王婷婷, 陈旭辉, 林志坚, 张 磊, 钟耀祖, 吴 军
3.0T HRMRI头颈联合技术对症状性MCA狭窄患者颅内外动脉管壁病变的诊断价值
王婷婷1,2, 陈旭辉1, 林志坚1, 张 磊3, 钟耀祖3, 吴 军1
目的 探讨症状性大脑中动脉(MCA)狭窄患者颅内外动脉管壁病变特点和3.0T高分辨磁共振成像(High-resolution magnetic resonance imaging,HRMRI)头颈联合技术的临床应用价值。方法 11例症状性MCA狭窄患者接受三维增强磁共振血管成像(3D ce-MRA)与3.0T HRMRI的T1w-db SPACE平扫和T1w-db SPACE增强扫描,并结合头颈部颅内外动脉管壁不间断联合扫描新技术。结果 共扫描11例患者的88处颅内外动脉管壁,其结果发现:1例中枢神经系统血管炎,其左侧MCA及左侧颈内动脉(ICA)颅内段在T1w-db SPACE像上表现为管壁环形增厚及环形强化;1例颅内动脉夹层,其左侧MCA在T1w-db SPACE像呈长条状高信号,相应高信号在T2w-db SPACE像上为等低信号;9例动脉粥样硬化患者均合并双侧MCA粥样硬化斑块,表现为管壁偏心性增厚,其中8例(88.9%)合并颅内外动脉粥样硬化,增强扫描见6例(67%)颅内外动脉粥样硬化斑块均有强化。比较3D ce-MRA与HRMRI结果发现,88处血管中,23处血管的3D ce-MRA与HRMRI均未见明显异常;31处血管的3D ce-MRA与HRMRI显示相对一致,即3D ce-MRA显示狭窄或者扩张、HRMRI显示管壁呈不同程度的增厚或附壁斑块;34处血管的3D ce-MRA与HRMRI显示欠一致,其中,26处血管的3D ce-MRA大致正常而HRMRI显示管壁增厚(5处)或斑块(21处),8处血管的3D ce-MRA显示轻度狭窄(6处)或扩张(2处)而HRMRI显示管腔外径及管壁均大致正常。判断颅内外动脉异常的组间一致性可(3D ce-MRA、HRMRI的 Kappa值分别为0.67、0.69,P<0.001)。结论 3.0T HRMRI 头颈联合技术可清晰地显示颅内外动脉的管壁结构和病变特点,识别3D ce-MRA未能发现的狭窄,甄别动脉狭窄的病因,对颅内外动脉管壁病变的诊断具有较高的临床应用价值。
大脑中动脉; 颈内动脉; 高分辨磁共振; 动脉粥样硬化; 血管炎; 动脉夹层
常用影像学技术,如CT血管成像(CTA)、磁共振血管成像(MRA)能清晰地显示颅内外血管轮廓,较准确地评估血管狭窄程度,但无法提供更多关于血管壁结构、动脉粥样硬化斑块特点的信息[1~3]。早期的动脉粥样硬化病变未造成明显的管腔狭窄,常被CTA或MRA低估或忽略。数字减影血管造影(DSA)是临床诊断颅内外动脉狭窄的金标准,虽能清晰显示血管狭窄的部位、范围、程度及侧支循环[4],但DSA检查存在潜在的围术期风险及神经系统并发症[5],且费用较高,使DSA的应用受到了限制。上述传统影像学检查对于因不同的病理改变所导致类似的管腔狭窄,如动脉粥样硬化与非动脉粥样硬化病变(血管炎、动脉夹层等),在鉴别诊断上缺乏特异性。HRMRI作为新兴的影像技术,具有组织分辨率高、无创、准确等优点,单独扫描颅内或颅外动脉时均可清晰地显示管壁病变、斑块特点[6,7]。研究[6~8]表明斑块特点不同其引起卒中发生的风险不同,不同管壁病理改变在HRMRI上的表现亦各有特点,与颅外动脉组织病理活检结果具有较高的一致性。若能扩大扫描的覆盖范围,单次扫描便能同时显示颅内外动脉管壁、管腔,将有助于提高HRMRI诊断颅内外动脉病变的效率。目前,国内尚无应用3.T HRMRI头颈联合技术研究颅内外动脉管壁的报道。本研究旨在探讨3.T HRMRI头颈联合技术诊断颅内外动脉管壁病变的临床价值、比较HRMRI与3D ce-MRA诊断颅内外动脉病变的一致性。
