance in Na-doped p-type nonstoichiometric AgSbTe2compound[J]. Journal of Alloys and Compounds, 2011, 509(5): 2039-2043.
[22] JOVOVIC V, HEREMANS J. Doping effects on the thermoelectric properties of AgSbTe2[J]. Journal of Electronic Materials, 2009, 38(7): 1504-1509.
[23] WOJCIECHOWSKI K, SCHMIDT M. Structural and thermoelectric properties of AgSbTe2-AgSbSe2pseudobinary system[J]. Physical Review B, 2009, 79(18): 184202.
[24] DU B, LI H, XU J, et al. Enhanced figure-of-merit in Se-doped p-type AgSbTe2thermoelectric compound[J]. Chemistry of Materials, 2010, 22(19): 5521-5527.
[25] DAVIDOW J, GELBSTEIN Y. A comparison between the mechanical and thermoelectric properties of three highly efficient p-type GeTe-rich compositions: TAGS-80, TAGS-85, and 3% Bi2Te3-doped Ge0.87Pb0.13Te[J]. Journal of Electronic Materials, 2013, 42(7): 1542-1549.
[26] CHRISTAKUDIS G C, PLACHKOVA S, SHELIMOVA L, et al. Thermoelectric figure of merit of some compositions in the system (GeTe)1-x[(Ag2Te)1-y(Sb2Te3)][J]. Physica Status Solidi (a), 1991, 128(2): 465-471.
[27] ZHANG S, HE J, JI X, et al. Effects of ball-milling atmosphere on the thermoelectric properties of TAGS-85 compounds[J]. Journal of Electronic Materials, 2009, 38(7): 1142-1147.
[28] LEVIN E, COOK B A, HARRINGA J, et al. Analysis of Ce‐and Yb‐Doped TAGS‐85 materials with enhanced thermoelectric figure of merit[J]. Advanced Functional Materials, 2011, 21(3): 441-447.
[29] LEVIN E, BUD'KO S, SCHMIDT‐R K. Enhancement of thermopower of TAGS‐85 high‐performance thermoelectric material by doping with the rare earth dy[J]. Advanced Functional Materials, 2012, 22(13): 2766-2774.
[30] CUI J. Thermoelectric performance of quaternary Cu-Bi- Sb-Te alloys prepared by cold pressing[J]. Journal of Alloys and Compounds, 2006, 415(1): 216-219.
[31] CUI J, XIU W, XUE H. High thermoelectric properties of p-type pseudobinary (Cu4Te3)-(Bi0.5Sb1.5Te3)1-xalloys prepared by spark plasma sintering[J]. Journal of Applied Physics, 2007, 101(12): 3713.
[32] CUI J, XUE H, XIU W, et al. Thermoelectric properties of p-type pseudo-binary (Ag0.365Sb0.558Te)-(Bi0.5Sb1.5Te3)1-x(=0–1.0) alloys prepared by spark plasma sintering[J]. Journal of Solid State Chemistry, 2006, 179(12): 3751-3755.
[33] MEHTA R J, ZHANG Y, ZHU H, et al. Seebeck and figure of merit enhancement in nanostructured antimony telluride by antisite defect suppression through sulfur doping[J]. Nano Letters, 2012, 12(9): 4523-4529.
[34] ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496): 373-377.
[35] CHATTOPADHYAY T, PANNETIER J, VON SCHNERING H. Neutron diffraction study of the structural phase transition in SnS and SnSe[J]. Journal of Physics and Chemistry of Solids, 1986, 47(9): 879-885.
[36] BAUMGARDNER W J, CHOI J J, LIM Y F, et al. SnSe nanocrystals: Synthesis, structure, optical properties, and surface chemistry[J]. Journal of the American Chemical Society, 2010, 132(28): 9519-9521.
[37] PETERS M, MCNEIL L E. High-pressure Mössbauer study of SnSe[J]. Physical Review B, 1990, 41(9): 5893.
[38] PENG K, LU X, ZHAN H, et al. Broad temperature plateau for high ZT s in heavily doped P-type SnSe single crystals[J]. Energy & Environmental Science, 2016,
[39] SHUAI J, KIM H S, LAN Y, et al. Study on thermoelectric performance by Na doping in nanostructured Mg1-xNaAg0.97Sb0.99[J]. Nano Energy, 2015, 11: 640-646.
[40] WU H, ZHAO L D, ZHENG F, et al. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3[J]. Nature Communications, 2014, 5: 10.1038.
[41] SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society, 2011, 133(20): 7837-7846.
[42] PERUMAL S, ROYCHOWDHURY S, NEGI D S, et al. High thermoelectric performance and enhanced mechanical stability of P-type Ge1–xSbTe[J]. Chemistry of Materials, 2015, 27(20): 7171-7178.
[43] HSU K F, LOO S, GUO F, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit[J]. Science, 2004, 303(5659): 818-821.
[44] FU C, BAI S, LIU Y, et al. Realizing high figure of merit in heavy-band P-type half-Heusler thermoelectric materials[J]. Nature Communications, 2015, 6: 101038.
[45] TAN Q, ZHAO L D, LI J F, et al. Thermoelectrics with earth abundant elements: Low thermal conductivity and high thermopower in doped SnS[J]. Journal of Materials Chemistry A, 2014, 2(41): 17302-17306.
[46] OKAZAKI A. The crystal structure of germanium selenide GeSe[J]. Journal of the Physical Society of Japan, 1958, 13(10): 1151-1155.
[47] OKAZAKI A, UEDA I. The crystal structure of stannous selenide SnSe[J]. Journal of the Physical Society of Japan, 1956, 11(4): 470.
[48] GAO C, SHEN H, SUN L. Preparation and properties of zinc blende and orthorhombic SnS films by chemical bath deposition[J]. Applied Surface Science, 2011, 257(15): 6750-6755.
