杨显国+张红霞+彭金城+赵伟
摘 要:本文介绍一种车载IGBT驱动电源设计,该电源为多路输出单端反激开关电源。根据技术要求详细介绍了该电路的具体设计步骤及电路参数。测试结果表明,该电源的可靠性高、稳定性好、输出纹波小,满足车载IGBT驱动电源要求。
关键词:混合动力;开关电源;单端反激
中图分类号:TP211+.4 文献标识码:A 文章编号:1005-2550(2017)03-0030-04
Design of Power Supply for an Automotive IGBT Drive
YANG Xian-guo, ZHANG Hong-xia, PENG Jin-cheng, ZHAO Wei
( Dongfeng Motor Corporation Technical Center, Wuhan430058, China )
Abstract: This paper introduce a single-end flyback converter with multiplexed output for IGBT drive. The design process and the specific of the circuit are introduce. The test indicates that this power has outstanding reliability, stability and lower ripple. This power fully comply with the requirements of the automotive IGBT driver.
Key Words: hybrid power; switching power supply; single-end flyback converter
引言
IGBT是目前混合動力汽车高压混合动力系统中必须采用功率开关器件。IGBT栅极驱动对电压要求极为苛引 言刻,而汽车电气环境较为复杂。所以电源需要在宽电压环境中工作,且输入与输出必须隔离开来,必须具有高可靠性和高稳定性。单端反激式开关电源具有体积小、重量轻、效率高、结构简单等优点,非常适合用于设计功率器件的驱动电电源。
开关电源控制电路分为电流控制型和电压控制型。电压控制型控制电路是一个单闭环控制系统,控制过程中电源的电感电流未参与控制,是一个独立变量,开关变换器为有条件稳定二阶系统。电流控制型控制电路是一个电流、电压双闭环控制系统,电感电流不是一个独立的变量,开关变换器为一阶无条件的稳定系统,从而可以得到更大的开环增益和完善的小信号、大信号特征。为此本文选择流控型芯片LM3478设计了一款车载IGBT驱动电源。主要技术参数:输入8-16V直流,输出:4路输出(每路28V/0.16A),工作频率100KHz,输出纹波小于1%。
1 主电设计
1.1 主电路拓扑
主电路拓扑如图1所示。主电路采用单端反激式变换电路,+12V为电池直流经电源预处理后的输出电压,作为开关电源输入电压。开关电源分四路输出提供给IGBT驱动电路。
1.2 电源预处理电路设计
电源预处理电路如图2,是外部电源与内部电路的链接部分,它承担着减轻外部电源干扰和降低内部电源对外的传导干扰。在这一部分电路设计要针对性的考虑到企业标准相关试验要求,并作出详细的计算以满足电路设计要求。以静电保护电容为例,根据企业标准要求本设计所搭载控制器,需要进行最严酷静电试验为,带电25KV[1]。图2中电容C1、C2:470nF(100V)为ESD保护电容,计算如下:
由以上可知电源接入端口BAT+可以耐受25KV静电。
其中C1、C2在电路布局时还应当相对垂直布置,避免由于单方向震动引起电容同时失效而引发控制器着火。
1.3 变压器设计
变压器是开关电源最重要的组成部分,它对电源效率和可靠性,以及输出电源的电气特性都起到至关重要的作用。在设计时需要充分考虑功率容量、工作频率、输入输出电压等级和变化范围,铁芯材料和形状,绕组绕制方式,散热条件,工作环境等综合因素[3]。
根据技术指标要求,电源输出功率Pout为:
原边峰值电流为
式中Vin(min)为电源输入最低电压8V。
Ton取最大值0.5,初级电感量为Lpri:
初级匝数Npri为:
,取6。