1.1 一般资料 2015年3~12月在北京大学深圳医院住院的11例症状性MCA狭窄患者进行了3.0T HRMRI头颈部颅内外动脉管壁不间断联合扫描。男8例,女3例,平均年龄(51.3±11.2)岁,发病至扫描时间为(33.1±23.3)d,缺血性脑卒中9例,短暂性脑缺血发作2例,至少2项动脉粥样硬化危险因素[9]者10例。所有患者签署知情同意书。
1.2 检查方法
1.2.1 影像学检查 3.0T MRI 检查系统(TIM TRIO,Siemens,Erlangen),包括3.0T MRI扫描仪及32通道头颅线圈。扫描序列包括常规头部扫描序列、3D ce-MRA和HRMRI,后者包括T1w-db SPACE(T1Weighted-The delay alternating with nutation for tailored excitation,Sampling perfection with application-optimized contracts by using different flip angle evolutions)平扫和T1w-db SPACE增强扫描,管壁病变难以甄别时,加扫T2w-db SPACE序列。3D ce-MRA参数如下:TR/TE=3.57 ms/1.4 ms,FOV=221×152 mm2,层厚/层间隔=0.6 mm/0,层数=88,矩阵=448×262,扫描时间=24s。T1w-db SPACE参数如下:TR/TE=1140 ms/23 ms,FOV=212×159 mm2,层厚/层间隔=0.74 mm/0,层数=72,矩阵=336×256,扫描时间=7 m36 s。对比剂为钆喷替酸葡甲胺(Gd-DTPA,中国北陆药业),对比剂用量2 ml/kg,注射速率3.0 ml/s。完成扫描后,在图像工作站上应用最大密度投影(maximum intensity projection,MIP),多平面重建(multi-planar reformation,MPR)及曲面重建(curved MPR)技术重建三维图像。
1.2.2 图像分析 由两名资深头颅血管高分辨核磁共振研究者在工作站上共同评价3D ce-MRA和HRMRI对血管壁的显示情况,将双侧MCA、ICA近端及颅内段、颈总动脉(CCA)分叉处管腔、管壁均显示清楚的图像纳入下一步统计分析。两者独立阅片,评估项目包括:颅内外动脉管壁病变特点;HRMRI所示与3D ce-MRA显示是否一致。结合李明利、Swartz等[10,11]对正常管壁(正常动脉管壁薄、呈线状或不显示)、动脉粥样硬化(管壁呈不同程度的偏心性增厚)的诊断标准,若出现局限性偏心性增厚,合并至少2项动脉粥样硬化危险因素者,则为粥样硬化斑块,否则为非动脉粥样硬化;若患者动脉粥样硬化危险因素≤1项,且实验室检查提示自身免疫相关抗体阳性,则为血管炎[11];若CTA/ MRA/DSA提示为动脉夹层/Moyamoya/动脉瘤,则相应诊断为动脉夹层/Moyamoya/动脉瘤[11];不满足前述条件者,则为“无最终临床诊断”[11]。斑块强化根据T1w-db SPACE序列扫描前后信号强度进行比较,分有强化与无强化;以增强扫描后垂体信号为参照,对有强化的斑块进行分级,高于增强扫描前信号但明显低于垂体信号为轻度强化,稍低于垂体信号为中度强化,与垂体信号相近为高度强化[12]。HRMRI所示与3D ce-MRA显示是否一致指3D ce-MRA所示的血管狭窄或者扩张在HRMRI上有无管壁异常,HRMRI所示的管壁异常部位在3D ce-MRA是否存在相应的狭窄或者扩张[10]。
