孙晨瑜, 谢国勇*,秦民坚*
(1. 中国药科大学 中药资源学教研室,江苏 南京210009;2. 中国药科大学 天然药物活性组分与药效国家重点实验室,江苏 南京210009)
芒果苷在植物界的分布及药理活性研究进展
孙晨瑜1,2, 谢国勇1,2*,秦民坚1,2*
(1. 中国药科大学 中药资源学教研室,江苏 南京210009;2. 中国药科大学 天然药物活性组分与药效国家重点实验室,江苏 南京210009)
芒果苷(mangiferin),又称之为莞知母宁或芒果素,具有良好的抗炎和抗氧化应激活性,药理作用广泛,对代谢紊乱,肿瘤,心血管疾病等都有治疗作用。已有文献报道,芒果苷在自然界分布广泛,在51个科180余种植物中均有发现,集中分布于鸢尾科,龙胆科,藤黄科等。为了开发富含芒果苷的天然药物资源,本文就芒果苷在植物界中的分布及其药理作用进行概述。
芒果苷;植物分布;药理作用
芒果苷(mangiferin),又称之为莞知母宁或芒果素,化学名为2-β-D-吡喃葡萄糖苷-1,3,6,7-四羟基-9H-氧杂蒽酮,是一种四羟基吡酮的碳酮苷,属于双苯吡酮类黄酮化合物(图1)。芒果苷主要分布于龙胆科,鸢尾科,藤黄科,豆科等,是百合科植物知母和漆树科植物杧果的主要有效成分,其药理作用广泛,可以抗炎[1],抗菌[2],抗氧化应激[3],抗过敏[4],保护神经[5],对癌症[6],代谢类[7],心血管类[8],免疫类疾病[9]都有治疗作用,其中在治疗糖尿病及其并发症方面疗效显著。本文对芒果苷在自然界的分布及药理作用进行了综述,为进一步开发富含芒果苷的植物资源提供参考。
图1 芒果苷(mangiferin)
芒果苷在植物界广泛分布于被子植物和蕨类植物中,在51科81属180余种植物中均有发现,其中, 蕨类植物8科12属13种, 单子叶植物5科10
属18种,双子叶植物38科59属149种(表 1)。芒果苷在单子叶植物的鸢尾科,双子叶植物的龙胆科,豆科和藤黄科集中分布。芒果苷在植物的根,茎,叶,花,果实,树皮等中均有分布,但在不同的植物及组织中含量有所差异,如对龙胆科11个种进行分析,Gentianellacaucasica芒果苷含量最高(2.34%干燥地上部分),其次是Gentianaschistocalyx(0.98%),深黄花龙胆(Gentianalutea) (0.92%)[10]。相比
之下,知母,杧果中的含量较高。用HPLC-DAD-ESI-qTOF-MS的方法测定杧果及其果皮,种子,种壳中的芒果苷,结果杧果皮中含量最高,其次是种子,果肉和种壳[11]。由于植物来源,提取方式及检测方法不同,因此,文献中芒果苷的含量会有一定差异。一些中药复方如仙灵骨葆胶囊、百合知母汤、清气凉营汤、清肺抑火丸等也含有芒果苷。
表1 芒果苷在植物界的分布
续表1
科属种拉丁名双子叶植物翅子藤科Hippocrateaceae五层龙属Salacia网状五层龙Salaciareticulata—Salaciachinensis—Salaciaoblonga海南五层龙Salaciahainanensis—Salaciaroxburghii漆树科Anacardiaceae杧果属Mangifera杧果Mangiferaindica天桃木Mangiferapersiciformis林生杧果Mangiferasylvatica九子母属Dobinea羊角天麻Dobineadelavayi瑞香科Thymelaeaceae沉香属Aquilaria土沉香Aquilariasinensis厚叶沉香Aquilariacrassna皇冠果属Phaleria大皇冠果Phaleriamacrocarpa—Phalerianisidai皇冠果Phaleriacumingii续断香属Gyrinops—Gyrinopswalla龙胆科Gentianaceae獐牙菜属Swertia大籽獐牙菜Swertiamacrosperma川西獐牙菜Swertiamussotii紫红獐牙菜Swertiapunicea黄花獐牙菜Swertiakingii抱茎獐牙菜Swertiafranchetiana四数獐牙菜Swertiatetraptera祁连獐牙菜Swertiaprzewalskii红直獐牙菜Swertiaerythrosticta毛獐牙菜Swertiapubescens—Swertiachirata狭叶獐牙菜Swertiaangustifolia宽丝獐牙菜Swertiapaniculata藏獐牙菜Swertiaracemosa显脉獐牙菜Swertianervosa普兰獐牙菜Swertiaciliata—Swertiadilatata—Swertiapunctata—Swertiaphragmitiphylla—Swertiaperennis瘤毛獐牙菜Swertiapseudochinensis心叶獐牙菜Swertiacordata—Swertiaperfoliata短筒獐牙菜Swertiaconnata—Swertiaiberica多种假龙胆属Gentianella—Gentianellaalbanica—Gentianellacrispata—Gentianellabulgarica—Gentianellaaustriaca新疆假龙胆Gentianellaturkestanorum—Gentianellacaucasica尖叶假龙胆Gentianellaacuta百金花属Centaurium红色百金花Centauriumerythraea—Centauriumtenuiflorum—Centauriumlittoralesubsp.uliginosum美丽百金花Centauriumpulchellum—Schenkiaspicata肋柱花属Lomatogonium肋柱花Lomatogoniumcarinthiacum辐状肋柱花Lomatogoniumrotatum花锚属Halenia卵萼花锚Haleniaelliptica扁蕾属Gentianopsis—Gentianopsisbarbatavar.sinensis龙胆属Gentiana高山龙胆Gentianaalgida红花龙胆Gentianarhodantha龙胆草Gentianacruciata—Gentianalactea
续表1
科属种拉丁名—Gentianaschistocalyx深黄花龙胆Gentianalutea—Gentianaasclepiadea春龙胆Gentianaverna新疆龙胆Gentianakarelinii条叶龙胆Gentianamanshurica穿心草属Canscora—Canscoradecussata—Canscoraheteroclita双蝴蝶属Tripterospermum高山双蝴蝶Tripterospermumluzonense日本双蝴蝶Tripterospermumjaponicum台湾肺形草Tripterospermumtaiwanense远志科Polygalaceae远志属Polygala远志Polygalatenuifolia西伯利亚远志Polygalasibirica小花远志PolygalaarvensisWilld.尾叶远志Polygalacaudata香港远志Polygalahongkongensis华南远志Polygalaglomerata豆科Fabaceae岩黄芪属Hedysarum山岩黄芪Hedysarumalpinum乌恰岩黄芪Hedysarumflavescens疏忽岩黄芪Hedysarumneglectum—Hedysarumtheinum华北岩黄芪Hedysarumgmelinii湿地岩黄芪Hedysaruminundatum—Hedysarumtschuense—Hedysarumbrandtii—Hedysarumkomarovii—多种黄芪属Astragalus黄芪Astragalusmembranaceus松雀花属Aspalathus松雀茶Aspalathuslinearis蜜茶豆属Cyclopia—Cyclopiagenistoides—Cyclopiafalcata鹿藿属Rhynchosia—Rhynchosiasuaveolens紫葳科Bignoniaceae二叶藤属Arrabidaea —Arrabidaeasamydoides—ArrabidaeapatelliferaCallichlamys—Callichlamyslatifolia茜草科Rubiaceae咖啡属Coffea—Coffeapseudozanguebariae小粒咖啡Coffeaarabica巴戟天属Morinda海滨木巴戟Morindacitrifolia番荔枝科Annonaceae暗罗属Polyalthia细基丸Polyalthiacerasoides藤黄科Guttiferae金丝桃属Hypericum贯叶连翘Hypericumperforatum元宝草Hypericumsampsonii湖北金丝桃Hypericumhubeiense—Hypericumpulchrum—Hypericumdegenii—Hypericumancheri—Hypericumlinarifolium浆果金丝桃Hypericumandrosaemum波叶金丝桃Hypericumundulatum—Hypericummontbretii—多种藤黄属Garcinia大叶藤黄Garciniaxanthochymus莽吉柿Garciniamangostana福木Garciniaspicata—Garcinialivingstonei黄牛木属Cratoxylum红芽木Cratoxylumformosumsubsp.pruniflo-rum蔷薇科Rosaceae李属Prunus洋杏Prunusamygdalus榅桲属Cydonia榅桲Cydoniaoblonga蓼科Polygonaceae虎杖属Reynoutria虎杖Reynoutriajaponica列当科OrobanchaceaeRadamaea—Radamaeamontana蜜花科Melianthaceae娑羽树属Bersama娑羽树Bersamaabyssinica—Bersamayangambiensis
续表1
科属种拉丁名—Bersamaengleriana柿科Ebenaceae海柿属Euclea海柿Euclearacemosa大戟科Euphorbiaceae余甘子属Emblica—Emblicaofficinalis使君子科Combretaceae榄仁属Terminalia诃子Terminaliachebula藜科Chenopodiaceae沙蓬属Agriophyllum沙蓬Agriophyllumsquarrosum木棉科Bombacaceae木棉属Bombax木棉Bombaxceiba虎耳草科Saxifragaceae扯根菜属Penthorum扯根菜PenthorumchinensePursh五加科Araliaceae人参属Panax三七Panaxnotoginseng唇形科Labiatae鞘蕊花属Coleus毛喉鞘蕊花Coleusforskohlii芝麻科Pedaliaceae芝麻属Sesamum芝麻Sesamumindicum菊科Compositae千里光属Senecio弦月Senecioradicans芸香科Rutaceae柑橘属Citrus柠檬Citruslimon番木瓜科Caricaceae番木瓜属Carica番木瓜Caricapapaya茄科Solanaceae茄属Solanum银叶茄Solanumelaeagnifolium锦葵科Malvaceae梵天花属Urena地桃花Urenalobata伞形科UmbelliferaeColladonia—Colladoniatriquetra云实科Caesalpiniaceae盾柱木属Peltophorum—Peltophorumafricanum胡桐科Calophyllaceae南美杏属