种植翻压紫云英配施化肥对稻田土壤活性有机碳氮的影响*

2017-06-07 10:30刘春增常单娜李本银曹卫东吕玉虎潘兹亮
土壤学报 2017年3期
关键词:单施紫云英土壤有机

刘春增常单娜,2†李本银曹卫东吕玉虎潘兹亮

(1 河南省农业科学院植物营养与资源环境研究所,郑州 450002)

(2 华中农业大学资源与环境学院,武汉 430072)

(3 中国农业科学院农业资源与农业区划研究所,北京 100081)

(4 信阳市农业科学院植物营养与资源环境研究所,河南信阳 464000)

种植翻压紫云英配施化肥对稻田土壤活性有机碳氮的影响*

刘春增1常单娜1,2†李本银1曹卫东3†吕玉虎4潘兹亮4

(1 河南省农业科学院植物营养与资源环境研究所,郑州 450002)

(2 华中农业大学资源与环境学院,武汉 430072)

(3 中国农业科学院农业资源与农业区划研究所,北京 100081)

(4 信阳市农业科学院植物营养与资源环境研究所,河南信阳 464000)

依托长期种植紫云英定位试验,以不施肥(CK)为对照,研究化肥(100%F)、紫云英配施100%、80%、60%和40%化肥(G+100% F、G+80% F、G+60% F、G+40% F)以及紫云英(G)对土壤活性有机碳氮、水稻产量、氮肥利用率及其他土壤养分的影响。结果表明,与对照不施肥相比,单施化肥对土壤水溶性有机碳(WSOC)的影响很小,土壤水溶性有机氮(WSON)和微生物生物量碳氮(SMBC、SMBN)含量分别增加了20.61%、10.49%和2.20%;单施紫云英处理土壤WSOC、WSON、SMBC和SMBN含量分别增加了25.52%、36.30%、19.16%和10.37%;紫云英配施化肥增加了土壤WSOC、WSON、SMBC和SMBN的含量,增幅分别为12.99%~22.80%、26.66%~56.61%、19.01%~29.56%和16.08%~32.90%。施肥提高了土壤活性有机碳氮占土壤有机碳(SOC)、全氮(TN)的比例,紫云英配施化肥和单施紫云英效果优于单施化肥。土壤活性有机碳氮与水稻产量、SOC、TN和铵态氮(NH4+-N)呈显著或极显著正相关。施肥增加水稻产量,G+80%F最高(10 026 kg hm-2)。与100%F相比,化肥减施20%~40%水稻不减产,同时氮肥农学效率和氮肥偏生产力提高,增幅分别为11.64%~149.65%和2.66%~149.92%,土壤SOC、TN和NH4+-N含量增加,土壤有效磷和速效钾降低。综合考虑水稻产量、氮肥利用率和土壤肥力,紫云英翻压22 500 kg hm-2、磷钾肥常规用量、氮肥减施20%时最优。

紫云英;土壤活性有机碳氮;水稻产量;氮肥利用率;土壤养分

土壤碳氮循环是农田生态系统最基本的生态过程,受到耕作、施肥和灌溉等人为因素的影响与调控,对农田生态系统的稳定性、生产力及其环境效应有重要影响[1]。活性有机碳氮是土壤有机碳氮中最活跃的组分,这部分碳素和氮素溶解性和移动性强,易被微生物和植物吸收利用[2-3]。依据提取和测定方法不同,活性有机碳氮有水溶性有机碳氮和微生物生物量碳氮等。活性有机碳(氮)含量虽少,占土壤碳(氮)库比例小,但其活性高,易被微生物利用,对耕作和施肥等人为因素的响应更敏感,可以作为指示土壤碳(氮)库变化的指标[4-5]。土壤活性有机碳氮的变化影响土壤碳氮循环,与全球温室气体排放以及环境污染密切相关[3,6]。

施肥是维持粮食产量、提升土壤肥力的重要农艺措施,对活性有机碳氮的变化有重要影响[1]。研究表明,单施氮肥对土壤活性有机碳影响较小[7],而氮磷钾配施可增加土壤活性有机碳氮含量[8]。也有研究表明单施化肥对土壤活性有机碳氮无明显影响或有降低作用[9]。秸秆或有机粪肥均可增加土壤活性有机碳氮含量,有机无机配施的效果更好[10-13]。