1.3 统计学分析 统计分析采用SPSS 19.0统计软件。计数资料以例数和或百分比的形式表示。研究者组间一致性采用Cohen Kappa试验(Kappa系数)进行检验。以P<0.05为差异有统计学意义。
2.1 颅内外动脉管壁病变特点 11例患者的88处血管(双侧CCA分叉处、ICA近端、ICA颅内段、MCA)中,57处颅内外动脉呈不同程度的管壁异常,包括4处非动脉粥样硬化及53处动脉粥样硬化;前者包括1处MCA在T1-db SPACE像上为长条状高信号,1处MCA管壁呈偏心性增厚,2处(左侧MCA、ICA颅内段)管壁呈显著环形增厚;后者包括2处管腔闭塞,8处管壁轻度环形增厚,43处管壁为规则或不规则的偏心增厚(即斑块)。斑块结构的信号表现为均匀或不均匀,其中1处斑块在T1WI上可见局部高信号。增强扫描时,4处非动脉粥样硬化中,2处血管呈显著环形强化,1处管壁为偏心性强化;53处动脉粥样硬化病变中,29处斑块出现强化,强化程度为轻度至高度强化不等,其中19处强化斑块位于梗死侧,10处斑块位于MCA(8处位于梗死侧MCA,2处位于对侧MCA),而2处闭塞血管均呈轻度强化;中度至高度强化的斑块(12处)多位于MCA(8处),其中,以梗死侧MCA居多(6处),其余4处中度强化的非MCA斑块有3处位于梗死对侧,1处位于梗死侧。
将11例患者的88处血管分为颅内血管(双侧MCA、双侧ICA颅内段)和颅外血管(双侧CCA分叉处、双侧ICA近端)。9例(81.8%)为动脉粥样硬化患者,均合并双侧MCA粥样硬化斑块(见图1),其中8例(88.9%)合并颅内外动脉粥样硬化;增强扫描时6例(67%)颅内外动脉粥样硬化斑块均有强化。2例为非动脉粥样硬化患者,其中1例为颅内动脉夹层,其仅有左侧MCA在T1-db SPACE像上为长条状高信号改变,相应高信号在T2w-db SPACE像上为等低信号(见图2);另1例为中枢神经系统血管炎,其左MCA及左侧ICA颅内段呈环形强化(见图3),右侧MCA为偏心性强化。
2.2 3D ce-MRA与HRMRI结果比较 88处血管中,23处血管的3D ce-MRA与HRMRI均未见明显异常;31处血管的3D ce-MRA与HRMRI显示相对一致,即3D ce-MRA显示狭窄或者扩张、HRMRI显示管壁呈不同程度的增厚或附壁斑块;34处血管的3D ce-MRA与HRMRI显示欠一致,其中,26处血管的3D ce-MRA大致正常而HRMRI显示管壁增厚(5处)或斑块(21处)(见图4),8处血管的3D ce-MRA显示一侧ICA颅内段轻度狭窄(4处)、ICA近端轻度狭窄(2处)或扩张(2处)而HRMRI显示管腔外径及管壁均大致正常。判断颅内外动脉异常的组间一致性可(3D ce-MRA、HRMRI的 Kappa值分别为0.67、0.69,P<0.001)。
