课本习题的示范引领作用

2017-09-01 04:50张春雷
数学教学通讯·高中版 2017年8期
关键词:知识体系高考题对比

张春雷

[摘 要] 关注教材,提高教材的使用效率,更主要的是不要脱离教材的教学和复习,真正领悟教材是教学和考试之本. 对比教材和高考试题的相似度,让师生更明确方向,有的放矢;活用教材,理解知识的内涵和外延.

[关键词] 习题;高考题;对比;教材;知识体系;整合与延伸

不论是新知识的学习还是高三复习,一定要注重基础知识、基本技能和基本方法. 纵观高考试题,不难发现多题似曾相识. 纵横不出方圆,万变不离其宗,就是说,尽管形式上变化多端,其本质或目的不变,殊途同归. 高考试题多源自课本上例题或习题的重新整合,课本题大多蕴含着丰富、深刻的背景,实践证明,以课本为素材组织的高考复习不仅不会影响高考的成绩,而且是提高高考成绩非常有效的途径.

现仅从圆锥曲线这一知识点,对比习题与高考试题,说明课本习题的示范引领作用,每个对比仅举几例.

对比一:人教B版选修2-1第47页第7题. 已知椭圆的两个焦点为F1(-2,0),F2(2,0),过F且与坐标轴不平行的直线l与椭圆相交于M,N两点,如果△MNF2的周长为12,求这个椭圆的方程.

简析:考查椭圆的定义,

MF1

+

MF2

=2a,

NF1

+

NF2

=2a,

MF1

+

MF2

+

NF1

+

NF2

=4a,恰好为△MNF2的周长,故4a=12,a=3,已知c=2,由b2=a2-c2=1,这个椭圆的方程为+y2=1.

【2011新课标理第14题】在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为. 过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为________.

本题比课本上的习题多了一个离心率e=,4a=16,a=4,c=2,b=2,椭圆C的方程为+=1 .

【2014大纲理第6题】 已知椭圆C:+=1(a>b>0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点,若△AF1B的周长为4,则C的方程为( )

[A. +=1 ] B. +y2=1

C. +=1 D. +=1

这两个题是同一知识点,不同版本教材在不同年份的考查,只是在原题的基础上多加了离心率,高频考点不回避,可见命题者的良苦用心,更能说明课本的引领示范作用.

对比二:人教B版选修2-1第48页第2题:已知点A(1,1),而且F1是椭圆+=1的左焦点,P是椭圆上任意一点,求

PF1

+

PA

的最小值和最大值.

简析:设F2是椭圆+=1的右焦点,

PF1

+

PF2

=2a=6,

PF1

=6-

PF2

PF1

+

PA

=6-

PF2

+

PA

=6+(

PA

-

PF2

),直線AF2与椭圆交点P1,P2为所求的最大值或最小值的对应点(可借助三角形两边之差与第三边的关系).

PF1

+

PA

的最小值和最大值分别为6-,6+.

人教B版选修2-1第66页第3题:(1)已知抛物线y2=4x,P是抛物线上一点,设F为焦点,一个定点为A(6,3),求

PA

+

PF

的最小值,并指出此时点P的坐标.

简析:设PQ垂直准线于Q,则

PF

=

PQ

PA

+

PF

=

PA

+

PQ

AQ

,所以AQ垂直于准线,即:A,P,Q共线时,

PA

+

PF

的最小值为7,此时点P的坐标

,3

.

【2009辽宁理第16题】 已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,则PF+PA的最小值为__________.

简析:c=4,F(-4,0),右焦点F′(4,0),由双曲线的定义

PF

-

PF′

=2a=4,所以PF+PA=4+

PF′

+

PA

≥4+

AF′

=9. 最小值为9.

不难发现,三道题的阶梯策略有共性,均是利用定义转化为共线问题.所以,在做题的时候不要为了做题而做题,要不断地总结共性的东西,把知识归类,寻找合适的解题方法. 这样就不至于做题没有思路了.

对比三:人教B版选修2-1第70页习题2-5A第1题:已知M(4,2)是直线l被椭圆x2+4y2=36所截得的线段AB的中点,求直线l的方程.