[49] SOHILA S, RAJALAKSHMI M, MUTHAMIZHCHELVAN C, et al. Synthesis and characterization of SnS nanosheets through simple chemical route[J]. Materials Letters, 2011, 65(8): 1148- 1150.
[50] SHAPOSHNIKOV V, KRIVOSHEEVA A, BORISENKO V, et al. Structure, electronic and optical properties of tin sulfide[J]. ScienceJet, 2012, 1(16): 1-4.
[51] PARKER D, SINGH D J. First principles investigations of the thermoelectric behavior of tin sulfide[J]. Journal of Applied Physics, 2010, 108(8): 083712.
[52] CHATTOPADHYAY T, WERNER A, VON SCHNERING H, et al. Temperature and pressure induced phase transition in IV-VI compounds[J]. Revue de Physique Appliquée, 1984, 19(9): 807-813.
[53] BERA C, JACOB S, OPAHLE I, et al. Integrated computational materials discovery of silver doped tin sulfide as a thermoelectric material[J]. Physical Chemistry Chemical Physics, 2014, 16(37): 19894-19899.
[54] HAN Y M, ZHAO J, ZHOU M, et al. Thermoelectric performance of SnS and SnS-SnSe solid solution[J]. Journal of Materials Chemistry A, 2015, 3(8): 4555-4559.
[55] OHTA H, SUGIURA K, KOUMOTO K. Recent progress in oxide thermoelectric materials: P-type Ca3Co4O9and N-type SrTiO3[J].Inorganic Chemistry, 2008, 47(19): 8429-8436.
[56] POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634-638.
[57] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321(5888): 554-557.
[58] YU B, ZEBARJADI M, WANG H, et al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites[J]. Nano Letters, 2012, 12(4): 2077-2082.
[59] XIE H, WANG H, PEI Y, et al. Beneficial contribution of alloy disorder to electron and phonon transport in half‐heusler thermoelectric materials[J]. Advanced Functional Materials, 2013, 23(41): 5123-5130.
[60] DUAN B, ZHAI P, LIU L, et al. Beneficial effect of Se substitution on thermoelectric properties of Co4Sb11.9−xTeSe0.1skutterudites[J]. Journal of Solid State Chemistry, 2012, 193: 8-12.
[61] CAILLAT T, FLEURIAL J P, BORSHCHEVSKY A. Preparation and thermoelectric properties of semiconducting Zn4Sb3[J]. Journal of Physics and Chemistry of Solids, 1997, 58(7): 1119-1125.
[62] WANG X, LEE H, LAN Y, et al. Enhanced thermoelectric figure of merit in nanostructured N-type silicon germanium bulk alloy[J]. Applied Physics Letters, 2008, 93(19): 193121.
[63] WANG Y, SUI Y, CHENG J, et al. Comparison of the high temperature thermoelectric properties for Ag-doped and Ag-added Ca3Co4O9[J]. Journal of Alloys and Compounds, 2009, 477(1): 817-821.
[64] ITO M, FURUMOTO D. Microstructure and thermoelectric properties of NaCo2O4/Ag composite synthesized by the polymerized complex method[J]. Journal of Alloys and Compounds, 2008, 450(1): 517-520.
[65] KIKUCHI A, OKINAKA N, AKIYAMA T. A large thermoelectric figure of merit of La-doped SrTiO3prepared by combustion synthesis with post-spark plasma sintering[J]. Scripta Materialia, 2010, 63(4): 407-410.
[66] WANG Y, SUI Y, SU W. High temperature thermoelectric characteristics of Ca0.9R0.1MnO3(R= La, Pr,…, Yb)[J]. Journal of Applied Physics, 2008, 104(9): 3703.
[67] OHTAKI M, ARAKI K, YAMAMOTO K. High thermoelectric performance of dually doped ZnO ceramics[J]. Journal of Electronic Materials, 2009, 38(7): 1234-1238.
[68] LI J, SUI J, PEI Y, et al. A high thermoelectric figure of merit ZT> 1 in Ba heavily doped BiCuSeO oxyselenides[J]. Energy & Environmental Science, 2012, 5(9): 8543-8547.
[69] KAGA H,ASAHI R,TANI T. Thermoelectric properties of highly textured Ca-doped (ZnO)In2O3ceramics[J]. Japanese Journal of Applied Physics, 2004, 43(10R): 7133.
[70] ONO Y, ISHIKAWA R, MIYAZAKI Y, et al. Crystal structure, electric and magnetic properties of layered cobaltite β-NaCoO2[J]. Journal of Solid State Chemistry, 2002, 166(1): 177-181.
[71] TAJIMA S, TANI T, ISOBE S, et al. Thermoelectric properties of highly textured NaCo2O4ceramics processed by the reactive templated grain growth (RTGG) method[J]. Materials Science and Engineering: B, 2001, 86(1): 20-25.
[72] TERASAKI I. Transport properties and electronic states of the thermoelectric oxide NaCo2O4[J]. Physica B: Condensed Matter, 2003, 328(1): 63-67.
[73] KUROSAKI K, MUTA H, UNO M,et al. Thermoelectric properties of NaCo2O4[J]. Journal of Alloys and Compounds, 2001, 315(1): 234-236.
[74] WANG L, WANG M, ZHAO D. Thermoelectric properties of c-axis oriented Ni-substituted NaCoO2thermoelectric oxide by the citric acid complex method[J]. Journal of Alloys and Compounds, 2009, 471(1): 519-523.
[75] TSAI P H, ZHANG T S, DONELSON R, et al. Power factor enhancement in Zn-doped Na0.8CoO2[J]. Journal of Alloys and Compounds, 2011, 509(16): 5183-5186.