Mammea南美杏Mammeaamericana金虎尾科Malpighiaceae风筝果属Hiptage风筝果Hiptagebenghalensis山茶科Theaceae泽茶属Bonnetia—Bonnetiastricta锦葵科Malvaceae木槿属Hibiscus—Hibiscusvitifolius石竹科Caryophyllaceae石头花属Gypsophila大叶石头花Gypsophilapacifica桑寄生科Loranthaceae五蕊寄生属Dendrophthoe—Dendrophthoefalcata桑科Moraceae橙桑属Maclura橙桑Maclurapomifera猕猴桃科Actinidiaceae藤山柳属Clematoclethra猕猴桃藤山柳Clematoclethrascandenssubsp.actinidioides
2.1 改善代谢紊乱
芒果苷是天然的丙酮酸脱氢酶复合体(PDH)催化剂,可增加有氧代谢中碳水化合物的利用,并增加肥胖和胰岛素抵抗动物模型中胰岛素的敏感性。另一方面,芒果苷能刺激线粒体呼吸,抑制氧化应激和炎症,并上调线粒体生物学功能蛋白,同时下调肝脂肪生成的相关蛋白,提高碳水化合物的利用,以此改善代谢紊乱。
2.1.1 抗糖尿病及其并发症糖尿病肾病
在近三四十年,糖尿病呈急剧上升态势,成为人类不得不面对的最常见和最严重的疾病之一[12]。有大量文献报道,芒果苷对糖尿病有良好的改善作用。研究显示,芒果苷有很好的降糖效果,并能提高胰岛素敏感性[13]。而且芒果苷能提高糖苷酶的活性,从而提高葡萄糖的利用。
糖尿病肾病是糖尿病最常见的微血管并发症之一,也是终末期肾病的主要原因。其发病机制复杂,糖尿病肾病会导致多种细胞事件和信号通路被激活,包括血糖过多介导的晚期糖基化产物(AGEs)生成、蛋白激酶C(PKC)激活、转化增长因子β(TGF-β)和GTP结合蛋白的表达增加以及活性氧的生成。除了造成生物代谢的紊乱,它还能够通过激活肾素-血管紧张素系统引起血流动力学的改变,加重高血糖症诱发型损伤[14]。近来有研究发现,在以瘦素缺乏的BTBR ob/ob鼠为糖尿病肾病模型中,补充瘦素增加鼠足细胞,进而减少肾小球系膜溶解,降低系膜基质堆积,改善肾脏的结构和功能。这提示我们,足细胞的修复和改善可能是糖尿病肾病治疗的新靶点[15]。
Sellamuthu等的实验表明,在链脲佐菌素(STZ)诱导的糖尿病小鼠中,40 mg/(kg·d)芒果苷口服30天,可降低血糖并增加胰岛素敏感性,而且抗氧化酶,如超氧化物歧化酶(SOD),过氧化氢酶(CAT)等都有所升高,GSH水平下降。病理组织学结果显示,肝和肾脏的结构得到了修复[16]。在体内体外芒果苷都能增加乙二醛酶(Glo-1)活性,降低AGEs及其受体RAGE,在糖尿病小鼠的肾皮质中,可以降低氧化应激损伤来改善糖尿病肾病[17]。越来越多的研究表明芒果苷能改善糖尿病肾病大鼠的肾纤维化,而且,在STZ诱导高血糖模型中,大鼠肾脏Ⅳ型胶原蛋白(ColⅣ),α-平滑肌肌动蛋白(α-SMA)在使用芒果苷后均有所下降。其可能是通过抑制NF-κB通路抑制炎症的发生,并下调骨桥蛋白表达来改善糖尿病肾病大鼠的肾纤维化[18]。
有研究表明,氧化应激主要由线粒体中的NADPH氧化酶(Nox)产生,会引起线粒体上HKII脱落[33]。在高脂肪酸状态下,PDH活性明显降低,导致糖酵解-丙酮酸氧化之间脱耦联,造成线粒体功能紊乱[34]。因此,HKII脱落与糖酵解-丙酮酸氧化脱耦联这两个病理环节相互促进,加重线粒体结构和能量代谢功能障碍,诱发细胞凋亡。而芒果苷可以减少氧化应激,也是PDH的催化剂。因此抑制Nox表达及HKII从线粒体膜脱落导致的氧化应激,对改善糖尿病并发症及肾损伤具有有益作用,具体机制有待研究。
2.1.2 改善脂代谢紊乱疾病
