唐衍力,龙翔宇,王欣欣,姜昭阳,程 晖,张同征
中国常用人工鱼礁流场效应的比较分析
唐衍力1,龙翔宇1,王欣欣1※,姜昭阳2,程 晖1,张同征1
(1. 中国海洋大学水产学院,青岛 266003;2. 山东大学(威海)海洋学院,威海264209)
不同结构的人工鱼礁在海中会产生不同的流场效应,为了对比分析不同结构人工鱼礁的流场效应差异,该文利用CFX软件,对6类礁型18种中国常用人工鱼礁进行了数值模拟。引入了2种相对评价方法(比礁高和比混凝土体积)和3个评价指标(礁体中垂面上的上升流面积、背涡流面积和上升流高度)。首先分析了评价指标适用的相对评价方法,然后对18种鱼礁进行比较研究,最后从每类礁型分别选出一个礁体为代表研究它们在不同流速下(0.2, 0.4, 0.6, 0.8和 1.0 m/s)上升流和背涡流的差异。结果表明:研究上升流和背涡流面积时比混凝土体积法更科学,研究上升流高度时比礁高法更有效;无论上升流还是背涡流,三角型礁的相对面积都为最大,复合型礁次之,框架性礁最小;上升流高度、上升流面积和背涡流面积都不随来流速度变化;最大上升流流速与来流速度呈线性关系,其斜率在不同礁体间存在差异;该研究以期为不同海域不同要求下人工鱼礁的选择和设计提供了参考。
鱼礁;流场;数值模拟;人工;比礁高,比混凝土体积
由于过度捕捞和环境污染,海洋生态环境遭到破坏,渔业资源濒临枯竭,利用人工鱼礁改善和优化海域生态环境已被广泛采用[1]。美国、日本、韩国、澳大利亚等一些渔业发达国家,在利用人工鱼礁修复和改善渔业生态环境、开发和保护渔业资源等方面,取得了诸多成效[2-5]。人工鱼礁可为海洋生物提供索饵、繁殖、生长等场所,达到修复渔业资源和改善海洋生态环境的目的[6]。人工鱼礁投放后,会产生流场效应、饵料效应和避敌效应。由于鱼礁对水流的阻碍作用导致周围的压力场发生变化,形成了新的流场分布[7]。流体经过礁体时产生的上升流和背涡流可促进上下层海水的交换、加快营养物质循环、提高海域的初级生产力,从而诱集鱼类。多数鱼类喜栖息于流速缓慢的涡流区,涡流还可造成浮游生物、甲壳类和鱼类的物理性聚集。因此,上升流和背涡流规模是衡量人工鱼礁流场效应的重要指标,对人工鱼礁物理环境功能造成技术的研究具有重要意义[8]。
日本学者上北征男等对人工鱼礁着底冲击力和海底礁各种地形产生的涌升流进行了研究[9-11]。郑延璇等通过数值模拟和粒子图像测速分析了3种叠放方式的圆管型人工鱼礁周围的流场分布[12]。刘洪生等通过风洞试验和数值模拟研究了正方体、三棱柱及金字塔型人工鱼礁周围的流场[13]。崔勇等采用数值模拟方法研究了布设间距对人工鱼礁流场效应的影响,并与刘洪生等利用风洞试验研究不同类型人工鱼礁单体和不同组合正方体模型的流场效应结果进行了对比,二者确定2个礁体的最佳布设间距为礁体尺寸的1~1.5倍,结果一致[14-15]。先前对人工鱼礁流场效应的研究只局限于一种或几种礁体,并且缺少不同形状间的横向对比。本文选取了6类18人工鱼礁进行数值模拟,对比研究了其流场效应的差异。
本文基于计算流体力学理论,建立了单体人工鱼礁周围的湍流数值模型,采用有限体积法(finite volume method,FVM)对三维Navier-Stokes方程进行离散求解。鉴于许多学者已经证实了计算流体动力学软件CFX的可信度[16-19],运用CFX分析了中国常用的6类礁型18种人工鱼礁的流场分布特性。用上升流和背涡流作为人工鱼礁流场效应的衡量指标,采用比礁高(上升流高度、上升流面积或背涡流面积与礁高之比)和比混凝土体积(上升流高度、上升流面积或背涡流面积与礁体混凝土体积之比)2种方法,系统分析了不同人工鱼礁的流场效应,以期为人工鱼礁的设计、选型和生态效益评估提供参考依据。
1.1 控制方程
假设流体为不可压缩流动,三维笛卡尔坐标系中,连续性方程和雷诺时均Navier–Stokes方程为[20]
(2)
式中为流体密度,kg/m3;,u(,=1,2,3,)为直角坐标系,和3个方向的平均流速,m/s;为平均压强,Pa;为动力粘度,Pa·s;为雷诺应力,N。