绿肥是我国传统农业的精华,绿肥与水稻轮作是南方稻区常见的种植模式[14]。紫云英(Astragalus sinicus L.)是我国稻田主要的冬季绿肥[15],紫云英还田可以增加稻田土壤养分,改善稻田的物理、化学及生物学性状,提高水稻产量[16-18]。紫云英通过固氮可以减少化肥氮的施用和氮素流失[19],还能减少稻田温室气体N2O的排放,对改善稻田的生态环境具有重要意义[20]。不同地区的研究表明,紫云英翻压15 000~30 000 kg hm-2,减施化肥20%~40%,仍能保证水稻不减产[16,21-23]。种植翻压紫云英减施化肥这种有机无机配施模式下土壤活性有机碳氮的变化还鲜有报道。鉴于土壤活性有机碳氮响应施肥的敏感性,其与水稻产量、土壤养分的相关性值得关注。本文研究长期种植翻压紫云英配施化肥对土壤活性有机碳氮、水稻产量、氮肥利用率及土壤养分的影响,分析土壤活性有机碳氮与水稻产量、土壤养分的相关性,揭示土壤活性有机碳氮的肥力和生产力意义,探讨种植紫云英的减氮潜力,为紫云英的培肥和增产机制提供科学依据。

1 材料与方法

1.1 试验地概况

试验地位于信阳市农业科学院试验园区,该地区属亚热带向暖温带过渡区,日照充足,年平均气温15℃,无霜期平均220 d左右;年均降水量900~1 400 mm。田间定位试验始于2008年。供试土壤为黄棕壤性潜育型水稻土,土壤有机碳12.96 g kg-1,全氮1.30 g kg-1,碱解氮71.5 mg kg-1,有效磷16.5 mg kg-1,速效钾78.2 mg kg-1,pH6.7。

1.2 试验设计

试验采用2因素随机区组设计,4次重复,共设7个处理:(1)对照不施肥(CK);(2)100%化肥(100%F);(3)紫云英+100%化肥(G+100% F);(4)紫云英+80%化肥(G+80%F);(5)紫云英+60%化肥(G+60%F);(6)紫云英+4 0%化肥(G+4 0%F);(7)紫云英(G)。紫云英原地种植,每年盛花期翻压22 500 kg hm-2,多余的移出小区,不够的从别的小区移入。化肥品种氮肥为尿素、磷肥为过磷酸钙、钾肥为氯化钾。100%化肥指当地常规施肥量,施用量为N 225 kg hm-2、P2O5135 kg hm-2、K2O 135 kg hm-2,化肥中的磷钾肥全部基施,氮肥按基肥:分蘖肥:孕穗肥=3∶2∶1分次施入。小区面积6.67 m2,长3.33 m,宽2.0 m,小区间筑埂,上覆塑料薄膜防止串水串肥。区组间留0.3 m宽的沟,便于上水和排水。水稻于每年5月底划行移栽,小区栽插密度16.7 cm×20 cm,每穴2~3棵。移栽后灌浅水使秧苗返青,分蘖肥在移栽后1周施用,孕穗肥在晒田复水后施用,其他田间管理与大田一致。

1.3 测定项目和方法

于2015年9月20日水稻收获后采集耕层0~20 cm土样,一部分4℃冷藏,用于土壤活性有机碳氮的测定;一部分风干,用于其他土壤养分的测定。

土壤水溶性有机碳(WSOC)和水溶性有机氮(WSON)按1∶2土水比(鲜土重量g∶液体体积ml)用高纯水浸提,室温下200 r min-1振荡2 h后,4℃、12 000 r min-1离心15 min,过0.45 μm滤膜。滤液中的WSOC采用总碳/总氮分析仪(multi N/C 2100,耶拿,德国)测定;WSON用差减法即WSON=水溶性总氮(WTSN)-硝态氮(NO3--N)-铵态氮(NH4+-N),水溶性总氮(WTSN)用3%碱性过硫酸钾在120℃下氧化30 min,与NO3--N 和NH4+-N同时用连续流动分析仪(AA3,SEAL analytical,英国)测定。