图1 1例左侧MCA狭窄的脑梗死患者HRMRI头颈联合扫描见双侧MCA、ICA颅内段均有斑块。患者,男,66岁,有高血压、糖尿病、吸烟史、超重,表现为混合性失语、失读、失写。A:3D ce-MRA示双侧MCA重度狭窄,右ICA颅内段轻度狭窄(箭头);B:HRMRI T1w-db SPACE像经cMPR重建图示左侧MCA、ICA颅内段局部斑块形成,左侧MCA斑块较大;C:HRMRI T1w-db SPACE像经cMPR重建图示右侧MCA、ICA颅内段局部斑块形成;D:DWI示左侧脑室后脚旁缺血灶;E:HRMRI T1w-db SPACE像矢状位钆增强扫描前[E(a)]、后[E(b)]示右侧MCA管壁增厚伴偏心性斑块无强化;F:HRMRI T1w-db SPACE像矢状位钆增强扫描前[F(a)]、后[F(b)]示左侧MCA偏心性斑块高度强化
图2 1例左侧MCA狭窄的脑梗死患者HRMRI头颈联合扫描责任血管见动脉夹层改变。患者,女,64岁,发病前1 w有闭合性头部外伤史,表现为构音障碍、右侧中枢性面舌瘫、右侧肢体偏瘫偏身麻木。A:3D ce-MRA示左侧MCA不规则性狭窄(箭头),余颅内外血管无异常;B:DWI示左侧基底节区缺血灶(箭头);C:HRMRI T2w-db SPACE像轴位示左侧MCA后壁血肿呈长条状等低信号;HRMRI T1w-db SPACE像轴位钆增强扫描前(D)、后(E)示左侧MCA后壁血肿呈长条状高信号
图3 血管炎性病变在HRMRI上增强扫描前后的表现。患者,女,患Grave病17 y,有脑梗死家族史,表现为右侧肢体轻偏瘫。A:DWI示左侧基底节区、枕叶缺血灶;B:MRA示多发颅内动脉(双侧MCA、ACA、左侧PCA、左侧ICA末段)中重度狭窄;C:HRMRI T1w-db SPACE像轴位钆增强扫描前[C(a)]、后[C(b)]示左侧ICA末段管壁环形增厚、环形强化,左侧ACA闭塞,右侧ACA环形增厚;D:HRMRI T1w-db SPACE像轴位钆增强扫描前[D(a)]、后[D(b)]示左侧MCA起始段管壁环形增厚、环形强化
图4 1例右侧MCA狭窄的反复TIA发作患者HRMRI头颈联合图像。A:3D ce-MRA示双侧MCA局限性狭窄(箭头),ICA近端未见明显管腔狭窄(虚线);B:HRMRI T1w-db SPACE像轴位钆增强扫描前[B(a)]、后[B(b)]经MPR重建图像示右侧ICA近端后壁偏心性斑块强化;C:HRMRI T1w-db SPACE像轴位钆增强扫描前[C(a)]、后[C(b)]经MPR重建图像示左侧ICA近端管壁环形增厚;D:HRMRI T1w-db SPACE像轴位钆增强扫描前[D(a)]、后[D(b)]示右侧MCA下壁偏心性斑块强化(箭头),左侧MCA前壁偏心性斑块无强化(箭头)
目前,国内外有少量关于3.0T HRMRI头颈联合技术的研究,但多为技术层面的探索。有学者[13]应用三维多重对比心血管核磁共振成像(3D Multi-contrast vessel wall cardiovascular magnetic imaging,3D CMR)对颅内外动脉管壁进行研究,证明36通道的神经血管线圈可完整覆盖颅内外动脉,而三维多重对比黑血技术结合T1WI、T2WI及重T1WI,可有效抑制血流,清晰地显示颅内外动脉管腔、管壁,具有较高的信噪比、对比噪声比。Zhang、Xie等[14,15]应用DANTE-SPACE技术研究颅内外动脉管壁,亦得出类似结论。本研究通过32通道的神经血管线圈(24通道头线圈+8通道颈线圈),应用T1W-db SPACE(即DANTE-SPACE)技术对颅内外动脉管壁进行扫描研究,结果3.0T HRMRI头颈联合发现3D ce-MRA不能显示的管壁异常或显示3D ce-MRA所示的管腔异常是否存在相应的管壁改变,且实验重复性可。此项技术扫描颅内外血管壁用时较少(单系列扫描为7.5 min),患者依从性更好。因此,3.0T HRMRI头颈联合是一项可同时高效、较准确评估颅内外动脉病变的新兴技术。