(4)
1.2 数值模拟模型
图1为中国常用的18种人工鱼礁(artificialreef,AR)模型[25],以形状将其分为方型(AR01~AR05)、框架型(AR06~AR08)、棱台型(AR09和AR10)、三角型(AR11和AR12)、圆柱型(AR13~AR15)和复合型(AR16~AR18)等6类礁型,其相关参数如表1所示。
如图2所示,将礁体静置海底,竖直方向为礁体高度(m),沿水流方向为礁体长度(m),与水流方向和竖直方向垂直的是礁体宽度(m)。对于侧面相同的方型礁、框架型礁、棱台型礁和复合型礁,选择任一侧面为迎流面,而AR18选择船型侧面为迎流面;对于三角型礁,选择斜板面为迎流面;对于圆柱型礁,选择管壁为迎 流面。
1.3 计算域和边界条件
流场计算区域包括入口边界(Inlet)、出口边界(Outlet)、壁面(Wall)和开放面(Opening),为准确反映礁体周围流场情况,参考文献[26],计算域设定长度为鱼礁前3倍礁长,后10倍礁长,宽度为5倍礁宽,高度为5倍礁高,即14×5×5,如图3a所示。
图1 18种常用人工鱼礁
表1 18种常用人工鱼礁相关参数
文中所设定的边界条件如下
1)入口边界为速度入口,设置来流速度,计算并给定边界上湍动能和湍动耗散率;
2)出口边界为压力出口,相对压强设定为0 Pa;
3)计算域的顶面和两侧面选择开放面,设置为可移动的壁面;
4)计算域底面和礁体表面选择壁面,设置为光滑和无滑移。
1.4 网格划分
使用ANASYS Workbench Mesh模块对人工鱼礁和计算流域进行四面体单元非结构化网格划分。由于礁体周围流场变化梯度较大,为提高数值模拟的计算精度,在礁体周围设置一个加密区域,范围为5×3×3,即5倍礁长、3倍礁宽和3倍礁高。对于加密区域,单元尺寸设置为0.1 m,其它区域使用相对稀疏的网格,如图3b所示。网格无关性的预试验表明,当网格数量在500万以上时,网格数量对结果几乎没有影响,最终网格划分的数量介于5~20×106。
图3 计算域,边界条件和网格划分
1.5 流场效应评价指标和计算方法
由于上升流和背涡流体积不易计算,选择它们在中垂面上的面积进行研究。数值计算中,假定坐标原点位于礁体底面中心,来流方向沿轴方向,轴为竖直方向。选取=0中垂面(平面)作为研究的基准面(如图4),将方向流速分量与来流速度之比等于或大于10%的区域定义为上升流区域[27]。由于背涡流没有明确数量和方向上的定义,本文将在方向速度分量小于0的区域作为背涡流区域进行简化计算[18]。上升流高度都是以礁体底部为零点进行测量的。
数值模拟中,用CFX对人工鱼礁的流场效应进行分析。将18种礁体导入CFX进行计算,计算结果导入CFD- Post后处理,上升流和背涡流面积采用Photoshop像素法计算[28],对所得的上升流和背涡流面积进行比礁高和比混凝土体积2种相对化处理得到相对面积,然后进行定量分析比较。从每种类型中选出一个代表礁体,进行多流速模拟计算,流速分别为0.2, 0.4, 0.6, 0.8和1.0 m/s,研究流速对不同形状人工鱼礁的上升流和背涡流相关特性的影响。
图4 定义的中垂面
2.1 上升流的流场效应
图5是18种礁体在中垂面上的上升流相对面积对比图,可以看出18种礁体均存在上升流。采用比礁高评价法,上升流相对面积范围0.74~46.24,AR06上升流相对面积最小,AR18最大(AR18的速度矢量图如图6a所示)。在相同礁高条件下,框架型礁体上升流面积均小于其他类型礁体,而复合型礁上升流面积最大,三角型礁次之。方型礁AR03、框架型礁AR07、棱台型礁AR10、三角型礁AR11、圆柱型礁AR15和复合型礁AR18分别是同类型中上升流相对面积最大的礁体。采用比混凝土体积评价法,上升流相对面积范围0.87~10.19,AR08上升流相对面积最小,AR13最大(AR13的速度矢量图如图6b所示)。相同混凝土体积条件下,框架型礁体上升流面积均小于其他类型礁体,方型礁AR02、框架型礁AR07、棱台型礁AR10、三角型礁AR11、圆柱型礁AR13和复合型礁AR18分别是同类型中上升流相对面积最大的礁体。