[76] MASSET A, MICHEL C, MAIGNAN A, et al. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9[J]. Physical Review B, 2000, 62(1): 166.
[77] KLIE R F, QIAO Q, PAULAUSKAS T, et al. Observations of Co4+in a higher spin state and the increase in the Seebeck coefficient of thermoelectric Ca3Co4O9[J]. Physical Review Letters, 2012, 108(19): 196601.
[78] PRASOETSOPHA N, PINITSOONTORN S, AMORNKITBAMRUNG V. Synthesis and thermoelectric properties of Ca3Co4O9prepared by a simple thermal hydro-decomposition method[J]. Electronic Materials Letters, 2012, 8(3): 305-308.
[79] YUANHUA L, JINLE L, YUHENG L, et al. High-temperature electrical transport behaviors in textured Ca3Co4O9-based polycrystalline ceramic[J]. Applied Physics Letters, 2009, 94(7): 072107.1-072107.3.
[80] SHIKANO M, FUNAHASHI R. Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2with a Ca3Co4O9structure[J]. Applied Physics Letters, 2003, 82: 1851.
[81] LIU Y, LIN Y, SHI Z, et al. Preparation of Ca3Co4O9and improvement of its thermoelectric properties by spark plasma sintering[J]. Journal of the American Ceramic Society, 2005, 88(5): 1337-1340.
[82] KENFAUI D, BONNEFONT G, CHATEIGNER D, et al. Ca3Co4O9ceramics consolidated by SPS process: Optimisation of mechanical and thermoelectric properties [J]. Materials Research Bulletin, 2010, 45(9): 1240-1249.
[83] DIEZ J, TORRES M, RASEKH S, et al. Enhancement of Ca3Co4O9thermoelectric properties by Cr for Co substitution[J]. Ceramics International, 2013, 39(6): 6051-6056.
[84] LIU Y, LIN Y, JIANG L, et al. Thermoelectric properties of Bi3+substituted Co-based misfit-layered oxides[J]. Journal of Electroceramics, 2008, 21(1-4): 748-751.
[85] MAY A F, TOBERER E S, SARAMAT A, et al. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16-xGe30+x[J]. Physical Review B, 2009, 80(12): 125205.
[86] CEDERKRANTZ D, SARAMAT A, SNYDER G, et al. Thermal stability and thermoelectric properties of p-type Ba8Ga16Ge30clathrates[J]. Journal of Applied Physics, 2009, 106(7): 074509.
[87] KUZNETSOV V, KUZNETSOVA L, KALIAZIN A, et al. Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds[J]. Journal of Applied Physics, 2000, 87: 7871-7875.
[88] FUJITA I, KISHIMOTO K, SATO M, et al. Thermoelectric properties of sintered clathrate compounds Sr8GaGe46-xwith various carrier concentrations[J]. Journal of Applied Physics, 2006, 99(9): 093707.
[89] SAIGA Y, SUEKUNI K, DENG S, et al. Optimization of thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30by carrier tuning[J]. Journal of Alloys and Compounds, 2010, 507(1): 1-5.
[90] AVILA M, HUO D, SAKATA T, et al. Tunable charge carriers and thermoelectricity of single-crystal Ba8Ga16Sn30[J]. Journal of Physics: Condensed Matter, 2006, 18(5): 1585.
[91] CHEN Y X, DU B L, SAIGA Y, et al. Crystal growth and thermoelectric properties of type-VIII clathrate Ba8Ga15.9Sn30.1-xGewith p-type charge carriers[J]. Journal of Physics D: Applied Physics, 2013, 46(20): 205302.
[92] DENG S, SAIGA Y, KAJISA K, et al. High thermoelectric performance of Cu substituted type-VIII clathrate Ba8Ga16-xCuSn30single crystals[J]. Journal of Applied Physics, 2011, 109(10): 103704.
[93] KISHIMOTO K, YAMAMOTO H, AKAI K, et al. Effect of Ge substitution on carrier mobilities and thermoelectric properties of sintered p-type Ba8Ga16+xSn30-x-yGewith the type-VIII clathrate structure[J]. Journal of Physics D: Applied Physics, 2012, 45(44): 445306.
[94] 严潇, 袁波. Half-Heusler热电材料的研究进展[J]. 西华大学学报(自然科学版), 2016 (01): 29-34.
YAN Xiao, YUAN Bo. Recent progress in half-heusler thermoelectric materials[J]. Journal of Xihua University (Natural Science), 2016 (01): 29-34.
[95] UHER C, YANG J, HU S, et al. Transport properties of pure and doped MNiSn (M= Zr, Hf)[J]. Physical Review B, 1999, 59(13): 8615.
[96] YAN X, JOSHI G, LIU W, et al. Enhanced thermoelectric figure of merit of p-type half-Heuslers[J]. Nano Lett, 2011, 11(2): 556-60.
[97] FU C, BAI S, LIU Y, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials[J]. Nat Commun, 2015, 6: 8144.
[98] CULP S R, SIMONSON J W, POON S J, et al. (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700°C) p-type thermoelectric materials[J]. Applied Physics Letters, 2008, 93(2): 022105.
[99] MASTRONARDI K, YOUNG D, WANG C C, et al. Antimonides with the half-Heusler structure: New thermoelectric materials[J]. Applied Physics Letters, 1999, 74(10): 1415.
[100] KAWANO K, KUROSAKI K, MUTA H, et al. Substitution effect on the thermoelectric properties of p-type half-Heusler compounds: ErNi1-xPdSb[J]. Journal of Applied Physics, 2008, 104(1): 013714.
[101] KAWANO K, KUROSAKI K, SEKIMOTO T, et al. Effect of Sn doping on the thermoelectric properties of ErNiSb-based p-type half-Heusler compound[J]. Applied Physics Letters, 2007, 91(6): 062115.
