滁州市空气质量指数(AQI)与气象条件的关系分析

2017-08-08 11:51张鑫童徐姗金华星
安徽农学通报 2017年14期
关键词:气象条件相关性

张鑫童 徐姗 金华星

摘 要:该文利用2015年滁州市逐日AQI与同期气象要素的观测资料,对滁州市空气质量变化特征及其与气象条件的关系进行了分析。结果表明:与上年相比,2015年滁州市空气质量未得到有效改善,还有进一步恶化的趋势。空气质量为良的等级出现频率最高,其次为轻度污染,首要污染物以PM2.5为主。四季AQI存在显著差异,有明显的季节变化特征,冬季AQI均值最高,波动幅度最大,夏季AQI均值最低,波动幅度最小。AQI与平均气压、平均气温、日最低气温、气温日较差、平均风速、日降水量以及前一日AQI显著相关。基于气象要素建立的AQI回归方程对全年AQI的总体变化趋势和平均状态拟合效果较好,但对极值的拟合能力不足。

关键词:空气质量指数;气象条件;相关性;逐步回归

中图分类号 X16 文献标识码 A 文章编号 1007-7731(2017)14-0161-05

Abstract:Based on the observational data of the daily air quality index(AQI)and the meteorological elements in Chuzhou City in 2015,the relationship between the characteristics of air quality change and the meteorological conditions in Chuzhou City was analyzed. The results show that compared with the previous year,the air quality in Chuzhou in 2015 has not been effectively improved,and the trend of further deterioration.Air quality for the highest level of the highest frequency,followed by mild pollution,the main pollutants to PM2.5-based. There were significant differences in seasonal AQI and obvious seasonal variation characteristics. The AQI was the highest in winter and the fluctuation range was the highest. The summer AQI was the lowest and the fluctuation range was the smallest. AQI was significantly correlated with mean pressure,mean temperature,daily minimum temperature,daily range of temperature,mean wind speed,daily precipitation and AQI of the day before. The AQI regression equation based on meteorological elements has a good effect on the overall trend and average state fitting of AQI throughout the year,but the ability to fit the extreme value is insufficient.

Key words:Air quality index(AQI); Meteorological condition; Correlation; Stepwise regression

城市空气质量与气象条件密不可分[1-4],国内学者对空气质量时空分布特征[5]、空气污染指数节气分布[6]、空气污染变化特征[7]、首要污染物浓度变化[8-9]与气象要素的关系进行了研究,不同城市空气质量特征分析具有一定的共性,但地区差异也很明显[10]。

作为南京都市圈主要成员和皖江城市带承接转移示范区重要一翼,滁州市自2008年开启“大滁城建设”,随着城市规模与GDP总量的快速增长,城市空气的污染问题也日益突出。2016年5月12日,因环境质量未得到有效改善,环境执法力度亟待加强,滁州市被国家环保部点名通报。目前,针对滁州市的空气质量变化与气象条件关系的研究尚属空白,本文主要分析了2015年滁州市空气质量指数(AQI)[11-12]与主要污染物变化特征,并探讨AQI与气象要素之间的关系,为滁州市AQI预测及大气污染防治提供一定的参考。

1 资料与方法

1.1 资料来源 自2015年1月1日起,滁州市环境监测站(监测点分别位于市老年大学、监测站和市人大宾馆)执行新的环境空气质量标准[11],监测并发布空气质量指数(AQI)[12]代替原有的空气污染指数(API)[13]。2015年滁州市空气质量日报(逐日AQI、首要污染物、各污染物日均浓度)由滁州市环境保护局提供;2009—2014年滁州市空气质量月报来源于滁州市环境保护局数据中心;2015年对应时段的气象资料来源于滁州国家基本气象站地面观测数据。

1.2 分析方法 根据《环境空气质量指数(AQI)技术规定(试行)》(HJ633-2012),依據AQI数值将城市空气质量划分为6级(见表1)。AQI是定量描述空气质量状况的无量纲指数,空气质量分指数IAQI是单项污染物(PM2.5、PM10、SO2、NO2、CO、O3)的空气质量指数,AQI=max{IAQI1,IAQI2,…,IAQIn}。AQI大于50时,IAQI最大的污染物为首要污染物,若IAQI最大的污染物为两项或两项以上时,并列为首要污染物,IAQI大于100的污染物为超标污染物。AQI与各污染物浓度月平均值为全月日值平均,数据分析使用SPSS18.0软件。