图5 两种上升流相对面积
AR18由于迎流面宽度较大,用礁高比法分析其上升流相对面积明显大于其它礁体;而用混凝土体积法进行比较时,差异明显减小。所以在相同礁高条件下,混凝土体积的差异会对试验结果产生较大的影响,故认为比混凝土体积法能更科学、准确地评价礁体上升流效应。
综上所述,比混凝土体积法得到的结果,框架型礁上升流相对面积最小;三角型礁上升流相对面积最大;复合型礁上升流相对面积仅次于三角型礁;方型礁、棱台型礁和圆柱型礁的上升流相对面积差别不大。
图6是AR18、AR13和AR11在中垂面上的速度矢量图。可以看出流体经过礁体,会在礁体上方产生上升流,后方产生背涡流,并且不同形状的礁体上升流和背涡流的位置、规模等也会存在差异。
图6 礁体在中垂面上的速度矢量图
2.2 背涡流的流场效应
图7是礁体在中垂面上的背涡流相对面积对比图,可以看出18种礁体均存在背涡流。采用比礁高法,背涡流相对面积范围0.19~31.80,AR07最小,AR18最大。在相同礁高条件下,框架型礁背涡流面积均小于其他类型礁体,而三角型礁、复合型礁均大于其他类型的礁体(除AR01)。方型礁AR01、框架型礁AR06、棱台型礁AR10、三角型礁AR11、圆柱型礁AR14和复合型礁AR18分别是同类型中背涡流相对面积最大的礁体。采用比混凝土体积法,背涡流相对面积范围0.27~10.52,AR08最小,AR11最大(AR11的速度矢量图如图6c所示)。相同混凝土体积条件下,框架型礁体背涡流面积均小于其他类型礁体(除AR09)。方型礁AR01、框架型礁AR06、棱台型礁AR10、三角型礁AR11、圆柱型礁AR13和复合型礁AR16分别是同类型中背涡流相对面积最大的礁体。
图7 两种背涡流相对面积
通过比礁高和比混凝土体积分析不同礁体背涡流的流场效应,与上升流流场效应同理,比较2种相对面积评价背涡流方法,比混凝土体积法仍是更科学准确地评价背涡流面积方法。
综上所述,比混凝土体积法得到的结果,框架型礁背涡流相对面积最小;三角型礁背涡流相对面积最大;复合型礁背涡流相对面积仅次于三角型礁;方型礁、棱台型礁和圆柱型礁的背涡流相对面积差别不大。
2.3 流速对流场效应的影响
根据比混凝土体积法的结果,每种类型礁体以上升流与背涡流相对面积之和最大为标准,选取的6个礁体为AR02、AR06、AR10、AR11、AR13和AR16。分析其在0.2、0.4、0.6、0.8和1.0 m/s 5种流速下上升流和背涡流的变化。
如图8所示,6个礁体在0.2、0.4、0.6、0.8和1.0m/s 5种流速下,上升流和背涡流面积虽然有波动但变化很小,表明上升流和背涡流面积几乎不随来流速度的变化而变化。
图8 6个礁体在0.2、0.4、0.6、0.8和1.0m/s 5种来流速度下上升流和背涡流面积
通过分析礁体中垂面上方向速度分量分布,得到礁体在不同来流速度下的最大上升流流速,最大上升流流速是在上升流区域中某一点处的最大值,相同礁体的最大上升流流速在相同点处取得,这与何文荣[29]的结论是一致的。图9给出了6种礁体在不同来流速度下最大上升流速度的变化曲线。从图中可以看出,所有礁体最大上升流流速与来流速度均为线性关系,拟合曲线2的范围为0.9997~1。2越接近1,拟合度越高,即说明礁体的最大上升流流速与来流速度的比几乎不随来流速度的变化而变化,此结论与何文荣[29]的金字塔型人工鱼礁CFD研究中所得结论是一致的。从图中进一步分析得出不同礁体的最大上升流流速与来流速度比值存在差异,比值由大到小分别为:AR16>AR10>AR13>AR02>AR11> AR06。通过最大上升流流速与来流速度的比值排序可以看出,多数迎流面倾斜的礁体在相同的来流速度条件下,最大上升流流速更大。AR13由三个混凝土圆管组成,其迎流面也相当于具有一定的倾角。AR11的比值比AR02小,可能是由于AR11迎流面上开口较多,影响了倾斜的迎流板该有的上升流效果。