[102] KIMURA Y, ZAMA A. Thermoelectric properties of p-type half-Heusler compound HfPtSn and improvement for high-performance by Ir and Co additions[J]. Applied Physics Letters, 2006, 89(17): 172110.
[103] KIMURA Y, ZAMA A, MISHIMA Y. Thermoelectric properties of P-type half-Heusler compounds HfPtSn and ZrPtSn[C]//International Conference on Thermoelectrics. Vienna: IEEE, 2006: 115-119.
[104] KIMURA Y, KUJI T, ZAMA A, et al. Thermoelectric properties of half-Heusler compounds N-type MNiSn and P-type MPtSn (M= Hf, Zr)[J]. Mrs Proceedings, 2006: 980: II04-03.
[105] YANG J, STABLER F R. Automotive Applications of Thermoelectric Materials[J]. Journal of Electronic Materials, 2009, 38(7): 1245-1251.
[106] JOSHI G, YAN X, WANG H, et al. Enhancement in thermoelectric figure-of-merit of an n-type half-heusler compound by the nanocomposite approach[J]. Advanced Energy Materials, 2011, 1(4): 643-647.
[107] YAN X, LIU W, WANG H, et al. Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTiCoSb0.8Sn0.2[J]. Energy & Environmental Science, 2012, 5(6): 7543.
[108] JOSHI G, DAHAL T, CHEN S, et al. Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75-xTiZr0.25NiSn0.99Sb0.01[J]. Nano Energy, 2013, 2(1): 82-87.
[109] YAN X, LIU W, CHEN S, et al. Thermoelectric property study of nanostructured p-type half-Heuslers (Hf, Zr, Ti) CoSb0.8Sn0.2[J]. Advanced Energy Materials, 2013, 3(9): 1195-1200.
[110] HE R, KIM H S, LAN Y, et al. Investigating the thermoelectric properties of p-type half-Heusler Hf(ZrTi)1−xCoSb0.8Sn0.2by reducing Hf concentration for power generation[J]. RSC Adv, 2014, 4(110): 64711- 64716.
[111] CHEN S, LUKAS K C, LIU W, et al. Effect of hf concentration on thermoelectric properties of nanostructured n-type half-heusler materials HfxZr1- xNiSn0. 99Sb0. 01[J]. Advanced Energy Materials, 2013, 3(9): 1210-1214.
[112] JOSHI G, HE R, ENGBER M, et al. NbFeSb-based p-type half-Heuslers for power generation applications[J]. Energy Environ Sci, 2014, 7(12): 4070-4076.
[113] CHEN L, GAO S, ZENG X, et al. Uncovering high thermoelectric figure of merit in (Hf, Zr) NiSn half-Heusler alloys[J]. Applied Physics Letters, 2015, 107(4): 041902.
[114] CARRETE J, LI W, MINGO N, et al. Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling [J]. Physical Review X, 2014, 4(1): 011019.
[115] XUE Q, LIU H, FAN D, et al. LaPtSb: a half-Heusler compound with high thermoelectric performance[J]. Physical Chemistry Chemical Physics Pccp, 2016, 18(27): 17912.
[116] DING G, GAO G Y, YU L, et al. Thermoelectric properties of half-Heusler topological insulators MPtBi (M=Sc, Y, La) induced by strain[J]. Journal of Applied Physics, 2016, 119(2): 025105.
[117] XI L. Filled skutterudites: from single to multiple filling[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2011, 41(6): 706.
[118] SU X, LI H, YAN Y, et al. Microstructure and thermoelectric properties of CoSb2.75Ge0.25−xTeprepared by rapid solidification[J]. Acta Materialia, 2012, 60(8): 3536-3544.
[119] LIU W S, ZHANG B P, ZHAO L D, et al. Improvement of thermoelectric performance of CoSb3−xTeskutterudite compounds by additional substitution of ivb-group elements for sb[J]. Chemistry of Materials, 2008, 20(24): 7526-7531.
[120] LIU W, JIE Q, LI Q, et al. Synchrotron X-ray study of filled skutterudites CeFe4Sb12and Ce0.8Fe3CoSb12[J]. Physica B: Condensed Matter, 2011, 406(1): 52-55.
[121] UEDA M, KAWAHITO Y, TANAKA K, et al. Synthesis and basic properties of the filled skutterudite SmFe4Sb12[J]. Physica B: Condensed Matter, 2008, 403(5-9): 881-883.
[122] PEI Y Z, CHEN L D, ZHANG W, et al. Synthesis and thermoelectric properties of KCo4Sb12[J]. Applied Physics Letters, 2006, 89(22): 221107.
[123] PEI Y Z, YANG J, CHEN L D, et al. Improving thermoelectric performance of caged compounds through light-element filling[J]. Applied Physics Letters, 2009, 95(4): 042101.
[124] ZHAO X Y, SHI X, CHEN L D, et al. Synthesis and thermoelectric properties of Sr-filled skutterudite SrCo4Sb12[J]. Journal of Applied Physics, 2006, 99(5): 053711.
[125] CHEN L D, KAWAHARA T, TANG X F, et al. Anomalous barium filling fraction and N-type thermoelectric performance of BaCo4Sb12[J]. Journal of Applied Physics, 2001, 90(4): 1864.
[126] SALES B, MANDRUS D, WILLIAMS R K. Filled skutterudite antimonides: a new class of thermoelectric materials[J]. Science, 1996, 272(5266): 1325-1328.
[127] SALES B, CHAKOUMAKOS B, MANDRUS D. Thermoelectric properties of thallium-filled skutterudites [J]. Physical Review B, 2000, 61(4): 2475.
[128] NOLAS G S, TAKIZAWA H, ENDO T, et al. Thermoelectric properties of Sn-filled skutterudites[J]. Applied Physics Letters, 2000, 77(1): 52.