本研究采用3.0T HRMRI头颈联合扫描可清晰地显示颅内外动脉(双侧MCA、ICA颅内段、ICA近端、CCA分叉处)血管结构特点,发现动脉粥样硬化者颅内外动脉常呈不同程度、不同特点的增厚,即轻度环形增厚、斑块形成,甚至管腔闭塞等改变。根据斑块在HRMRI上的表现特征[7]及其病理生理改变[16],结合本研究结果,我们认为管壁轻度环形增厚为动脉粥样硬化的早期改变,规则或不规则的偏心性增厚为粥样硬化斑块特征,而管腔闭塞为动脉粥样硬化晚期斑块堵塞血管的表现。2例患者颅外动脉正常、颅内动脉为非动脉粥样硬化改变,其中1例左侧MCA在T1w-db SPACE像上呈长条状高信号,参考既往研究报道动脉夹层在HRMRI上的成像特点[11],这种在T1w-db SPACE像上的长条状高信号,且相应高信号在T2w-db SPACE像上为等低信号,符合动脉夹层的改变;另1例左侧MCA起始部、左侧ICA颅内末段管壁呈显著环形增厚,管腔向内缩小,增强扫描见管壁呈环形强化,右侧MCA M1段呈偏心性增厚及强化。文献[11]报道,部分动脉粥样硬化斑块可出现环形强化,但该患者只有1项卒中危险因素(脑梗死家族史),3D ce-MRA上可见多发颅内动脉(双侧ACA、双侧MCA、左侧ICA、左侧PCA)狭窄,难以用动脉粥样硬化解释多发颅内动脉狭窄并管壁环形强化。有学者[11,17]认为这种多发颅内动脉狭窄伴管壁环形强化为血管炎表现,文献[18~20]报道甲状腺功能亢进及甲亢服用了抗甲状腺药物的患者,可以合并血管炎、巨细胞性动脉炎或抗甲亢药物相关血管炎。患者合并甲状腺功能亢进症并曾口服抗甲亢药物治疗,结合病史及血管炎在HRMRI的影像特点,我们认为该患者左MCA、ICA血管壁环形强化符合血管炎在HRMRI的表现,而右侧MCA表现可能为血管炎症非对称性分布或血管炎相关性肉芽肿或粥样硬化斑块所致。
MCA的影像和组织病理结果对照研究[21]证实斑块内出血(Intraplaque Hemorrhage,IPH)在T1WI上为高信号表现,且 IPH为不稳定斑块的指标之一[22],与脑血管事件相关。本研究中斑块成分信号表现均匀或不均匀,其中1处MCA斑块在T1w-db SPACE像上呈局部高信号表现,我们推测在T1w-db SPACE像上斑块内的局部高信号为IPH,与患者脑梗死发生相关。本研究结果显示,29处斑块增强扫描后出现轻度至高度不等的强化,其中19处强化斑块位于梗死侧,10处斑块位于MCA处(8处位于梗死侧MCA,2处位于对侧MCA),MCA斑块多呈中度至高度强化,尤以梗死侧的MCA斑块强化明显。Kim等[23]发现斑块强化为斑块不稳定性标志之一,可预测脑缺血事件的发生;另有研究[12]发现脑梗死急性期斑块强化明显,随着病程推移,斑块强化程度逐渐减弱。可根据增强扫描后颅内外动脉斑块强化程度的不同,来协助定位罪犯斑块与相应的责任血管。本研究采用了较既往的扫描时间更短、分辨率更高、头颈部同时联合的新方法,发现中度至高度强化斑块多位于梗死侧MCA,推测该强化斑块为罪犯斑块、其相应的的载体血管为责任血管,与临床诊断一致。由于尚缺乏组织病理活检证实,是否可根据斑块结构在HRMRI上的信号特点识别斑块成分、判断斑块稳定性需进一步研究。