图9 最大上升流流速与来流速度的关系
图10a为上升流高度比礁高与来流速度的关系,其上升流高度几乎不随来流速度变化,这与黄远东、刘彦的研究结论一致[30-31]。上升流高度比礁高由大到小依次为:AR11>AR16>AR02>AR10>AR13>AR06,礁高越大,其单位礁高的上升流高度越大(AR06除外);图10b是上升流高度比混凝土体积与来流速度的关系,上升流高度比混凝土体积由大到小依次为:AR13>AR06>AR10> AR11>AR02>AR16,混凝土体积越小,其单位混凝土体积的上升流高度越大(AR10和AR11除外)。在研究上升流高度时,比混凝土体积法倾向于混凝土体积较小的礁体,而比礁高法较为准确的表征出礁体上升流高度。
本文运用CFX对18种中国常用的人工鱼礁进行模拟,利用比礁高和比混凝土体积2种方法对中垂面上升流面积、背涡流面积和上升流高度进行了分析,得出以下结论:
1)将18种礁体分为方型礁、框架型礁、棱台型礁、三角型礁、圆柱型礁和复合型礁等6大类,礁体的上升流和背涡流相对面积采用较好的比混凝土体积法评价。结果表明,无论上升流和背涡流相对面积,三角型礁为最好,复合型礁次之,而框架型礁为最差。方型礁、棱台型礁和圆柱型礁相对面积相近且效果中等。
2)选出的6个代表礁体的上升流面积和背涡流面积大小与来流速度不相关;最大上升流流速与来流速度呈线性关系,其斜率在不同礁体间存在差异;礁体的上升流高度与来流速度不相关。
3)18种礁体上升流和背涡流相对面积采用比混凝土体积法评价,上升流高度采用比礁高法评价。在保证低成本的情况下,要得到更大的背涡流面积,应选择AR11、AR10和AR13;要得到更大的上升流面积,应选择AR13、AR11和AR18。AR11有着最大的背涡流相对面积和最大的相对影响面积(上升流相对面积与背涡流相对面积之和),而且在相同礁高的情况下,也有最大的上升流高度(其次是AR16和AR02),但其最大上升流流速较小。最大上升流流速最大的是AR16,其次是AR10和AR13。
通过比礁高和比混凝土体积2种方法可以分析研究不同类型礁体的的上升流和背涡流相关特性,为不同海域、不同条件下人工鱼礁礁型的选择提供了一定的理论指导,同时在人工鱼礁设计上也有一定的参考价值。但相关参数随礁高或混凝土体积的变化规律尚不明确,需今后进一步研究。
[1] 陈勇,于长清,张国胜,等. 人工鱼礁的环境功能与集鱼效果[J]. 大连水产学院学报,2002,17(1):64-69. Chen Yong, Yu Changqing, Zhang Guosheng, et al. The environmental function and fish gather effect of artificial reefs[J]. Journal of Dalian Ocean University, 2002, 17(1): 64-69. (in Chinese with English abstract)
[2] Branden K L, Pollard D A, Reimers H A. A review of recent artificial reef developments in Australia[J]. Bulletin of Marine Science -Miami-, 1994, 55(2/3): 982-994.
[3] Clark S, Edwards A J. Use of artificial reef structures to rehabilitate reef flats degraded by coral mining in the maldives[J]. Bulletin of Marine Science -Miami-, 1994, 55 (2/3): 724-744.