土壤微生物生物量的测定采用氯仿熏蒸培养法:新鲜土样过2 mm 筛后于25℃预培养一周,熏蒸与未熏蒸的土样用50 ml 0.5 mol L-1K2SO4浸提(土水比1∶4),滤液中的总有机碳和总有机氮分别为土壤微生物生物量碳(SMBC)和微生物生物量氮(SMBN),用总碳/总氮分析仪(multi N/ C 2100,耶拿,德国)测定。土壤微生物生物量碳BC=EC/kEC,EC:熏蒸与未熏蒸土壤滤液中总有机碳的差值,kEC:转换系数,取值0.45;土壤微生物生物量氮BN=EN/kEN,EN:熏蒸与未熏蒸土壤滤液中总有机氮的差值,kEN:转换系数,取值0.54。

采用《土壤农化分析》[24]中的方法测定土壤基础养分。

1.4 数据分析

试验数据采用Microsoft Excel 2013和SAS 8.1软件进行整理和统计分析,方差分析多重比较采用最小显著差异(LSD)法,在p<0.05水平下检验差异显著性。Origin 8.5作图,Canoco 5进行主成分画图。

2 结 果

2.1 紫云英和化肥对土壤有机碳和全氮的影响

由图1可知,与2008年土壤有机碳(SOC)初始值(12.96 g kg-1)相比,对照长期不施肥土壤SOC含量增加了7.56%,单施化肥增加了4.09%,单施紫云英增加了12.67%,紫云英配施化肥增加了14.12%~26.93%,紫云英配施100%化肥处理最高。不同施肥处理对SOC的影响:化肥较对照不施肥有所降低,但差异不显著,单施紫云英和紫云英配施化肥均显著高于化肥和对照。与2008年土壤全氮(TN)(1.30 g kg-1)初始值相比,对照长期不施肥土壤TN降低了1.56%,单施化肥增加了2.99%,单施紫云英增加了9.09%,紫云英配施化肥增加了5.79%~12.75%。不同施肥处理均增加了土壤TN含量,紫云英配施化肥和单施紫云英均显著高于化肥处理,紫云英配施100%化肥最高。综上,单施化肥对土壤SOC和TN的影响很小,单施紫云英可明显增加土壤SOC和TN含量,紫云英配施化肥的效果更好。

图1 长期施肥和种植紫云英对土壤有机碳和全氮的影响Fig 1 Effects of long-term fertilization and planting and incorporation of Chinese milk vetch on soil organic carbon(SOC)and total nitrogen(TN)of soil

2.2 紫云英和化肥对土壤水溶性有机碳氮的影响

由图2可知,与对照不施肥相比,单施化肥对土壤WSOC的影响很小;单施紫云英土壤WSOC含量增加了25.52%;紫云英配施不同比例化肥均显著增加了土壤WSOC含量,增幅为12.99%~22.80%。与对照不施肥相比,施肥均增加了土壤WSON含量,单施化肥和单施紫云英土壤WSON含量分别较对照提高了20.61% 和36.30%。紫云英配施不同比例化肥提高了26.66%~56.61%。综上,与对照不施肥相比,单施化肥对土壤WSOC的影响很小,单施紫云英较紫云英配施化肥的效果好;单施紫云英和紫云英配施化肥增加土壤WSON的效果优于单施化肥。

图2 长期施肥和种植紫云英对土壤水溶性有机碳氮的影响Fig 2 Effects of long-term fertilization and planting and incorporation of Chinese milk vetch on water soluble organic carbon(WSOC)and water soluble organic nitrogen(WSON)of soil

2.3 紫云英和化肥对土壤微生物生物量碳氮的影响

由图3可知,与对照不施肥相比,施肥显著增加了土壤SMBC含量,单施化肥和单施紫云英分别较对照增加了10.49%和19.16%;紫云英配施化肥增加19.01%~29.56%,紫云英配施100%化肥最高。与对照不施肥相比,单施化肥土壤SMBN含量增加了2.20%,差异不显著;单施紫云英土壤SMBN含量增加了10.37%,差异显著;紫云英配施化肥显著增加了SMBN含量,增幅16.08%~32.93%。综上,单施紫云英增加SMBC和SMBN的效果优于单施化肥,紫云英配施化肥的效果更好。