2 结果与分析

2.1 空气质量时间分布特征

2.1.1 2015年空气质量概况 图1为2015年1月1日至12月31日,滁州市不同空气质量类别所占日数的百分比,由图1可见,滁州市2015年出现频率最高的空气质量等级为二级良,占年总日数的58.4%;其次为三级轻度污染,出现频率为20.8%;再次为一级優,出现频率为13.7%;中度污染、重度污染出现频率分别为5.5%、1.6%;2015年未出现严重污染,优良空气质量等级占年总日数的比率(也称为空气质量达标率)为72.1%。年平均AQI为85.5,峰值为258,出现在10月16日。首要污染物主要为PM2.5,全年出现272d,其次为PM10、NO2,出现日数分别为41d、6d,可见造成2015年滁州市大气污染的主要因素是细颗粒物PM2.5。

图2为2009—2015年滁州市空气质量达标率变化,由图2可见,2009—2015年平均空气质量达标率为90.5%,2009—2012年滁州市空气质量达标率较为稳定,保持在96%以上,2013—2014年达标率降至85%左右。2015年滁州市空气质量达标率再次出现明显下降,与2014年相比,降幅为15.0%,其中空气质量类别为优的比率下降5.8%;与2009—2014年均值相比,空气质量达标率降幅达到21.5%。由此可见,随着城市的快速发展,空气污染问题逐步显现,与环保部通报相符,2015年滁州市空气质量未能得到有效改善,还有进一步恶化的趋势。

2.1.2 AQI月变化特征 运用SPSS18.0软件对2015年滁州市各月AQI进行方差分析(见表2),结果显示,F分布的观测值为9.686,对应的概率ρ值小于0.001,所以认为,在显著性水平为0.01的前提下,2015年滁州市各月AQI存在显著差异。

图3为2015年滁州市AQI月平均值和标准差变化,由图3可知,2015年各月平均AQI均在50以上,其中1、2、5、10、12月这5个月份月平均AQI超过年均值,为污染高发月份,其中5月和12月空气质量类别为优的日数均为0。AQI最大值出现在12月,达到126.9,空气质量最差,月空气质量达标率仅为32.3%,1月次之,AQI为106.9;3月AQI最低,为62.3,空气质量最好,月空气质量达标率达到96.8%,7—9月AQI较低且变化平缓。比较各月平均AQI的标准差可以发现,12月标准差最大,其次是10月、1月;3月标准差最小,其次是9月、8月,这与AQI的变化趋势基本一致,即AQI较大时,空气质量变化幅度大,AQI较小时,空气质量相对比较稳定。

2.1.3 AQI季节变化特征 对2015年滁州市四季AQI进行方差分析(见表3),结果显示,F分布的观测值为18.530,对应的概率ρ值小于0.001,所以认为,在显著性水平为0.01的前提下,2015年滁州市四季AQI存在显著差异。

图4为2015年滁州市四季AQI平均值和标准差变化,从图4可以看出,滁州市AQI有明显的季节变化特征,春、夏、秋、冬四季AQI平均值分别为77.3、72、83.9、109.3,冬季AQI平均值最高,夏季AQI平均值最低,这说明2015年滁州市冬季空气质量最差,其次是秋季和春季,夏季空气质量最好。从AQI的标准差变化也可以看出,AQI在夏季变化波动最小,春季、秋季次之,冬季波动最大,与四季AQI的变化趋势一致。滁州市冬季并无集中供暖,AQI却呈现出冬季最高,夏季最低的态势,其原因可能是冬季大气层结较稳定,静稳天气多,大气污染物不易扩散[14],而夏季对流旺盛,降水增加,利于污染物的扩散和沉降。