[4] Baine M. Artificial reefs: A review of their design, application,management and performance[J]. Ocean & Coastal Management, 2001, 44(3/4): 241-259.
[5] 刘惠飞. 日本人工鱼礁建设的现状[J]. 现代渔业信息,2001(12):15-17. Liu Huifei. The status of construction of artificial fish reef in Japan[J]. Journal of Modern Fisheries Information, 2001(12): 15-17. (in Chinese with English abstract)
[6] 王波,武建平,高峻,等. 关于青岛建设人工鱼礁改善近海生态和渔业环境的探讨[J]. 海岸工程,2004(4):66-73. Wang Bo, Wu Jianping, Gao Jun, et al. An approach to construction of artificial reef to improve the offshore ecology and fishery environments in Qingdao[J]. Coastal Engineering, 2004(4): 66-73. (in Chinese with English abstract)
[7] 张硕,孙满昌,陈勇. 不同高度混凝土模型礁上升流特性的定量研究[J]. 大连水产学院学报,2008,23(5):353-358. Zhang Shuo, Sun Manchang, Chen Yong. Quantitative analysis of upwelling current features of a artificial concrete reef with different height[J]. Journal of Dalian Ocean University, 2008, 23(5): 353-358. (in Chinese with English abstract)
[8] 贾晓平,陈丕茂,唐振朝,等. 人工鱼礁关键技术研究与示范[M]. 北京: 海洋出版社,2011:30-33.
[9] 上北征男. 水産増養殖施設の水力学的研究[R]. 水産工学研究所報告,1982(3):67-100. Yukio Uekita. Hydraulic studies on the aquacutural facilities[R]. Bulletin of National Research Institute of Fisheries Engineering, 1982(3): 67-100. (in Japanese with English abstract)
[10] 秀島好昭,上北征男. 人工魚礁の着底衝擊力に関する研究[R]. 水産工学研究所報告,1983(4):59-71. Yoshiaki Hideshima, Yukio Uekita. Study on the impact force to the artificial fish scheme colliding with the sea bottom[R]. Bulletin of National Research Institute of Fisheries Engineering, 1983(4): 59-71. (in Japanese with English abstract)
[11] 上北征男,中村充,秀島好昭. 海底礁による地形性湧昇流に関する研究[R]. 水産工学研究所報告,1984(5): 33-66. Yukio Uekita, Makoto Nakamura, Yoshiaki Hideshima. Observation of the upwelling causing behind the large reef in case of siomaki, Yamaguchi Pref[R]. Bulletin of National Research Institute of Fisheries Engineering, 1984(5): 33-66. (in Japanese with English abstract)
[12] 郑延璇,梁振林,关长涛,等. 三种叠放形式的圆管型人工鱼礁流场效应数值模拟与PIV试验研究[J]. 海洋与湖沼,2014,45(1):11-19. Zheng Yanxuan, Liang Zhenlin, Guan Changtao, et al. Numerical simulation and experimental study on flow field of artificial reefs in three tube-stacking layouts[J]. Oceanologia et Limnologia Sinica, 2014, 45(1): 11-19. (in Chinese with English abstract)
[13] 刘洪生,马翔,章守宇,等. 人工鱼礁流场风洞实验与数值模拟对比验证[J]. 中国水产科学,2009(3):365-371. Liu Hongsheng, Ma Xiang, Zhang Shouyu, et al. Validation and comparison between wind tunnel experiments and numerical simulation of flow field around artificial reefs[J]. Journal of Fishery Sciences of China, 2009(3): 365-371. (in Chinese with English abstract)
[14] 崔勇,关长涛,万荣,等. 布设间距对人工鱼礁流场效应影响的数值模拟[J]. 海洋湖沼通报,2011(2):59-65. Cui Yong, Guan Changtao, Wan Rong, et al. Numerical simulation on influence of disposal space for effects of flow field around artificial reefs[J]. Transactions of Oceanology and Limnology, 2011(2): 59-65. (in Chinese with English abstract)
[15] 刘洪生,马翔,章守宇,等. 人工鱼礁流场效应的模型实验[J]. 水产学报,2009(2):229-236. Liu Hongsheng, Ma Xiang, Zhang Shouyu, et al. Research on model experiments of effects of artificial reefs on flow field[J]. Journal of Fisheries of China, 2009(2): 229-236. (in Chinese with English abstract)
[16] Kim K, Ahmed M R, Lee Y. Efficiency improvement of a tidal current turbine utilizing a larger area of channel[J]. Renewable Energy, 2012(48): 557-564.