虽然3D-ceMRA对自旋饱和、血流缓慢或湍流引起的流血伪影较不敏感,对血管狭窄、闭塞及瘤样扩张上的诊断与DSA具有较高的一致性[24],也能清晰显示血管轮廓情况。但对于引起管腔狭窄的原因,如管壁病变的性质及程度判断仍有局限,特别是在动脉粥样硬化早期或动脉粥样硬化通过正性重构来维持管腔内径而未引起明显管腔狭窄时,更有漏诊可能。本研究结果显示,在发现颅内动脉管壁病变方面,HRMRI较3D ce-MRA有更高的阳性率和早期优势,3D ce-MRA发现39处血管狭窄或扩张,而HRMRI发现57处存在管壁异常。3D ce-MRA与HRMRI对其中34处血管病变显示不一致:26处血管的3D ce-MRA大致正常而HRMRI显示管壁增厚(5处)或斑块(21处),可能是因为动脉粥样硬化早期未形成明显斑块或斑块较小未造成明显管腔狭窄,或管壁出现正性重构而维持管腔大小[25];8处血管的3D ce-MRA显示一侧ICA颅内段轻度狭窄(5处)、ICA近端轻度狭窄(2处)或扩张(2处)而HRMRI显示管腔外径及管壁均大致正常,可能是在动脉分叉处湍流形成或血流在管壁走行迂曲处流速较慢引起的血流伪影,即使3D ce-MRA对血流伪影较不敏感,但当湍流明显或血流过缓时仍可看到血流伪影造成的管腔狭窄表现,而颈总动脉分叉处存在生理性的颈动脉窦,有时在3D ce-MRA上可被误认为血管扩张。我们认为3.0T HRMRI头颈联合技术可更早期更直观地为诊断颅内外动脉病变性质、程度,也可为进一步判断脑血管事件的病因和发病机制提供依据。
3.0T HRMRI头颈联合技术可同时清晰地显示颅内外动脉的管壁结构,提供更多关于颅内外动脉狭窄的病因、动脉粥样硬化的信息。但本研究仅为一组探索性的结果,样本量小,缺乏活体病理组织证实HRMRI所示管壁异常,且对颅内外动脉的研究仅限于双侧MCA、ICA及CCA。如何利用该项技术更准确地甄别颅内外动脉病变需增大样本量及扫描范围,并以组织病理活检对照证实。作为目前唯一可实现活体内直观、高效地判断颅内外动脉病变的无创、无放射线辐射的技术,3.0T HRMRI头颈联合技术具有很大的研究价值和临床应用前景,可为进一步开展胸部主动脉弓大血管、颈部及颅内血管的不间断联合扫描技术提供依据。
[1]Choi YJ,Jung SC,Lee DH. Vessel Wall Imaging of the Intracranial and Cervical Carotid Arteries[J]. Journal of Stroke,2015,17(3):238-255.
[2]缺血性卒中/短暂性脑缺血发作患者大动脉粥样硬化影像检查专家组. 缺血性卒中/短暂性脑缺血发作患者大动脉粥样硬化影像检查的专家共识[J]. 中华内科杂志,2012,51(5):410-414.
[3]王婷婷,吴 军. 颅内动脉粥样硬化斑块稳定性的高分辨率核磁共振成像研究进展[J]. 中华神经科杂志,2015,48(12):1115-1121.
[4]Duffis EJ,Jethwa P,Gupta G,et al. Accuracy of computed tomographic angiography compared to digital subtraction angiography in the diagnosis of intracranial stenosis and its impact on clinical decision-making[J]. Journal of Stroke and Cerebrovascular Diseases:the Official Journal of National Stroke Association,2013,22(7):1013-1017.