AL为磁芯制造厂提供的一个气隙长度参数。这个参数是在磁芯上绕上1000匝的后的电感数据。根据磁芯生产商提供的磁芯和导线参数本设计中AL=10mH/1000,式中Lpri初级电感量单位为mH。
次级匝数Nsec为:
式?max中为最大占空比(反激式开关电源50%),VD 为次级整流二极管导通压降。
2 控制电路
2.1 PWM控制电路
本设计采用TI公司汽车级芯片LM3478作为开关电源控制器。LM3478是一个多用途底边开关电源NMOS控制器,可用于BOOST,flyback,SEPIC 等多种拓扑结构开关电源[4]。
PWM控制电路如图3所示,图中引脚8是电源输入端,芯片为宽电压输入,输入范围是3-40V,本设计中连接到电源预处理的输出端典型值为13.5V。引脚7连接电源频率配置电阻,根据使用手册提供的工作频率与阻值关系,本电源的工作频率为100KHz,R6配置为200KΩ。引脚2为补偿引脚,C6、R7构成补偿回路为控制电路提供补偿。引脚6为输出端,经过一个限流电阻(R4)限流后驱动功率MOSFET(Q2),为保护MOSFET,在引脚6并联一个电阻。
2.2 电压反馈电路设计
为了使多路电源输出一致性更好,和降低负载对反馈电源的影响。本设计采用独立回路进行电压反馈设计,反馈回路变压器绕组匝数Nfb为:
反馈电路通过外部分压连接到LM3478的FB引脚与内部基准电压1.26V进行比较。因为变压器原边与输出回路和反馈回路的绕组匝比固定,所以当输出回路电压升高,反馈回路的电压也会升高。反馈回路分压电阻分压就会高于1.26V,控制器将关断外部NMOS,缩短NMOS导通时间以降低电压。
2.3 电流反馈控制电路设计
LM3478电流控制通过在电流环内串联电阻的方式,将电流信号转换为电压信号,从控制器引脚ISEN引入控制器内部,与LM3478电流控制基准电压vsense进行比较,当ISEN脚上电压高于基准电压vsense时控制器将关断开关管,起到限流和过流保护作用。
本设计的最大电流限值为原边最大电流与原边电感最大纹波电流之和。对于本设计原边最大电流为Ipk。根据LM3478使用手册,RSENSE计算如下:
DMAX式中为0.5,vsense、vsL、△vsL可从LM3478 使用手册中查询相关数值和公式。
3 测试结果
本设计集成在IGBT驱动电路中,在典型电压值9V、13.5V、18V下分别测试本开关电源的轻载和满载(用大电阻模拟负载)情况下的相关参数。表1和表2为典型测试值示例,测试表明电源输出符合设计要求。
图4为输入13.5V满载时开关MOSFET栅源级波形,图中可以看出满载情况下占空比小于50%,电路工作在完全能量转换状态下,满足设计要求。圖5为开关MOSFET漏源电压,从图(a)中可以看出在开关管关闭、次级线圈电流为零时原边的电压在理论上应该降为零,实际上却发生了震荡。原因是当变压器释放完所有能量,电源开关管的漏源级电压会降到输入电压值的电平上。这一转变激发了原边吸收电容与原边电感的谐振回路,从而产生了一个衰减的振荡波形,并持续到开关管下次导通。这一振荡波形会影响电路的EMI特性,需要调整吸收电路电容使振荡波的频率低于电源开关频率,得到如图(b)的波形。
4 结束语
本文设计的反激式开关电源,具有体积小、重量轻、输出电压纹波小、稳定性好等优点,本设计应用在基于英飞凌HP2 IGBT驱动电路中,所搭载控制器通过了DV、PV测试,并成功应用于东风某ISG车型中。在开关电源设计过程中会遇到很多问题,比如变压器啸叫、开关管过热等,这些问题需在测试过程中不断总结和整改,器件参数也需要在测试过程中不断调整,如文中所提到的吸收电路的调整。同时PCB布局对电源的品质和可靠性影响很大,如文中提到的防静电电容布置。所以在原理设计完成后要仔细阅读相关企业标准和芯片PCB Layout指导手册,以降低不恰当的布板对电源造成不利影响。
参考文献:
[1]EQC-1204-2007 电气和电子装置环境的基本技术规范电气特性, 2007.
[2]王志强.开关电源设计第二版[M].北京:电子工业出版社, 2005.
[3]徐德鸿.开关电源设计指南[M].北京:机械工业出版社, 2004.
[4]LM347X/Q1 High-Efficiency Low-Side N-Channel Controller for Switching Regulator.
[5]杨永清.基于UC3844的单端反激开关电源设计[J]. 移动电源与车辆, 2009.