简析:利用“点差法”,设直线l与椭圆交于两点A(x1,y1),B(x2,y2),代入椭圆方程得

+

=1,

+

=1, 两式相减得+=0. 由M(4,2)为线段AB的中点,可知

=4,

=2,代入上式可求直线l的斜率,进而求出直线l的方程为x+2y-8=0.

本题也可以设直线l的方程,与椭圆方程联立,利用根与系数的关系求解.

【2013新课标1理第10题】 已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A,B两点. 若AB的中点坐标为(1,-1),则E的方程为( )

A. +=1 B. +=1

C. +=1 [D. +=1]

【2010新课标理第12题】 已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(-12,-15),则E的方程为( )

A. -=1 [B. -=1]

C. -=1 D. -=1

可以看出解法比较常规,并且具有针对性.

对比四:人教B版选修2-1第71页习题2-5B第4题:过抛物线y2=2px(p>0)的焦点F作倾斜角为的直线,交抛物线于A,B两点,点A在x轴的上方,求的值.

简析:设直线AB的方程为y=x-,与抛物线方程联立,消去x,得y2-2py-p2=0. 设A(x1,y1),B(x2,y2),则有y1+y2=2p,y1y2=-p2,+=-6,+-6=0.

令t==->1,则t2-6t+1=0,t==3+2.

我们把倾斜角换成θ,它又有一般性结论:

AB的倾斜角为θ,

AF

=

AA1

=

A1E

+

EA

=p+

AF

·cosθ,

AF

=,同理

BF

=,

AB

=

AF

+

BF

=.

继续探讨又能得到如下结论:弦AB被焦点分成m,n两部分,则+=;y2=2px(p>0)的焦点F,点M在抛物线上,延长MF与直线x=-交于点N,则+=;S△OAB=等等.

如果上述结论非常熟练,下面高考题就迎刃而解了.

【2014全国2高考理第10题】设F为抛物线C:y2=3x的焦点,过F且倾斜角为30° 的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )

A. B.

C. [D. ]

【2012重慶理第14题】 过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若AB=,AF

对比五:人教B版选修2-1第70页习题2-5A第2题:已知椭圆+=1,点A,B分别是它的左、右顶点. 一条垂直于x轴的动直线l与椭圆相交于P,Q两点,又当直线l与椭圆相切于点A或点B时,看作P,Q两点重合于点A或点B,求直线AP与直线BQ的交点M的轨迹.

简析:A(-2,0),B(2,0),P(x0,y0),Q(x0,-y0),

直线AP的方程为y=(x+2)①,

直线BQ的方程为y=(x-2)②.

由①×②,得y2=(x2-4)③,P(x0,y0)在椭圆上+=1④.

由③④得到直线AP与直线BQ的交点M的轨迹方程-=1.

所以直线AP与直线BQ的交点M的轨迹是以(-,0),(,0)为焦点,实轴长为4的双曲线.

【2012辽宁文第20题】 如图1,动圆C1:x2+y2=t2,1

简析:A1(-3,0),A2(3,0),A(x0,y0),B(x0,-y0),

直线AP的方程为y=(x+3)①,

直线BQ的方程为y=(x-3)②.

由①×②,得y2=(x2-9)③,A(x0,y0)在椭圆上+y=1④.

由③④得到直线AA1与直线A2B的交点M的轨迹方程-y2=1(x<-3,y<0).

上题就是习题的翻版. 立足课本,追根溯源.

由于篇幅所限,就不再一一对比.总之,脱离课本的教学与复习,不对课本提供的知识进行深化,大搞题海战术,学生的收获终究不大:对课本的知识一知半解,没有达到一种整体的高度,能力培养不出来,信心树立不起来,不爱探究,更谈不上举一反三了. 我们关注课本,把课本的知识掌握好,不断扩大自己的视野,不断总结,教师教学、学生高考都能够取得优异的成绩.

猜你喜欢
知识体系高考题对比
一道2021年高考题的四种解法
高考题怎么改编(一)——集合篇
CS2013指导下的程序设计课程实践教学实施方案设计与翻转实验教学实践
构建知识体系的专题课程教学改革实践和探索
智能信息处理实验课程建设
中日两国胶囊旅馆业的发展对比及前景展望
克里斯托弗·马洛与陶渊明田园诗的对比
英国电影中“愤青”与“暴青”对比研究
数学支架式教学模式的探索
两道“线性规划”高考题引发的思考