不健康的生活方式会导致脂肪酸和脂质代谢紊乱,血浆,肝和脂肪组织脂质沉积,引起肥胖,高血脂,非酒精性脂肪肝等脂代谢紊乱疾病。芒果苷可以降低高脂饲喂大鼠肝脏中的甘油三酯和游离脂肪酸[19]。Lim等以15N代谢标记的肝脏蛋白为内参,高脂饲喂18周后进行定量蛋白组学分析,发现在865个定量蛋白中,有87个在芒果苷的调节下差异显著。其中,线粒体生物学功能蛋白上调,同时,脂肪从头合成蛋白得到下调,使得芒果苷能加强能量消耗并抑制脂质合成[20]。
2.2 改善心血管疾病
研究表明连续口服芒果苷100 mg/kg 28天预保护可以改善心肌梗塞大鼠心脏能量代谢,保护线粒体超微结构,改善氧化损伤[8]。通过结扎左前降支冠状动脉建立心肌梗死(MI)模型中,芒果苷通过抑制p38丝裂原活化蛋白激酶(MAPK)降低肿瘤坏死因子α(TNF-α)水平,改善细胞间隙纤维化,减少心肌凋亡,以此保护心肌细胞改善MI[21]。此外,在STZ和高脂共同诱导的糖尿病大鼠体内,芒果苷可通过NF-κB核易位失活并抑制RAGE表达,降低心肌酶和炎症介质水平,显著改善糖尿病心脏病[22]。
2.3 抗肿瘤
黄酮类可发挥各种抗致癌作用,包括诱导的肿瘤细胞凋亡,抑制癌细胞增殖和预防肿瘤细胞的血管生成和侵袭。早在1987年就有研究表明芒果苷有抗肿瘤 的活性[23]。芒果苷可调节细胞凋亡,减少病毒复制,减少肿瘤发生,抑制炎症和各种自身免疫疾病重要基因的表达,并提高其在炎性疾病或癌症的可能性[24]。Tomoya Takeda等在细胞水平,发现芒果苷可以降低多发性骨髓瘤细胞的细胞活力,而且呈现浓度依赖性。芒果苷通过抑制NF-κB诱导激酶,抑制NF-κB核易位诱导骨髓瘤细胞系凋亡[6]。芒果苷通过ATR-Chk1应激反应DNA损伤通路,使其细胞周期停滞在G2/M期,从而抑制HL-60白血病细胞[25]。芒果苷可抑制A549细胞生长并凋亡其诱导。此外,芒果苷在A549移植小鼠体内表现出抗肿瘤的特性。芒果苷通过下调细胞周期蛋白依赖性激酶1-细胞周期蛋白B1(cdc2-cyclin B1)信号传导,触发G2/M期细胞周期阻滞通路,并通过PKC-NF-κB通路诱导细胞凋亡[26]。
2.4 其他
此外,芒果苷还有调节免疫的作用[9]和胃保护作用[27]等。芒果苷广泛的药理作用主要以抗炎和抗氧化应激为作用基础,成为许多疾病的主要作用机理。
在某些病理条件下,细胞内ROS水平的异常升高导致氧化应激,会潜在地调节许多信号分子的活性,并诱导线粒体损伤,最终导致细胞死亡[28-29]。而芒果苷可以降低氧化应激,减少凋亡。Saha等用50 μm叔丁基过氧化氢(tBHP)刺激人肾上皮细胞18 h后,加20 μm芒果苷2 h,芒果苷可激活PI3K/AKt通路,增加抗氧化蛋白HO-1,SOD2表达,降低由于tBHP刺激产生的细胞内ROS及其他氧化应激产物,而且,芒果苷能抑制tBHP介导的各种凋亡前信号的激活,减少了细胞线粒体的通透性,以此保护肾细胞[30]。
研究的结果表明,芒果苷在体外显着抑制LPS / IFN-γ刺激诱导的巨噬细胞的经典激活,并显著降低促炎细胞因子释放。此外,细胞IRF5表达显着下调。这些结果表明,芒果苷对巨噬细胞的经典激活的抑制作用可以通过下调细胞IRF5表达水平发挥作用,减少炎症反应[1]。
芒果苷在自然界中分布广,而且药理作用广泛,其药效基础主要基于抗炎和抗氧化应激活性,但具体疾病的作用机制有待进一步阐明。芒果苷由于其水溶性差而且生物利用度低因而在临床使用受限。因此,开发新的芒果苷剂型或进行结构修饰对提高其药效很有意义,如将芒果苷加载到磁性PCEC微球(MG-MS)上,可显著提高芒果苷体内外的抗肿瘤活性[31]。或对芒果苷苷元为基本母核进行结构改造[32],新合成的芒果苷衍生物有较强的药理作用。
[1] WEI Z Q, YAN L, CHEN Y X, et al. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression [J]. Molecular Medicine Reports, 2016, 14: 1091-1098.