[17] Finnegan W, Goggins J. Numerical simulation of linear water waves and wave–structure interaction[J]. Ocean Engineering, 2012(43): 23-31.
[18] Kim D, Woo J, Yoon H, et al. Wake lengths and structural responses of Korean general artificial reefs[J]. Ocean Engineering, 2014(92): 83-91.
[19] Woo J, Kim D, Yoon H, et al. Characterizing Korean general artificial reefs by drag coefficients[J]. Ocean Engineering, 2014(82): 105-114.
[20] 王福军. 计算流体力学分析[M]. 北京:清华大学出版社,2004.
[21] Yakhot V, Orzag S A. Renormalization group analysis of turbulence: basic theory[J]. Journal of Scientific Computation, 1986(1): 3-11.
[22] Veersteg H K, Malalasekera W. An introduction to computational fluid dynamics: The finite volume method[J]. Pearson Schweiz Ag, 1995, 20(5): 400.
[23] 郭鸿志. 传输过程数值模拟[M]. 北京:冶金工业出版社,1998.
[24] 陶文铨. 数值传热学(第2版)[M]. 西安:西安交通大学出版社,2001.
[25] 王磊,唐衍力,黄洪亮,等. 混凝土人工鱼礁选型的初步分析[J]. 海洋渔业,2009(3):308-315. Wang Lei, Tang Yanli, Huang Hongliang, et al. Primary analysis of model selection for artificial reefs[J]. Marine Fisheries, 2009(3): 308-315. (in Chinese with English abstract)
[26] 郑延璇,关长涛,宋协法,等. 星体型人工鱼礁流场效应的数值模拟[J]. 农业工程学报,2012,28(19):185-193. Zheng Yanxuan, Guan Changtao, Song Xiefa, et al. Numerical simulation on flow field around star artificial reefs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(19): 185-193. (in Chinese with English abstract)
[27] 关长涛,刘彦,赵云鹏,等. 复合M型人工鱼礁粒子图像测速二维流场试验研究[J]. 渔业现代化,2010,37(1): 15-19. Guan Changtao, Liu Yan, Zhao Yunpeng, et al. Experimental study on two-dimensional flow field of the compound M artificial reef with particle image velocimetry[J]. Fishery Modernization, 2010, 37(1): 15-19. (in Chinese with English abstract)
[28] 谢亮. Photoshop像素法在计算地图面积中的应用[J]. 电脑知识与技术,2010,6(15):4021-4022.Xie Liang. Application of Photoshop pixel method in calculating map area[J]. Computer Knowledge and Technology, 2010, 6(15): 4021-4022. (in Chinese with English abstract)
[29] 何文荣,黄远东,黄黎明,等. 金字塔型人工鱼礁绕流的三维CFD模拟研究[J]. 水资源与水工程学报,2013,24(5):71–76. He Wenrong, Huang Yuandong, Huang Liming, et al. Simulation of three-dimensional CFD of water flowat pyramid artificial reef[J].Journal of Water Resources & Water Engineering, 2013, 24(5): 71–76. (in Chinese with English abstract)
[30] 黄远东,姜剑伟,赵树夫. 方型人工鱼礁周围水流运动的数值模拟研究[J]. 水资源与水工程学报,2012(3):1-3. Huang Yuandong, Jiang Jianwei, Zhao Shufu. Study on numerical model of water flows past a square artificial reef[J]. Journal of Water Resources and Water Engineering, 2012(3): 1-3. (in Chinese with English abstract)
[31] Liu Y, Zhao Y P, Dong G H, et al. A study of the flow field characteristics around star-shaped artificial reefs[J]. Journal of Fluids & Structures, 2013, 39(5): 27-40.