2.2 AQI与气象条件的关系

2.2.1 AQI与气象要素相关性分析 利用滁州国家基本气象站观测数据分析2015年逐日AQI(2015年1月2日至2015年12月31日)与气象要素的相关特征,选取的气象要素包括平均气压、平均气温、日最高气温、日最低气温、气温日较差、平均相对湿度、平均风速、日降水量以及前一日AQI,分析结果如表4所示。由表4可知,AQI与平均气压、平均气温、日最低气温、气温日较差、平均风速、日降水量以及前一日AQI在0.01水平上均显著相关。其中,AQI与前一日AQI相关系数达到0.651,呈显著的正相关关系,说明空气质量变化存在累积和稀释的过程,具有一定的延续性[15]。AQI与平均气压显著正相关,说明气压对AQI有显著的负效应,即气压越高,AQI越高,空气质量越差。这是由于高压系统控制下大气层结相对稳定,污染物不易扩散;当低压系统控制时,近地面污染物随空气辐合上升,易于扩散,降低污染物浓度[16]。AQI与平均气温显著负相关,说明气温对AQI有显著的正效应,即气温越高,AQI越低,空气质量越好。这是因为气温越高,近地面对流活动越强,大气层结越不稳定,污染物易于扩散[16]。这与2015年滁州市空气质量的季节变化特征相符,夏季空气质量最好,冬季空气质量最差。AQI与平均风速显著负相关,说明风速对AQI有显著的正效应,即风速越高,AQI越低,空气质量越好。这是由于大风天气有利于污染物扩散,降低污染物浓度,提高空气质量;当风速较小时,污染物因扩散条件差易累积,影响空气质量[16]。AQI与日降水量显著负相关,说明降水对AQI有显著的正效应,即降水量越高,AQI越低,空气质量越好。这是因为降水对空气中的污染物有冲洗、溶解等作用,有利于污染物湿沉降,可在一定程度上减少近地面污染物浓度[16]。

2.2.2 基于气象要素的AQI回归方程建立与拟合效果检验 选取与AQI显著相关的气象要素(平均气压、平均气温、日最低气温、气温日较差、平均风速、日降水量)以及前一日AQI共7个因子作为自变量,以AQI为因变量Y,进行多元线性逐步回归分析[17-18],建立基于气象要素的AQI回归方程,拟合效果最好的回归方程(1)如下:

为检验回归方程的拟合效果,利用方程(1)对2015年(1月2日至12月31日)滁州市AQI进行拟合,并与AQI观测数据进行对比,如图5所示,回归方程的拟合值与AQI实测值变化基本一致,拟合效果较好。对两组数据的统计量进行分析,观测数据的平均值为85.53,最大值258,最小值24,标准差为39.097;拟合数据的平均值为85.20,最大值198,最小值-11,标準差为28.920。由此可见,观测数据的波动幅度明显大于拟合数据,回归方程对全年AQI的总体变化趋势和平均值拟合效果较好,但对极值的拟合能力较差,拟合结果更趋于平均。

3 结论与讨论

(1)2015年滁州市空气质量达标率为72.1%,与上年相比,下降15%;与2009—2014年均值相比,降幅达到21.5%,空气质量未得到有效改善。空气质量为良的等级出现频率最高,占年总日数的58.4%,其次为轻度污染,出现频率为20.8%。首要污染物主要为PM2.5,全年出现272d,是造成2015年滁州市大气污染的主要因素。

(2)2015年滁州市年平均AQI为85.5,最大值为258,出现在10月16日。各月AQI存在显著差异,12月平均AQI最高,均值为126.9;3月平均AQI最低,为62.3,AQI均值越高,该月空气质量变化幅度越大,空气质量越不稳定。四季AQI也存在显著差异,有明显的季节变化特征,冬季AQI均值最高,波动幅度最大,夏季AQI均值最低,波动幅度最小。

(3)相关性分析表明,AQI与平均气压、气温日较差、前一日AQI显著正相关;与平均气温、日最低气温、平均风速、日降水量显著负相关。其中,AQI与前一日AQI相关系数达到0.651,说明空气质量的变化存在累积和稀释的过程,具有一定的延续性,空气质量指数预报需考虑这一因素。基于气象要素建立的AQI回归方程对全年AQI的总体变化趋势和平均状态拟合效果较好,但对极值的拟合能力不足,甚至出现不符合逻辑的负值,回归方程需进一步优化,选取更多的气象要素,并结合近地面与高空天气形势进行分析,提高拟合效果。

(4)受资料限制,滁州市环境监测站自2015年1月1日起,才开始监测并发布AQI数据,本研究仅对2015年一年的AQI进行分析讨论,样本数量有限,建立的回归方程存在局限性。本研究未对PM2.5、PM10、NO2等主要污染物浓度的时空分布规律及其与气象条件的关系展开深入研究,未来可结合新增数据样本,进一步开展分析探讨,为滁州市大气污染防治工作提供有力参考。

参考文献

[1]高煜中,潘华盛,张桂华,等.气象条件变化对哈尔滨市空气质量的影响[J].气象科技,2003,31(6):361-365.