[2] SRINIVASAN K, SUBRAMAINAN S, MOHAN K, et al. Antibacterial activity of mangiferin [J]. Arogya, 1982, 8(2): 178-180.
[3] LUO Y, FU C F, WANG Z Y, et al. Mangiferin attenuates contusive spinal cord injury in rats through the regulation of oxidative stress, inflammation and the Bcl-2 and Bax pathway [J]. Molecular medicine reports, 2015, 12(5): 7132-7138.
[4] DAGAR G R, IVONES H B, ALINA A L, et al. Anti-allergic properties of Mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin [J]. Journal of Pharmacy and Pharmacology, 2006, 58(3): 385-392.
[5] JUNG K, LEE B, HAN S J, et al. Mangiferin ameliorates scopolamine-induced learning deficits in mice [J]. Biological & Pharmaceutical Bulletin, 2009, 32(2): 242-246.
[6] TOMOYA T, MASANOBU T, TOSHIKI K, et al. Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase [J]. Chemico-Biological Interactions, 2016, 251: 26e33.
[7] APONTES P, LIU Z B, SU K, et al. Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets [J]. Diabetes, 2014, 63:3626-3636.
[8] PRABHU S, JAINU M, SABITHA K E, et al. Effect of mangiferin on mitochondrial energy production in experimentally induced myocardial infarcted rats [J]. Vascul Pharmacol, 2006, 44(6):519-525.
[9] LUCZKIEWICZ P, KOKOTKIEWICZ A, DAMPC A, et al. Mangiferin: A promising therapeutic agent for rheumatoid arthritis treatment [J]. Medical Hypotheses, 2014, 84: 570-574.
[10] LUBSANDORZHIEVA P B, NIKOLAEVA G G, GLYZIN V I, et al. Content of mangiferin in species of the family Gentianaceae [J]. Rastitel′nye Resursy, 1986, 22(2), 233-236.
[11] CARAVACA G, MARIA A. HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk) [J]. Electrophoresis, 2016, 37(7-8): 1072-1084.
[12] KENNETH S, POLONSKY M D. The past 200 years in diabetes [J]. N Engl J Med, 2012, 367: 1332-1340.
[13] ZHOU L, PAN Y, CHONAN R, et al. Mitigation of insulin resistance by mangiferin in a rat model of fructose-induced metabolic syndrome is associated with modulation of CD36 redistribution in the skeletal muscle [J]. J Pharmacol Exp Ther, 2016, 356(1):74-84.
[14] KANWAR Y S, SUN L, XIE P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy [J]. Annu Rev Pathol, 2011, 6: 395-423.
[15] WARANGKANA P, HUDKINS K L, WIETECHA T, et al. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy [J]. J Am Soc Nephrol, 2013, 24: 1088-1102.
[16] SELLAMUTHU P S, ARULSELVAN P, KAMALRAJ S, et al. Protective nature of mangiferin on oxidative stress and antioxidant status in tissues of streptozotocin-induced diabetic rats [J]. Isrn Pharmacology, 2013 (1): 750109.
[17] LIU Y W, ZHU X, ZHANG L, et al. Up-regulation of glyoxalase 1 by mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats [J]. European Journal of Pharmacology, 2013, 721: 355-364.
[18] ZHU X, CHENG Y Q, DU L, et al. Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats [J]. Phytother Res, 2015, 29: 295-302.
[19] XING X, LI D, CHEN D, et al. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A: diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver [J]. Toxicol Appl Pharmacol, 2014, 280: 207-215.
[20] LIM J, LIU Z B, APONTES P, et al. Dual mode action of mangiferin in mouse liver under high fat diet [J]. PLoS ONE, 2014, 9(3): e90137.
[21] ZHENG D Z, HOU J, XIAO Y B, et al. Cardioprotective effect of mangiferin on left ventricular remodeling in rats [J]. Pharmacology, 2012, 90:78-87.