2.4 紫云英和化肥对土壤活性有机碳氮组分分配比例的影响

图3 长期施肥和种植紫云英对土壤微生物生物量碳氮的影响Fig 3 Effects of long-term fertilization and planting and incorporation of Chinese milk vetch on soil microbiology biomass carbon (SMBC)and soil microbiology biomass nitrogen(SMBN)of soil

表1 长期施肥和种植紫云英处理下土壤活性有机碳氮占土壤有机碳和全氮的比例Table 1 Effects of long-term fertilization and planting and incorporation of Chinese milk vetch on proportion of active carbon and nitrogen in SOC and TN of soil(%)

由表1可知,施肥提高了WSOC/SOC、SMBC/ SOC、WSON/TN和SMBN/TN,SMBC和SMBN占土壤碳氮库的比例远高于土壤WSOC和WSON。单施紫云英增加WSOC/SOC的效果最明显,紫云英配施80%化肥增加WSON/TN效果最明显,紫云英配施100%化肥增加SMBC/SOC、SMBN/TN的效果最明显。综上,紫云英配施化肥提高土壤活性有机碳氮组成分配比例的效果最好,其次是单施紫云英,再次单施化肥。

2.5 紫云英和化肥对水稻产量、氮肥利用率和土壤养分的影响

由表2可知,与对照不施肥相比,施肥增加了水稻8年的平均产量,单施化肥增加29.55%,单施紫云英增加28.49%,紫云英配施化肥增加29.51%~36.86%,G+80%F的产量最高,可达10 026 kg hm-2。紫云英配施100%、80%和60%化肥水稻产量均高于单施化肥,即化肥减施20%~40%情况下水稻不减产。与单施化肥相比,紫云英配施不同比例化肥提高了氮肥农学效率和氮肥偏生产力,增幅分别为11.64%~149.7%和2.66%~149.9%。随着化肥减施比例的增加,氮肥农学效率和氮肥偏生产力随之提高,G+40%F最高。

由表3可知,施肥降低了土壤pH,单施紫云英和紫云英配施化肥与对照不施肥差异显著。施肥显著增加了土壤NH4+-N含量,单施化肥和单施紫云英较对照不施肥分别增加43.99%和55.72%,紫云英配施化肥较对照不施肥增加57.78%~85.04%。与对照不施肥相比,施肥降低了土壤NO3--N含量,单施化肥降低2.21%,差异不显著;单施紫云英降低了26.99%,紫云英配施化肥降低了24.33%~36.28%,差异显著。与对照不施肥相比,施肥增加了土壤有效磷含量,单施化肥增加了139.6%,差异显著;单施紫云英增加14.40%,差异不显著;紫云英配施不同化肥增幅102.5%~130.1%,差异显著。与对照不施肥相比,单施化肥土壤速效钾略有增加,单施紫云英和紫云英配施化肥土壤速效钾含量均显著降低,降幅5.26%~10.62%。

表2 长期施肥和种植紫云英对水稻平均产量和氮肥利用率的影响Table 2 Effects of long-term fertilization and planting and incorporation of Chinese milk vetch on average rice yield and nitrogen use efficiency

表3 长期施肥和种植紫云英对土壤养分的影响Table 3 Effects of long-term fertilization and planting and incorporation of Chinese milk vetch on soil nutrients

2.6 土壤活性有机碳氮与水稻产量、土壤养分的相关性

由表4可知,土壤WSOC、WSON、SMBC、SMBN与水稻平均产量呈显著或极显著正相关,与土壤SOC和TN呈极显著正相关,与土壤NH4+-N呈显著或极显著正相关,与土壤NO3--N和土壤pH呈显著或极显著负相关。土壤WSON、SMBC、SMBN与土壤有效磷呈显著正相关,土壤WSOC、WSON与土壤速效钾呈极显著和显著负相关。土壤SOC和TN与土壤NH4+-N呈极显著正相关,与土壤NO3--N和土壤pH呈极显著负相关,与土壤有效磷、速效钾和水稻产量无显著相关性。综上,相比于土壤SOC和TN,土壤WSOC、WSON、SMB、SMBN与水稻产量和土壤养分的相关性更密切。