[2]黄容,郭丽娜,马艳.2006—2012年青岛市空气质量与气象条件的关系[J].气象与环境学报,2015,31(2):37-43.

[3]常炉予,赵天良,何金海,等.周边气象条件对南京城区大气污染物浓度的影响[J].气象与环境学报,2013,29(6):95-101.

[4]TE Stoeckenius,C Hogrefe,J Zagunis,et al.A comparison between 2010 and 2006 air quality and meteorological conditions, and emissions and boundary conditions used in simulations of the AQMEII-2 North American domain[J].Atmospheric Environment, 2015,115:389-403.

[5]林长城,王宏,陈彬彬,等.厦门市空气质量时空分布特征及其与气象条件的关系[J].福建农林大学学报:自然科学版,2010,39(1):79-83.

[6]冀翠华,王式功,王敏珍,等.2001-2012年北京市空气污染指数节气分布及其与气象要素的关系[J].气象与环境学报,2014,30(6):108-114.

[7]谢志英,刘浩,唐新明,等.北京市近12年空气污染变化特征及其与气象要素的相关性分析[J].环境工程学报,2015,9(9):4471-4478.

[8]王海畅,吴泽邦,周景博,等.北京上甸子站PM2.5浓度与气象要素关系分析[J].气象与环境学报,2015,31(5):99-104.

[9]王宏,林长城,蔡义勇,等.福州市PM10突变特征与气象条件的关系研究[J].热带气象学报,2008,24(5):564-568.

[10]祁栋林,张加昆,李晓东,等.2001-2011年西宁市空气质量特征及其与气象条件的关系[J].气象与环境学报,2014,30(2):51-59.

[11]国家环境保护部.GB3095-2012,中华人民共和国国家标准环境空气质量标准[S].北京:中国环境科学出版社,2012.

[12]国家环境保护部.HJ633-2012,中华人民共和国国家环境保护标准环境空气质量指数(AQI)技术规定(试行)[S].北京:中国环境科学出版社,2012.

[13]国家环境保护部.GB3095-1996,中华人民共和国国家标准环境空气质量标准[S].北京:中国环境科学出版社,1996.

[14]王冠岚,薛建军,张建忠.2014年京津冀空气污染时空分布特征及主要成因分析[J].气象与环境科学,2016,39(1):34-42.

[15]白雪,张翠艳,纪源,等.锦州市空气质量变化特征及其与气象条件关系[J].气象与环境学报,2016,32(2):52-58.

[16]姚海涛,唐迪,董钰春,等.江苏省宿迁市气象条件对空气污染的影响[J].江苏农业科学,2015,43(12):399-405.

[17]吴嘉荣.用线性回归法建立城市环境空气质量预报模式[J].海峡科学,2005(12):27-28.

[18]张建忠,孙瑾,安林昌,等.2013年1-2月北京地区空气质量指数(AQI)与气象条件分析[J].天气预报技术总结专刊,2013,5(5):51-57.

(责编:张宏民)

猜你喜欢
气象条件相关性
成都平原经济区空气污染扩散气象条件变化特征分析
成都市大气污染与气象条件关系分析
基于气象条件的船舶引航风险等级
小儿支气管哮喘与小儿肺炎支原体感染相关性分析
脑梗死与高同型半胱氨酸的相关性研究(2)
脑梗死与高同型半胱氨酸的相关性研究
会计信息质量可靠性与相关性的矛盾与协调
气象条件对某新型蒸发冷却空调的影响
鲁西南一次持续空气污染过程的气象条件分析
2012—2013年一四三团冬小麦农业气象条件分析