[129] TANG Y, QIU Y, XI L, et al. Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites[J]. Energy Environ. Sci., 2014, 7(2): 812- 819.
[130] TANG Y, CHEN S-W, SNYDER G J. Temperature dependent solubility of Yb in Yb–CoSb3skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics[J]. Journal of Materiomics, 2015, 1(1): 75-84.
[131] TANG Y, HANUS R, CHEN S W, et al. Solubility design leading to high figure of merit in low-cost Ce-CoSb3skutterudites[J]. Nat Commun, 2015, 6: 7584.
[132] SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. J Am Chem Soc, 2011, 133(20): 7837-46.
[133] ROGL G, GRYTSIV A, ROGL P, et al. n-type skutterudites (R,Ba,Yb)Co4Sb12(R=Sr, La, Mm, DD, SrMm, SrDD) approaching ZT≈2.0[J]. Acta Materialia, 2014, 63: 30-43.
[134] SUZUKI T, KIKKAWA A, TOKURA Y, et al. Impact of electron doping on thermoelectric properties in filled skutterudite IrSb3[J]. Physical Review B, 2016, 93(15): 155101.
[135] LU Q, ZHANG J, ZHANG X, et al. Synthesis and thermoelectric properties of nano/micro-meter CoSb3- based bulks processed by in-situ spark plasma sintering [C]//International Conference on Thermoelectrics. Beijing: IEEE, 2006: 148-150.
[136] HE Q, HU S, TANG X, et al. The great improvement effect of pores on ZT in Co1−xNiSbsystem[J]. Applied Physics Letters, 2008, 93(4): 042108.
[137] 杨艳, 邢玉梅, 曾志刚, 等. Zintl相材料热电性能的研究及其最新进展[J]. 材料导报, 2010, (S2): 317-320.
YANG Yan, XING Yu-mei, ZENG Zhi-gang, et al. Studies on thermoelectric properties of Zintl phase materials and their latest developments[J]. Chinese Journal of Materials Research, 2010, (S2): 317-320.
[138] KAUZLARICH S M, BROWN S R, SNYDER G J. Zintl phases for thermoelectric devices[J]. Dalton Trans, 2007, 21(21): 2099-2107.
[139] TOBERER E S, COX C A, BROWN S R, et al. Traversing the metal-insulator transition in a Zintl phase: Rational enhancement of thermoelectric efficiency in Yb14Mn1−xAlSb11[J]. Advanced Functional Materials, 2008, 18(18): 2795-2800.
[140] SNYDER G J, CHRISTENSEN M, NISHIBORI E, et al. Disordered zinc in Zn4Sb3with phonon-glass and electron-crystal thermoelectric properties[J]. Nature Materials, 2004, 3(7): 458-463.
[141] LIN J, LI X, QIAO G, et al. Unexpected high-temperature stability of beta-Zn4Sb3opens the door to enhanced thermoelectric performance[J]. J Am Chem Soc, 2014, 136(4): 1497-504.
[142] AYDEMIR U, ZEVALKINK A, ORMECI A, et al. Thermoelectric properties of the Zintl phases Yb5M2Sb6(M=Al, Ga, In)[J]. Dalton Trans, 2015, 44(15): 6767- 6774.
[143] ZEVALKINK A, SWALLOW J, SNYDER G J. Thermoelectric properties of Zn-doped Ca5In2Sb6[J]. Dalton Trans, 2013, 42(26): 9713-9719.
[144] ZEVALKINK A, SWALLOW J, OHNO S, et al. Thermoelectric properties of the Ca5Al2-xInSb6solid solution[J]. Dalton Trans, 2014, 43(42): 15872-8.
[145] CHANAKIAN S,AYDEMIR U,ZEVALKINK A,et al. High temperature thermoelectric properties of Zn-doped Eu5In2Sb6[J]. J Mater Chem C, 2015, 3(40): 10518- 10524.
[146] ZEVALKINK A, TOBERER E S, ZEIER W G, et al. Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery[J]. Energy Environ Sci, 2011, 4(2): 510-518.
[147] ZEVALKINK A, ZEIER W G, POMREHN G, et al. Thermoelectric properties of Sr3GaSb3– a chain- forming Zintl compound[J]. Energy & Environmental Science, 2012, 5(10): 9121.
[148] BUX S K, ZEVALKINK A, JANKA O, et al. Glass-like lattice thermal conductivity and high thermoelectric efficiency in Yb9Mn4.2Sb9[J]. J Mater Chem A, 2014, 2(1): 215-220.
[149] OHNO S, ZEVALKINK A, TAKAGIWA Y, et al. Thermoelectric properties of the Yb9Mn4.2−xZnSb9solid solutions[J]. Journal of Materials Chemistry A, 2014, 2(20): 7478.
[150] POMREHN G S, ZEVALKINK A, ZEIER W G, et al. Defect-controlled electronic properties in AZn2Sb2Zintl phases[J]. Angew Chem Int Ed Engl, 2014, 53(13): 3422-3426.
[151] BHARDWAJ A, RAJPUT A, SHUKLA A K, et al. Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation[J]. RSC Advances, 2013, 3(22): 8504.
[152] BHARDWAJ A, MISRA D. Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework[J]. Rsc Advances, 2014, 4(65): 34552-34560.
[153] SAIGA Y, DU B, DENG S K, et al. Thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30doped with Cu[J]. Journal of Alloys and Compounds, 2012, 537: 303-307.
[154] ZHANG H, BORRMANN H, OESCHLER N, et al. Atomic interactions in the p-type clathrate I Ba8Au5.3Ge40.7[J]. Inorg Chem, 2011, 50(4): 1250-1257.