由图4可知,主成分分析产生两个主成分,PCA1累积方差贡献率为65.61%,PCA2累积方差贡献率为23.07%,两个成分累积方差贡献率为88.68%。主成分分析结果显示,土壤SMBC、SMBN、WSOC、WSON与土壤NH4+-N、有效磷和水稻产量呈正相关,它们与土壤NO3--N、速效钾和pH呈负相关,这与相关性分析结果相互印证。不同处理间明显分成四个区域,对照不施肥、单施化肥、紫云英配施化肥和单施紫云英,紫云英配施不同比例化肥间无法区分开。综上,长期施肥和种植紫云英对土壤活性有机碳氮、水稻产量和土壤养分产生了不同的影响。

3 讨 论

3.1 长期施肥和种植紫云英对稻田土壤有机碳和全氮积累的影响

图4 土壤活性有机碳氮和水稻平均产量、土壤养分的主成分分析Fig 4 PCA(Principal component analysis)of active soil carbon and nitrogen,average rice yield and soil nutrients

本研究中对照长期不施肥土壤S O C增加7.56%;Yan等[25]研究表明25年不施肥稻田土壤SOC增加27.4%;黄威等[8]发现长期不施肥稻田土壤SOC并未降低,桃源和宁乡试验点分别增加18.1%和11.5%,桃江基本无变化,这些结果说明稻作有利于土壤SOC的保持和积累,可能是稻田长期淹水不利于有机碳矿化。关于化肥对土壤SOC影响的结论还不一致:廖敏等[26]研究发现单施化肥降低了土壤SOC含量,黄威等[8]及李文军等[13]发现单施化肥能提高土壤SOC含量,本试验结果表明单施化肥不利于土壤SOC的积累。化肥一方面增加了作物根茬归还量,增加土壤有机碳的输入;另一方面,化肥特别是氮肥加快了土壤原有有机碳的消耗,这种对有机碳输入和消耗的双向影响导致了不同的研究结果。本试验中单施紫云英和紫云英配施化肥均显著增加了土壤SOC含量,一方面,紫云英翻压还田为土壤带来大量新鲜的有机物增加了有机碳的输入,远大于作物根茬归还的有机碳数量;另一方面,新鲜有机物的输入增加了土壤微生物活性,促进新鲜有机物的固定,增加有机碳的积累。与土壤SOC不同,对照长期不施肥土壤TN降低,稻作能维持土壤有机碳的增加,但水稻从土壤中带走的氮素只有通过外源氮的补充才能维持土壤氮素平衡。李文军等[13]研究表明在氮肥投入量相等的情况下,有机无机配施较单施化肥更有利于土壤TN的增加,有机肥的比例越高效果越明显。本文紫云英配施化肥及单施紫云英土壤TN均高于单施化肥,翻压紫云英22 500 kg hm-2约提供78 kg hm-2N,单施紫云英处理氮的投入量远小于100%F(225 kg hm-2N),这说明相比化肥氮,紫云英更有利于土壤TN的增加。

3.2 长期施肥和种植紫云英对土壤活性有机碳氮组分及分配比例的影响

土壤WSOC和WSON虽然占土壤有机碳氮的比例小,却是土壤碳氮库中最活跃的组分之一,易被微生物利用[27]。施用化肥对土壤WSOC和WSON的影响无统一结论:张英等[9]研究发现连续11年施用化肥降低了耕层土壤WSOC含量;黄威等[8]的结果证明长期施用化肥对耕层土壤WSOC和WSON的影响不大;李文军等[13]研究发现长期施用化肥能明显增加耕层土壤WSOC和WSON含量。本试验中单施化肥对土壤WSOC的影响很小,但提高了土壤WSON含量。不同试验结果不一致的原因可能是土壤有机碳、氮的初始值和矿化的平衡点不同,导致施用化肥对土壤WSOC和WSON产生不同的效应。秸秆[28]和有机肥[29]均可增加土壤WSOC和WSON含量,与秸秆和有机肥类似,紫云英本身及分解过程中产生大量水溶性有机碳氮,本试验中单施紫云英和紫云英配施化肥均显著增加了土壤WSOC和WSON的含量。