[22] HOU J, ZHENG D, FUNG G, et al. Mangiferin suppressed advanced glycation end products (AGEs) through NF-kappaB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats [J]. Can J Physiol Pharmacol, 2016, 94: 331-340.
[23] CHATTOPADHY U, DAS S, GUHA S, et al. Activation of lymphocytes of normal and tumor bearing mice by mangiferin, a naturally occurring glucosylxanthone [J]. Cancer Lett, 1987, 37: 293-299.
[24] LEIRO J, ARRANZ J A, YANEZ M, et al. Expression profiles of genes involved in the mouse nuclear factor-kappa B signal transduction pathway are modulated by mangiferin [J]. Int Immunopharmacol, 2004, 4(6):763-78.
[25] PENG Z G , YAO Y B, YANG J, et al. Mangiferin induces cell cycle arrest at G2/M phase through ATR-Chk1 pathway in HL-60 leukemia cells [J]. Genet Mol Res, 2015, 14 (2): 4989-5002.
[26] SHI W, DENG J G, TONG R S, et al. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells [J]. Molecular Medicine Reports, 2016, 13: 3423-3432.
[27] MAGDY M A , AHMED S A, MOHAMED F A, et al. Mangiferin mitigates gastric ulcer in ischemia/reperfused rats: Involvement of PPAR-γ, NF-κB and Nrf2/HO-1 signaling pathways [J]. PLOS ONE, 2015, 10: 1371.
[28] MANNA P, GHOSH J, DAS J, et al. Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: protective role of arjunolic acid, Toxicol [J]. Appl Pharmacol, 2010, 244: 114-129.
[29] SINHA K, DAS J, PAL P B, et al. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis [J]. Arch Toxicol, 2013, 87: 1157-1180.
[30] SAHA S, PRITAM S, KRISHNENDU S, et al. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways [J]. Biochemistry and Biophysics Reports, 2016, 5: 313-327.
[31] XIAO W J, HOU J, MA J, et al. Mangiferin loaded magnetic PCEC microspheres: preparation, characterization and antitumor activity studies in vitro [J]. Arch Pharm Res, 2014, 10:1007.
[32] 胡丽娜.苯并吡喃酮衍生物的设计、合成及其生物活性研究[D].上海:第二军医大学, 2011.
[33] NEDERLOF R, EERBEEK O, HOLLMANN M W, et al. Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart [J]. British Journal of Pharmacology, 2014, 171: 2067-2079.
[34] BUCHANAN J, MAZUMDER P K, HU P, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity[J]. Endocrinology, 2005, 146:5341-5349.
Distribution of Mangiferin in Plant Kingdom and Its PharmacologicalResearch Progress
Sun Chenyu1,2, Xie Guoyong1,2*, Qin Minjian1,2*
(1.Department of Resources Science of Traditional Chinese Medicines;2.State Key Laboratory of Natural Medicines,China Pharmaceutical University,Nanjing 211198,China)
Mangiferin is a C-glucosyl xanthone, a natural polyphenol existing in many kinds of plants and folk medicines. It performs a good anti-inflammatory and antioxidant activity and has been widely used in metabolic syndrome, cardiovascular and cancer. The data have shown that mangiferin distribute in more than 180 plants in over 51 families, such as Iridaceae, Gentianaceae, Guttiferae. This paper provides clues to new medicine resources development and further pharmacological research. In order to develop mangiferin and enrich natural resources,its distribution and pharmacological researches are overviewed.
mangiferin; distribution in plant kingdom; pharmacology
10.3969/j.issn.1006-9690.2017.04.009
2016-03-18
国家自然科学基金资助项目(81373918)。
孙晨瑜(1992—),女,硕士研究生,从事生药学研究。E-mail: sysq310@163.com
*通讯作者: 秦民坚,男,教授,博士生导师,从事中药资源与开发研究。 E-mail: minjianqin@163.com; 谢国勇,男,讲师,从事中药资源与开发研究。E-mail:guoyongxie321@163.com
R284;R285
A
1006-9690(2017)04-0039-07