[155] HE T, CHEN J, ROSENFELD H D, et al. Thermoelectric properties of indium-filled skutterudites[J]. Chemistry of Materials, 2006, 18(3): 759-762.
[156] SHI X, PEI Y, SNYDER G J, et al. Optimized thermoelectric properties of Mo3Sb7−xTewith significant phonon scattering by electrons[J]. Energy & Environmental Science, 2011, 4(10): 4086.
[157] BROWN S R, KAUZLARICH S M, GASCOIN F, et al. Yb14MnSb11: New high efficiency thermoelectric material for power generation[J]. Chemistry of Materials, 2006, 18(7): 1873-1877.
[158] SHUAI J, WANG Y, KIM H S, et al. Thermoelectric properties of Na-doped Zintl compound: Mg3− xNaSb2[J]. Acta Materialia, 2015, 93: 187-193.
[159] KIM S J, KANATZIDIS M G. A unique framework in BaGa2Sb2: a new Zintl phase with large tunnels[J]. Inorganic Chemistry, 2001, 40(15): 3781-3785.
[160] PARK S M,CHOI E S, KANG W, et al. Eu5In2Sb6, Eu5In2− xZnSb6: Rare earth zintl phases with narrow band gaps[J]. Journal of Materials Chemistry, 2002, 12(6): 1839-1843.
[161] GASCOIN F, OTTENSMANN S, STARK D, et al. Zintl phases as thermoelectric materials: Tuned transport properties of the compounds CaYb1–xZn2Sb2[J]. Advanced Functional Materials, 2005, 15(11): 1860-1864.
[162] ZHANG H, ZHAO J T, GRIN Y, et al. A new type of thermoelectric material, EuZn2Sb2[J]. The Journal of Chemical Physics, 2008, 129(16): 164713.
[163] WANG X J, TANG M B, CHEN H H, et al. Synthesis and high thermoelectric efficiency of Zintl phase YbCd2-xZnSb2[J]. Applied Physics Letters, 2009, 94(9): 092106.
[164] GREBENKEMPER J H, HU Y, BARRETT D, et al. High temperature thermoelectric properties of Yb14MnSb11prepared from reaction of MnSb with the elements[J]. Chemistry of Materials, 2015, 27(16): 5791-5798.
[165] FLEURIAL J P, BUX S, CAILLAT T. Engineering of novel thermoelectric materials and devices for next generation, long life, 20% efficient space power systems [C]//11th International Energy Conversion Engineering Conference. California: American Institute of Aeronautics and Astronautics, 2013: 14-17.
[166] KUROSAKI K, KOSUGA A, MUTA H, et al. Ag9TlTe5: a high-performance thermoelectric bulk material with extremely low thermal conductivity[J]. Applied Physics Letters, 2005, 87(6) : 061919.
[167] MAY A F, MCGUIRE M A, SINGH D J, et al. Thermoelectric transport properties of CaMg2Bi2, EuMg2Bi2, and YbMg2Bi2[J]. Physical Review B, 2012, 85(3): 035202.
[168] SHUAI J, LIU Z, KIM H S, et al. Thermoelectric properties of Bi-based Zintl compounds Ca1−xYbMg2Bi2[J]. J Mater Chem A, 2016, 4(11): 4312-4320.
[169] LIU H, SHI X, XU F, et al. Copper ion liquid-like thermoelectrics[J]. Nat Mater, 2012, 11(5): 422-425.
[170] MURRAY R, HEYDING R. The crystal structures of Cu1.8Se, Cu3Se2, α- and γ-CuSe, CuSe2, and CuSeII[J]. Can J Chem, 1976, 54: 841-848.
[171] BORCHERT W. Gitterumwandlungen im system Cu2-xSe[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1954, 106(1-6): 5-24.
[172] STEVELS A, JELLINEK F. Phase transitions in copper chalcogenides: I. the copper‐selenium system[J]. Recueil des Travaux Chimiques des Pays-Bas, 1971, 90(3): 273-283.
[173] VUČIĆ Z, MILAT O, HORVATIĆ V, et al. Composition-induced phase-transition splitting in cuprous selenide[J]. Physical Review B, 1981, 24(9): 5398-5401.
[174] LIU H, YUAN X, LU P, et al. Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xI[J]. Advanced Materials, 2013, 25(45): 6607-6612.
[175] YANG L, CHEN Z G, HAN G, et al. High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering[J]. Nano Energy, 2015, 16: 367-374.
[176] ZHONG B, ZHANG Y, LI W, et al. High superionic conduction arising from aligned large lamellae and large figure of merit in bulk Cu1.94Al0.02Se[J]. Applied Physics Letters, 2014, 105(12): 123902.
[177] XU Q, HUANG B, ZHAO Y, et al. Crystal and electronic structures of CuS solar cell absorbers[J]. Applied Physics Letters, 2012, 100(6): 061906.
[178] POTTER R. An electrochemical investigation of the system copper-sulfur[J]. Economic Geology, 1977, 72(8): 1524-1542.
[179] EVANS H T. The crystal structures of low chalcocite and djurleite[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1979, 150(1-4): 299-320.
[180] GEORG W, HINZE E, ABDELRAHMAN A R M. Crystal structure analysis and refinement of digenite, Cu1.8S, in the temperature range 20 to 500 C under controlled sulfur partial pressure[J]. European Journal of Mineralogy, 2002, 14(3): 591-598.
[181] KOTO K,MORIMOTO N. The crystal structure of anilite[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1970, 26(7): 915-924.
[182] WANG L W. High chalcocite Cu2S: a solid-liquid hybrid phase[J]. Phys Rev Lett, 2012, 108(8): 085703.
[183] HIRAHARA E. The physical properties of cuprous sulfides-semiconductors[J]. Journal of the Physical Society of Japan, 1951, 6(6): 422-427.
