王铎
数学作为一门基础的学科,对于学生未来的发展有着很大的作用.在新的高中数学课本中增加了线性规划的内容.由于是新增加的内容,很多学生没有接触过,对其比较陌生,因此学起来比较吃力,尤其是将线性规划应用到实际中,并且进行最优值的调整是一个难点.下面结合自己的教学实践谈点体会.
一、线性规划求解
在线性约束的条件下,对于线性目标函数进行最值问题的求解的过程,称为线性规划.最优解指的是,在目标函数z=f(x,y)取得最大值或者最小值的时候,x与y的值的大小(x,y)就成为最优解.其中若得到的最优解皆为整数,则对应的点(x,y)对应的横纵坐标都是整数,可以将这个解称为整点.最优解的求解方式是高中教材中的重要内容.经常见到的题型有:(1)题目中给出了一定量的人力、物力资源,以及一些已知条件,让学生求解:如何安排,才能在一定的时间内完成最多的任务或者取得最大的收益.(2)给出一项任务,以及一些已知的条件,让学生求解:怎样安排,才能在完成任务的情况下投入尽可能少的人员、物力资源.这部分内容在教材中属于新增加的内容,介绍的比较笼统,使学生难以理解与掌握.调整优值法是经常采用的一种求解方式,通过这种方式,能得到最优值,从而求得答案.
二、优值调整方式
1.带数值比较法.对于线性规划的最优解的调整,首先要找到一个范围.在最优解存在于可行域中时,对最优值进行调整是比较简单的一种情况,此时只需要在可行域的范围内寻找出所有的可行解,然后将每一个解都带入到目标函数中进行验证即可.通过比较代入解值得出来的结果值,便可得到调整后的最优值.这种调整方式,需要将每一个值都依次代入,适用于可行域中最优解较少的情况.
2.调整理论值.这种对最优值进行调整的方式,就是首先根据理论上的分析得出最优值存在的一个范围区间,然后在计算出理论上的最优解对应的目标函数值的前提下对于目标函数值进行逐步调整,同时需要作出对应的直线,在坐标系中画出函数图象,并且在可行域内的直线上寻找可能存在的最优解.如果存在则最优解就此找到,否则就需要对理论上的这个值进行继续调整,直到能够出现最优解为止.
3.根据范围求解.这种对最优解进行调整的方式,就是在理论最优解的基础上计算出目标函数值,并且对目标函数值进行逐步调整.在这样的前提下,将最优解带入到线性约束条件中进行消元处理,能够求出未知量x和y的范围,然后在这个范围内寻找最优解,并且进行调整.
4.逐步调整法.这种方式是在得出理论上最优值的基础上求出对应的目标函数值,并且对目标函数值进行逐步调整.在调整时,将其看作是一个二元的不定方程,从而确定出这个方程的解值,然后对其进行判断是否为可行解.
三、典型例题分析
例假如你需要开一家小店,小店里主要经营衣服和裤子.由于你的存款有限,所以在经营过程中受到很多限制.(1)由于金额不足,你每次只能最多进50件衣服;(2)最多只能进30件裤子;(3)为了保证你的小店能正常营业,你必须要有衣服和裤子一共40件;(4)你的小店在进货时,每件衣服的进价为36元,每条裤子的进价为48元.现在你只有2400元钱,假如说小店中每卖一件衣服就会增加利润18元,而一条裤子的利润是在20元.那么,你需要怎样进货,才能使小店获得最大的收益?
解:设小店进货时,进了x件衣服和y件裤子,取得的利润为z元.根据题中的条件,能得出如下方程式:0≤x≤50,0≤y≤30,
x+y≥40,
36x+48y≤2400.
根据方程组,可以计算出可行域以及直线l:18x+20y=0.在可行域内对直线l进行平移,判断在什么时候能取得最大值,最后能求出x和y的值,即(36,25)或者(46,16).但这不是可行解.接下来令18x+20y=1146,得出解值.判断是否是可行解,发现不是.令18x+20y=1144,得出的解(48,14)是可行解.此时,这个题的最优解调整完毕,得出结论.这个例题,就是在得到可行解的范围的前提下对线性规划进行最优值调整的题型.在计算时,需要注意满足实际要求,即根据应用题对不可能的解值进行排除,如此题中的非整数解.
總之,在高中数学教学中,线性规划实际应用中的最优值调整是一个难点,教师要引导学生思考,促进学生对于这部分内容的掌握,从而提高教学效果.