[5]Willinsky RA,Taylor SM,TerBrugge K,et al. Neurologic complications of cerebral angiography:prospective analysis of 2,899 procedures and review of the literature[J]. Radiology,2003,227(2):522-528.
[6]Swartz RH,Bhuta SS,Farb RI,et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI[J]. Neurology,2009,72:627-634.
[7]Underhill HR,Hatsukami TS,Cai J,et al. A noninvasive imaging approach to assess plaque severity:the carotid atherosclerosis score[J]. AJNR American Journal of Neuroradiology,2010,31(6):1068-1075.
[8]Xu P,Lv L,Li S,et al. Use of high-resolution 3.0-T magnetic resonance imaging to characterize atherosclerotic plaques in patients with cerebral infarction[J]. Experimental and Therapeutic Medicine,2015,10(6):2424-2428.
[9]Holmstedt CA,Turan TN,Chimowitz MI. Atherosclerotic intracranial arterial stenosis:risk factors,diagnosis,and treatment[J]. The Lancet Neurology,2013,12(11):1106-1114.
[10]李明利,徐蔚海,宋 兰,等. 高分辨率磁共振成像诊断颅内动脉粥样硬化[J]. 中国医学影像技术,2010,26(6):1009-1012.
[11]Swartz RH,Bhuta SS,Farb RI,et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI[J]. Neurology,2009,72(7):627-634.
[12]Skarpathiotakis M,Mandell DM,Swartz RH,et al. Intracranial atherosclerotic plaque enhancement in patients with ischemic stroke[J]. AJNR American Journal of Neuroradiology,2013,34(2):299-304.
[13]Zhou Z,Li R,Zhao X,et al. Evaluation of 3D multi-contrast joint intra-and extracranial vessel wall cardiovascular magnetic resonance[J]. Journal of Cardiovascular Magnetic Resonance:Official Journal of the Society for Cardiovascular Magnetic Resonance,2015,17:41.
[14]Xie Y,Yang Q,Fan Z,et al. Improved black-blood imaging using DANTE-SPACE for combined carotid and intracranial vessel wall evaluation[J]. Journal of Cardiovascular Magnetic Resonance,2015,17(Suppl 1):17.
[15]Lei Zhang YT,Hu XQ,Wu J. High resolution three dimensional imaging of extracranial and intracranial arteries[J]. Proc 23rd Annual Meeting of ISMRM,2015,Toronto,Ontario(Canada):P. 552(Oral presentation).
[16]Libby P. Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis[J]. Journal of Lipid Research,2009,50(Suppl):352-357.
[17]Mandell DM,Matouk CC,Farb RI,et al. Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis:preliminary results[J]. Stroke;a Journal of Cerebral Circulation,2012,43(3):860-862.
[18]Slot MC,Links TP,Stegeman CA,et al. Occurrence of antineutrophil cytoplasmic antibodies and associated vasculitis in patients with hyperthyroidism treated with antithyroid drugs:A long-term followup study[J]. Arthritis and Rheumatism,2005,53(1):108-113.
[19]Puras Tellaeche A,del Villar Sordo V,Gonzalez Serrano M,et al. [Hyperthyroidism associated with leukocytoclastic vasculitis][J]. Revista Clinica Espanola,1985,176(9):485.
[20]Thomas RD,Croft DN. Thyrotoxicosis and giant-cell arteritis[J]. Br Med J,1974,2(5916):408-409.
[21]Chen XY,Wong KS,Lam WW,et al. High signal on T1sequence of magnetic resonance imaging confirmed to be intraplaque haemorrhage by histology in middle cerebral artery[J]. International Journal of Stroke:Official Journal of the International Stroke Society,2014,9(4):E19.
[22]Xu WH,Li ML,Gao S,et al. Middle cerebral artery intraplaque hemorrhage:prevalence and clinical relevance[J]. Annals of Neurology,2012,71(2):195-198.