[184] HE Y, DAY T, ZHANG T, et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide[J]. Adv Mater, 2014, 26(23): 3974-3978.
[185] ZHAO L, WANG X, FEI F Y, et al. High thermoelectric and mechanical performance in highly dense Cu2−xS bulks prepared by a melt-solidification technique[J]. J Mater Chem A, 2015, 3(18): 9432-9437.
[186] HE Y, LU P, SHI X, et al. Ultrahigh thermoelectric performance in mosaic crystals[J]. Adv Mater, 2015, 27(24): 3639-3644.
[187] ROWE D M. Thermoelectrics, an environmentally- friendly source of electrical power[J]. Renewable Energy, 1999, 16(1): 1251-1256.
[188] CHEN J. Thermodynamic analysis of a solar‐driven thermoelectric generator[J]. Journal of Applied Physics, 1996, 79(5): 2717-2721.
[189] NUWAYHID R Y, SHIHADEH A, GHADDAR N. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling[J]. Energy Conversion and Management, 2005, 46(9): 1631-1643.
[190] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461.
[191] GOU X, XIAO H, YANG S. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system[J]. Applied Energy, 2010, 87(10): 3131-3136.
[192] KRISTIANSEN N, SNYDER G, NIELSEN H, et al. Waste heat recovery from a marine waste incinerator using a thermoelectric generator[J]. Journal of Electronic Materials, 2012, 41(6): 1024-1029.
[193] WEBER J, POTJE-KAMLOTH K, HAASE F, et al. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics[J]. Sensors and Actuators A: Physical, 2006, 132(1): 325-330.
[194] WANG Z, LEONOV V, FIORINI P, et al. Realization of a wearable miniaturized thermoelectric generator for human body applications[J]. Sensors and Actuators A: Physical, 2009, 156(1): 95-102.
[195] HE W, ZHANG G, ZHANG X, et al. Recent development and application of thermoelectric generator and cooler[J]. Applied Energy, 2015, 143: 1-25.
[196] 廖民华, 唐念恩. 半导体制冷式电子冰箱的高精度温度控制电路[J]. 家电科技, 2009, (19): 81-83.
LIAO Min-hua, TANG Nian-en. High-precision temperature control circuit for semiconductor refrigeration electronic refrigerator[J] . China Appliance Technology, 2009, (19): 81-83.
[197] 吕忠灏. 制冷制热杯: CN204648823U[P]. 2015.
LÜ Zhong-hao. Cooling and heating cup: CN204648823U [P]. 2015.
[198] 苏成仁. 半导体制冷电脑CPU恒温散热研究[J]. 低温与超导, 2011, 39(10): 67-69.
SONG Cheng-ren. Study on constant temperature and heat dissipation of semiconductor cooling computer CPU[J]. Low Temperature and Superconductivity, 2011, 39(10): 67-69.
[199] SNYDER G J, SOTO M, ALLEY R, et al. Hot spot cooling using embedded thermoelectric coolers[C]//22nd IEEE Semiconductor Thermal Measurement and Management Symposium. [S.l.]: IEEE, 2006: 135-143.
[200] ZHANG H, MUI Y, TARIN M. Analysis of thermoelectric cooler performance for high power electronic packages[J]. Applied Thermal Engineering, 2010, 30(6): 561-568.
[201] BIERSCHENK J, GILLEY M. Assessment of TEC thermal and reliability requirements for thermoelectrically enhanced heat sinks for CPU cooling applications [C]//25th International Conference on Thermoelectrics. [S.l.]: IEEE, 2006: 254-259.
[202] LI J, MA B, WANG R, et al. Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs[J]. Microelectronics Reliability, 2011, 51(12): 2210-2215.
[203] MAJUMDAR A. Thermoelectric devices: Helping chips to keep their cool[J]. Nature Nanotechnology, 2009, 4(4): 214-215.
[204] SIMONS R, CHU R. Application of thermoelectric cooling to electronic equipment: a review and analysis [C]//Sixteenth IEEE Semiconductor Thermal Measurement and Management Symposium. [S.l.]: IEEE, 2000: 1-9.
[205] ZHANG G, ZHANG Q X, KAVITHA D, et al. Time dependent thermoelectric performance of a bundle of silicon nanowires for on-chip cooler applications[J]. Applied Physics Letters, 2009, 95(24): 243104.
[206] CHEIN R, HUANG G. Thermoelectric cooler application in electronic cooling[J]. Applied Thermal Engineering, 2004, 24(14): 2207-2217.
[207] 李冰, 任连勇, 李岩. 半导体制冷技术应用于大功率器件散热方面的研究[J]. 煤炭技术, 2012, 31(3): 219-220.
LI Bing, REN Lian-yong, LI Yan. Study on the application of semiconductor refrigeration technology in heat dissipation of high power devices[J]. Coal Technology, 2012, 31(3): 219-220.
[208] SWENSON G, THAKKER P, KAMALABADI F, et al. Optical sensing of atmospheric emissions with Cubesats and Nanosats[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2007, 6555: 655506- 655506-11.
[209] 邵冲. 微光成像器件制冷结构设计与噪声性能分析研究[D]. 上海: 上海交通大学, 2009.
SHAO Chong. Design and noise performance analysis of the cooling structure of low-light imaging devices[D]. Shanghai: Shanghai Jiaotong University, 2009.
[210] 张昕, 覃波, 付益, 等. 航天高稳激光源温控电路设计[J]. 光通信技术, 2015, 6: 19.
ZHANG Xin, QIN Bo, FU Yi, et al. Design of temperature control circuit for space high stable laser source[J]. Optical Communications Technology, 2015, 6: 19.
[211] 李健, 陈晨, 薛顶柱, 等. 基于PID算法的激光器恒温控制系统的设计[J]. 激光杂志, 2015, 4: 011.
