反射分量分离与像素填补结合的高光抑制方法

2017-08-30 04:48于晓洋潘宗玮孙晓明刘野
哈尔滨理工大学学报 2017年3期

于晓洋+潘宗玮+孙晓明+刘野

摘 要:针对陶瓷、金属等光滑表面在结构光三维测量时,由于表面局部的强反射特性使得物体失真产生较大测量误差这一问题。依据反射分量分离理论,设计了一种反射分量分离结合像素填补的改进算法。首先通过像素参数对比方法找到图像中的高光像素点,然后对其进行反射分量分离处理,为了避免一些高光强度过大的像素点在处理之后变为黑点,本文采用像素填补方法对其进行处理。实验结果表明,采用此种算法对1920×1080分辨率的图像进行处理,其高光像素的數目降低了8~11倍,实现了三维测量领域中强反射表面高光的有效去除。

关键词:三维测量;结构光;反射分量分离;像素填补

DOI:10.15938/j.jhust.2017.03.013

中图分类号: TP391.41

文献标志码: A

文章编号: 1007-2683(2017)03-0073-07

Abstract:In structured light 3D measurement field, when the object is smooth surface, it can form a highlight area due to the specular reflection of the surface, and the distortion of the object will make a large measurement error. In order to solve this problem, a new algorithm is designed which is based on the theory of reflection component separation and pixel filling. Firstly, the specular pixels in the image are found by comparing the pixel parameters, Then the reflection component is separated and processed. Finally, in order to avoid some of the highlight are processed into black pixels the pixel filling method is adopted to deal with them. Experimental results show that when we deal with the image of 1920*1080 by using this algorithm, the number of specular pixels is reduced by 8-11 times. This method can effectively remove the specular pixels in the field of 3D measurement.

Keywords:structured light; 3D measurement; reflection component separation; pixel filling

4 结 语

本文设计了一种反射分量分离结合像素填补的改进算法,并进行了试验系统的搭建,阐述了该方法去除图像中高光信息的原理。 与传统的方法相比,该方法完全基于颜色信息,对被测物要求较宽松,测量范围较广。实验结果表明,对1920×1080的图像进行处理,其高光像素的数目降低了8~11倍,能够有效地去除图像中的高光像素,验证了该算法的有效性。但本文所提算法对于高光区域较大的图像处理效果不明显,会出现失真现象。因此,如何处理高光区域较大的图像是今后研究的重点。

参 考 文 献:

[1] 于晓洋,单鹂娜,曹沈楠.结构光时间编码技术进展[J].哈尔滨理工大学学报,2010, 15(1)1:98-102.

[2] 王旭颖.强反射表面编码光测量的高光修复与抑制方法研究[D].哈尔滨:哈尔滨理工大学,2013:16-19.

[3] 张鑫,习俊通.基于随机编码结构光的双目立体三维测量系统[J].机电一体化,2013(3):43-54.

[4] 赵鑫,潘晋孝,刘宾.基于线结构光的钢化玻璃表面形貌的测量[J].信息与电脑,2013(8):17-18.

[5] 吴庆华.基于线结构光扫描的三维表面缺陷在线检测的理论与应用研究[D].武汉:华中科技大学,2013:24-30.

[6] 韩书娜,幺宏伟,范剑英. 指纹图像分割与增强算法[J].哈尔滨理工大学学报. 2011,6(1):98-101.

[7] 杨永敏.强反射表面缺陷图像预处理[J].光学精密工程,2010(18):2288-2296.

[8] 柴玉亭,王昭,高建民.基于频域滤波的高光去除方法[J].激光与光电子学进展. 2013, 5:135-143.

[9] KLINKER G J, SHAFER S A, KANADE T. The Measurement of Highlights in Color Images[J]. International Journal of Computer Vision, 1988(2):7-32.

[10]JAKLIC A,SOLINA F. Separating Diffuse Andspecular Component of Image Irradiance by Translating a Camera[C]. CAIP, 1993:428-435.

[11]LIN S,SANG L S. Estimation of Diffuse and Specular Appearance[C]//IEEE International Conference on Computer Vision, 2002,2:855.

[12]黄梅,吴志勇,梁敏华.暗背景下低灰度图像的实时增强[J].液晶与显示, 2011(3):374-378

[13]王洋.基于中国剩余定理的模擬编码结构光三维测量方法研究[D].哈尔滨:哈尔滨理工大学. 2014:53-69.

[14]MALIICK S P, ZICKLER T E, KRIEGMAN D J,et al. Beyond Lambert: Reconstructing Specular Surfaces Using Color[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2005.

[15]阳鹏程.基于双目结构光的三维测量技术研究[D].杭州:浙江大学,2014:32-46.

[16]詹永鑫,郑学仁,陈建宾.基于亮度分量的快速图像增强方法[J].液晶与显示,2010(2):273-277.

[17]李莎莎,邓彩霞,侯杰.基于图像融合技术的阶梯型边界检测[J].哈尔滨理工大学学报,2009,14(2):75-77.

[18]韩福海.基于结构光的双目视觉三维表面重建[D].北京:北京理工大学,2015: 27-40.

[19]车建强,戴宁,崔海华.面向彩色物体的双目三维测量编码新方法[J].光学学报,2014(11):65-68.

[20]孟凡辰,陈德运,王莉莉.多灰度级格雷码三维测量方法[J].哈尔滨理工大学学报.2015,20(5):97-102.

[21]ROBBY T, TAN, KATSUSHI L. Separating Reflection Components of Textured Surfaces Using a Single Image[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005(2): 870-877.

[22]SHAFER S.Using Color to Separate Reflection Components[J]. Color Research and Applications, 1985(10):210-218.

(编辑:温泽宇)