[23]Kim JM,Jung KH,Sohn CH,et al. Intracranial plaque enhancement from high resolution vessel wall magnetic resonance imaging predicts stroke recurrence[J]. International Journal of Stroke:Official Journal of the International Stroke Society,2016,11(2):171-179.
[24]Garg SK,Mohan S,Kumar S. Diagnostic value of 3D contrast-enhanced magnetic resonance angiography in Takayasu’s arteritis-a comparative study with digital subtraction angiography[J]. European Radiology,2011,21(8):1658-1666.
[25]Zhu XJ,Du B,Lou X,et al. Morphologic characteristics of atherosclerotic middle cerebral arteries on 3T high-resolution MRI[J]. AJNR American Journal of Neuroradiology,2013,34(9):1717-1722.
The value of 3.0T High-resolution magnetic resonance imaging of simultaneous carotid and intracranial vessel wall in diagnosing intra-and extracranial arterial wall abnormality in patients with symptomatic middle cerebral arterial stenosis
WANGTingting,CHENXuhui,LINZhijian,etal.
(DepartmentofNeurology,PekingUniversityShenzhenHospital,Shenzhen518036,China)
Objective To investigate the intra-and extracranial arterial wall abnormality in patients with symptomatic middle cerebral arterial(MCA)stenosis and clinical value of 3.0T High-resolution magnetic resonance imaging(HRMRI)of simultaneous carotid and intracranial vessel wall. Method Eleven patients with symptomatic MCA stenosis underwent three dimensional contrast-enhanced MRA(3D ce-MRA)and 3.0T HRMRI. 3.0T HRMRI included precontrast and post-contrast T1-db SPACE,and was combined with simultaneous carotid and intracranial vessel wall imaging. Result Eighty-eight vessel walls of 11 patients indicated:one patient had central nervous system vasculitis with concentric thickening and enhancement of left MCA and internal carotid artery(ICA)on T1-db SPACE;one had intracranial arterial dissection with long-striped hyper-intensity of left MCA on T1-db SPACE and iso-intensity and hypo-intensity of left MCA on T2-db SPACE;nine had atherosclerosis with bilateral MCA atherosclerotic plaques manifested as eccentric thickened wall,eight out of 9 patients had both intra-and extracranial atherosclerotic plaques,and 6(67%)patients’ intra-and extracranial atherosclerotic plaques were enhanced simultaneously. Comparison of 3D ce-MRA and HRMRI showed 23 vessel walls were normal on both series;Thir1 vessel walls were abnormal on both series,in which 3D ce-MRA showed stenosis or dilation while HRMRI showed the arterial wall thickened or loaded with plaques. In other 34 vessel walls,different findings between 3D ce-MRA and HRMRI were detected:26 abnormal vessel walls(5 with thickened wall and 21 with plaques)shown on HRMRI were normal on 3D ce-MRA,while 6 stenotic and 2 dilated vessel walls on 3D ce-MRA were relatively normal on HRMRI. Inter-observer reproducibility was good for identifying intra-and extracranial arterial wall abnormality on 3D ce-MRA and HRMRI(Kappa was 0.67,0.69,bothP<0.001). Conclusion 3.0T HRMRI of simultaneous carotid and intracranial vessel wall can help to clearly visualize the anatomy and pathological changes of intra-and extracranial arterial wall,identify the stenosis missed on 3D ce-MRA,distinguish causes of arterial stenosis,and is valuable to diagnose intra-and extracranial arterial wall abnormality.
Middle cerebral artery; Internal carotid artery; High-resolution magnetic resonance; Atherosclerosis: Vasculitis; Arterial dissection
2016-11-21;
2017-03-16 资金项目:深圳市战略新兴产业发展专项资金(No. JYCJ20150605103420338) 作者单位:(1.北京大学深圳医院神经内科,广东 深圳 518036;2.汕头大学医学院,广东 汕头 515041;3.中国科学院深圳先进技术研究院,广东 深圳 518055)
吴 军,Email:wujun188@163.com
1003-2754(2017)05-0410-06
R743
A