LI Jian, CHEN Chen, XUE Ding-zhu, et al. Design of laser constant temperature control system based on PID algorithm[J]. Journal of Laser Technology, 2015, 4: 011.
[212] 官晓胜. 用于全二维气相色谱的半导体制冷固态热调制器[C]//全国色谱学术报告会及仪器展览会. 西安: 出版者不详, 2015.
GUO Xiao-sheng. Semiconductor refrigeration solid-state thermo-modulator for full two-dimensional gas chromatography[C]//National Symposium on Chromatography and Instruments. Xi'an: [s.n.], 2015.
[213] KINGSBURY R, CAPLAN D, CAHOY K. Compact optical transmitters for CubeSat free-space optical communications[C]//International Society for Optics and Photonics. [S.l.]: IEEE, 2015: 93540S-93540S-7.
[214] FARISON M, HICKS K, SCHMIDT M, et al. Cloud cubesat thermoelectric cooler controller system[EB/OL]. [2016-05-20].http://xueshu.baidu.com/s?wd=Cloud+ cubesat+thermoelectric+cooler+controller+system&tn=SE_baiduxueshu_c1gjeupa&cl=3&ie=utf-8&bs=Zintl+phases+for+thermoelectric+devices&f=8&rsv_bp=1&rsv_sug2=1&sc_f_para=sc_tasktype%3D%7BfirstSimpleSearch%7D.
[215] HUANG J, CHEN Z, HU K. FEA for steady-state thermal performance of PCR thermal-cycler based on thermoelectric cooler[C]//International Conference on Biomedical Engineering and Informatics. Shanghai: IEEE, 2011: 1097-1100.
[216] 赵肖磊, 郑艺华, 王芳芳, 等. 用于检测农药残留的量热式生物传感器的半导体恒温仪的研究[J]. 仪表技术与传感器, 2004, (9): 18-20.
ZHAO Xiao-lei, ZHENG Yi-hua, WANG Fang-fang, et al. Study on semiconductor thermostat for calorimetric biosensor for pesticide residue detection[J]. Gauge Technology and Sensor, 2004, (9): 18-20.
[217] 肖建军, 李鹏, 华泽钊, 等. 半导体制冷控温酶反应检测仪[J]. 仪器仪表学报, 2002, 23(6): 551-555.
XIAO Jian-jun, LI Peng, HUA Ze-zhao, et al. Detection instrument for semiconductor refrigeration and temperature control enzyme reaction[J]. Acta Automatica Sinica, 2002, 23(6): 551-555.
[218] 陶豹, 张新东, 阎欣. 半导体制冷技术在医疗设备中的应用[J]. 医疗装备, 2001, 14(5): 6-7.
TAO Bao, ZHANG Xin-dong, YAN Xin. The application of semiconductor refrigeration technology in medical equipment[J]. Medical Equipment, 2001, 14(5): 6-7.
[219] 张伟斌, 付安英, 郭轶, 等. 半导体制冷技术在临床医疗的应用研究[J]. 电子设计工程, 2011, 19(22): 51-53.
ZHANG Wei-bin, FU An-ying, GUO Yi, et al. Application of semiconductor refrigeration technology in clinical medicine[J]. Electronic Design & Engineering, 2011, 19(22): 51-53.
[220] PUTRA N, SUKYONO W, JOHANSEN D, et al. The characterization of a cascade thermoelectric cooler in a cryosurgery device[J]. Cryogenics, 2010, 50(11): 759- 764.
[221] YANG Y, WEI X J, LIU J. Suitability of a thermoelectric power generator for implantable medical electronic devices[J]. Journal of Physics D: Applied Physics, 2007, 40(18): 5790.
[222] HOLMAN M, ROWLAND S. Design and development of a new cryosurgical instrument utilizing the Peltier thermoelectric effect[J]. Journal of Medical Engineering & Technology, 1997, 21(3-4): 106-110.
编 辑 叶 芳
Research Progress of New Thermoelectric Materials
WANG Chao1,2, ZHANG Rui1,2, DU Xin1,2, ZHANG Chen-gui1,2, LUAN Chun-hong1,2, JIANG Jing1,2, HU Qiang3, WANG Jun-xi4, DU Zhi-you5, LI Tian-xiao5, MA Tie-zhong6, YAN Dong6, and YIN Zhi-yao5
(1. School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China Chengdu 611731; 2. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China Chengdu 611731; 3. MTM Semiconductor Equipment Co., Ltd. Guangzhou 510530; 4. Institute of Semiconductors, Chinese Academy of Sciences Haidian Beijing 100083; 5. Advanced Micro-Fabrication Equipment Inc. Pudong Shanghai 201201; 6. BEI OPTICS Technology Co.,Ltd. Changping Beijing 102206)
Thermoelectric materials can realize transfer between electricity and heat. On one hand, harvesting electricity from temperature difference can be a future way to achieve energy; on the other hand, the temperature of thermoelectric materials can be precisely controlled. After decades of development, thermoelectric materials have been grown rapidly, but the overall efficiency is still low. In order to further enhance the device efficiency, the novel thermoelectric materials need to be discovered. This review summarize the recent development of some new kinds of thermoelectric materials with their applications in sensors and integrated circuits. It aims to prosper the applications of the thermoelectric materials.
new thermoelectric materials; power factor; seebeck coefficient; thermoelectric devices; thermoelectric properties
TN415
A
10.3969/j.issn.1001-0548.2017.01.019
2016-06-21;
2016-10-10
国家自然科学基金(51672037,61604031); 四川省科技计划(2014GZ0151,2016JQ0022);中央高校基本科研业务费(ZYGX2013J115,ZYGX2014J087, ZYGX2015J029)
王超(1978-),男,博士,教授,主要从事能源材料方面的研究.