Comparative analysis on flow field effect of general artificial reefs in China
Tang Yanli1, Long Xiangyu1, Wang Xinxin1※, Jiang Zhaoyang2, Cheng Hui1, Zhang Tongzheng1
(1.,266003,; 2.,,264209,)
Artificial reef (AR) is widely used to improve marine ecological environment. Some fisheries developed countries, such as America, Japan, Korea, Australia, New Zealand and some EU (European Union) states, have acquired a lot of achievements on the exploitation and protection of fishery resources by use of ARs. Flow field effect, bait effect and avoidance effect will be caused when the ARs are placed on the sea floor. Flow field effect is deemed to the main affecting mechanism of ARs, and the upwelling and back vortex are important indices to measure the flow field effect of ARs. So far, the study on the flow field effect of ARs has been limited to one or several reefs in China. However, no one has yet scientifically investigated the flow field effect of the Chinese general ARs. This study focused on the 18 types of general ARs, which were divided into 6 kinds, to investigate different flow field effects among them. And several representative reefs were selected for further study, which was the study on the effects of various flow velocity on the characteristics of upwelling and back vortex. Based on theory of computational fluid dynamics, numerical models of turbulent flow were built. Three-dimensional Navier-Stokes equations were solved by the finite volume method. The software CFX (computational fluid X) was used to study the performances of the flow field around reefs when flow passed through them. The 2 evaluation methods, the reef height ratio and the concrete volume ratio, were used to analyze the upwelling area, the back vortex area and the height of upwelling on the central plane. The reef height ratio is the ratio of the maximum upwelling height, upwelling area or back vortex area to reef height. And the concrete volume ratio is the ratio of the maximum upwelling height, upwelling area or back vortex area to concrete volume of reef. The paper was aimed to discuss the advantages and disadvantages of the 2 methods, and to analyze the different flow field effects among 18 types of ARs. Besides, the better reefs would be selected for diverse requirements. The results suggested the concrete volume ratio was a better criterion when studying the upwelling area and the back vortex area, and the height ratio was more appropriate when studying the height of upwelling. Regardless of the upwelling or the back vortex, triangle reefs had the largest relative area and complex reefs were the second, while frame reefs were the least. Then one reef was selected from each type to conduct the research to find out whether there were the effects of different flow velocity (0.2, 0.4, 0.6, 0.8 and 1.0 m/s) on upwelling area, back vortex area, the maximum upwelling velocity and maximum height of upwelling. The results demonstrated that the height of upwelling, the upwelling area, and the back vortex area fluctuated in an extremely narrow range under the 5 flow velocities. The maximum flow velocity of upwelling was linear with the flow velocity, and the slope showed the difference among different reefs. Moreover, reefs for different demands had been selected. AR11, AR10 and AR13 had a larger back vortex area with low cost. AR13, AR11 and AR18 should be chosen for the need of larger upwelling area. AR11 had not only the largest relative area of back vortex but also the largest relative influence area (sum of the upwelling area and the back vortex area). In addition, AR11 had the highest height of upwelling at the same reef height (followed by AR16 and AR02). The top 3 types of reefs with the maximum flow velocity were AR16, AR10 and AR13. The study provides the theoretical basis for the selection of AR, which can cater to various demands. Moreover, it also has certain reference value for the design of AR.
reefs; flow fields; numerical simulation; artificial; the height ratio; the concrete volume ratio
10.11975/j.issn.1002-6819.2017.08.013
S96
A
1002-6819(2017)-08-0097-07
2016-08-23
2017-04-20
海洋公益性专项(201305030);公益性行业(农业)科技专项(201203018)
唐衍力,男,教授,博士,研究方向为人工鱼礁与海洋牧场、选择性渔具渔法。青岛 中国海洋大学水产学院,266003。 Email:tangyanli@ouc.edu.cn
王欣欣,女,讲师,博士,研究方向为渔具设施水动力学研究。青岛 中国海洋大学水产学院,266003。Email:wxinxin@ouc.edu.cn
唐衍力,龙翔宇,王欣欣,姜昭阳,程 晖,张同征.中国常用人工鱼礁流场效应的比较分析[J]. 农业工程学报,2017,33(8):97-103. doi:10.11975/j.issn.1002-6819.2017.08.013 http://www.tcsae.org
Tang Yanli, Long Xiangyu, Wang Xinxin, Jiang Zhaoyang, Cheng Hui, Zhang Tongzheng. Comparative analysis on flow field effect of general artificial reefs in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 97-103. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.08.013 http://www.tcsae.org