许立滨+李冬梅+董在飞
摘 要:考虑了饱和型发病率对SIR传染病模型的影响,建立了一个具有饱和型发病率的离散SIR传染病模型,利用Jury准则对线性化系统的特征根进行分析,并获得了平衡点的局部稳定性及分支点,通过选取适当的参数,运用NeimarkSacker分支存在理论,讨论了模型的分支问题。
关键词:饱和发病率;离散模型;阈值;稳定性;分支
DOI:10.15938/j.jhust.2017.03.021
中图分类号: O175
文献标志码: A
文章编号: 1007-2683(2017)03-0117-04
Abstract:A discrete SIR model with saturation incidence is established to study the effect of saturation incidence. Local stability of the equilibrium and bifurcation points are obtained by using Jury criteria and investigating the linearized characteristic equation. Then bifurcation scenario is discussed by choosing the appropriate parameter and using the theory of Neimark-Sacker bifurcation.
Keywords:saturation incidence;discrete model;threshold;stability;bifurcation
参 考 文 献:
[1] BRAUER F, VAN DEN Driessche P. Models for Transmission of Disease with Immigration of Infective[J]. Math. Biosci., 2001, 171:143-154.
[2] ELBASHA E H, GUMEL A B. Theoretical Assessment of Public Health Impact of Imperfect Prophylactic HIV-1 Vaccines with Therapeutic Benefits[J].Bull. Math. Biol., 2006, 68:577-614.
[3] GUMEL A B, CONNELL McCluskey C, Van DEN Driessche P. Mathematical Study of Astagedprogression HIV Model with Imperfect Vaccine[J].Bull. Math. Biol., 2006, 68:2105-2128.
[4] ENATSU Yoichi, NAKATA Yukihiko, MUROYA Yoshiaki. Global Dynamics of an SIRS Epidemic Model with A Class of Nonlinear Incidence Rates and Distributed Delays [J]. Preprint Submitted to Canadian Applied Mathematics Quarterly, 2010(25): 1-15.
[5] 王穎, 滕志东.一类离散SIRS 传染病模型的Lyapunov函数[J].新疆大学学报(自然科学版),2014,31(3):273-279.
[6] ALLEN L.Some Discretetime SI, SIR, and SIS Epidemic Models[J]. Math. Biosci. , 1994(124): 83-105.
[7] CAPASSO V, SERIO G. A Generalization of the KermackMckendrick deterministic epidemic model[J] .Math. Biosci., 1978(42):43-61.
[8] FRANKE Je, ABDULaziz Y. Diseaseinduced Mortality in Densitydependent Discretetime SIS Epidemic Models[J]. J Math. Biol., 2008(57):755-790.
[9] CASTILLOchavez C, ABDULaziz Y. Discretetime SIS Models with Complex Dynamics[J]. Nonlinear Anal., 2001(47):4753-4762.
[10]ABDULaziz Y. Allee Effects in a Discretetime SIS Epidemic Model with Infected Newborns [J]. Journal of Difference Equation and Applications,2007,3(4):341-356.
[11]LI Jianquan, Ma Zhien, Brauerf. Global Analysis of Discretetime SI and SIS Epidemic Models[J]. Math. Bioscieces and Engineering, 2007,4(4) :699-710 .
[12]LIU W M, LEVIN S A, IWASA Y. Influence of Nonlinear Incidence Rates Upon the Behavior of SIRS Epidemiological Models[J]. J. Math. Biol., 1986(23):187-204.
[13]LIU W M, HETHCOTE H W, LEVIN S A. Dynamical Behavior of Epidemiological Models with Nonlinear Incidence Rates[J], J. Math. Biol., 1987(25):359-380.
[14]危敏剑,董福安.具有染病者输入的离散SIR传染病模型分析[J].高校应用数学学报,2011,26(1):55-60.
[15]郭志明,彭华勤.一类离散SIS 传染病模型的稳定性[J].广州大学学报( 自然科学版),2012,11(4):5-8.
[16]曹慧,周义仓.具有饱和发生率的离散SIR 模型的分支[J].工程数学学报,2014,31(3):347-360.
[17]胡增运.离散SIRS传染病模型的持久性和灭绝性分析[J].应用数学学报,2014,37(3):547-556.
[18]JURY E I. Theory and Application of the Ztransform Method[M].NewYork: John Wiley, 1964.
[19]GUCKENHEIMER J,HOLMES P. Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields[M].New York: SpringerVerlag, 1983.
(编辑:温泽宇)