土壤SMBC和SMBN反映了土壤微生物的活动状况,驱动着土壤中养分的矿化,对土壤管理措施响应敏感[30]。Liang等[31]研究表明长期施肥增加了耕层土壤SMBC和SMBN含量,玉米各个生育期均表现为有机肥配施化肥>秸秆配施化肥>单施化肥>对照不施肥。Liu等[32]发现氮磷配施较单施氮肥增加土壤SMBC和SMBN的效果好,有机肥的效果更明显,化肥有机肥配施的效果最好。高嵩涓等[33]研究发现长期冬种绿肥可以提高土壤SMBC和SMBN含量,相比其他绿肥,紫云英的效果最好。本研究中单施紫云英较单施化肥增加土壤SMBC和SMBN的效果好,紫云英配施化肥效果最好,这与前人研究相吻合。

土壤活性有机碳氮占土壤有机碳和全氮的比例更能反映土壤活性有机碳氮对施肥响应的敏感程度。黄威等[8]和骆坤等[12]的研究表明,相对于单施化肥,有机肥配施化肥能提高土壤活性有机碳氮占土壤有机碳和全氮的比例。本研究中单施紫云英和紫云英配施化肥较单施化肥更有利于提高土壤活性有机碳氮占土壤有机碳和全氮的比例。可能是紫云英翻压后在微生物的作用下大部分有机物分解成溶解态,部分被微生物固定,只剩下很少一部分难降解的稳定态,紫云英对土壤有机碳氮活性组分的贡献大于对难降解组分的贡献。

3.3 长期种植紫云英对稻田土壤生产力的影响及其减氮潜力

本试验紫云英翻压量22 500 kg hm-2,化肥减施20%~40%,水稻仍能保持增产。随着化肥减施量增加,氮肥的农学效率和偏生产力也急剧增加,虽然G+40%F的氮肥农学效率和偏生产力远高于G+80%F时,但水稻产量降低了5.67%。化肥减施后土壤NH4+-N含量仍高于单施化肥,相关性分析表明土壤NH4+-N含量与水稻产量关系最为密切,这就解释了化肥减施后水稻仍能保持增产的根本原因。此外,种植翻压紫云英能够改善土壤物理、化学和生物学性状[16-18],有利于提高肥料利用率及土壤养分的运移,从而有利于获得更高的水稻产量。化肥减施后土壤有效磷和速效钾明显下降,为了维持土壤磷钾平衡,磷钾肥不建议减施。从提高水稻产量、氮肥农学效率和氮肥偏生产力以及维持稻田土壤生产力等方面综合考虑,紫云英翻压量22 500 kg hm-2氮肥减施20%,即氮肥施用量为180 kg hm-2时最优,可节约氮肥45 kg hm-2。实际生产中,信阳地区紫云英鲜草量能达到30 000 kg hm-2左右,随紫云英翻压量增加可节约氮肥量增加。下一步需深入开展不同紫云英翻压量条件下适宜氮肥用量的研究,探究在不减少磷钾肥投入的情况下,紫云英能够完全替代氮肥时的适宜翻压量,充分挖掘种植紫云英的减氮潜力,实现减氮高效的农业清洁生产模式。

4 结 论

单施化肥对土壤WSOC的影响很小,增加了土壤WSON、SMBC和SMBN含量及土壤活性有机碳氮占土壤碳氮库的比例。单施紫云英和紫云英配施化肥更有利于提高土壤活性有机碳氮及其占土壤碳氮库的比例。土壤活性有机碳氮与水稻产量、土壤养分多呈显著或极显著相关,具有一定的生产力意义。施肥增加了水稻产量,G+80% F最高(10 026 kg hm-2),化肥减施20%~40%时水稻不减产,同时氮肥农学效率和氮肥偏生产力提高,土壤SOC、TN和NH4+-N含量增加,土壤有效磷和速效钾含量降低。综合考虑水稻产量、氮肥利用率和土壤生产力,紫云英翻压22 500 kg hm-2时,磷钾肥常规用量,氮肥减施20%最优。

[1] 李海波,韩晓增,王风. 长期施肥条件下土壤碳氮循环过程研究进展. 土壤通报,2007,38(2):384—388 Li H B,Han X Z,Wang F. Review of soil carbon and nitrogen cycling under long-term fertilization(In Chinese). Chinese Journal of Soil Science,2007,38 (2):384—388

[2] 杨丽霞,潘剑君. 土壤活性有机碳库测定方法研究进展. 土壤通报,2004,35(4):502—506

Yang L X,Pan J J. Progress in the study of measurements of soil active organic carbon pool(In Chinese). Chinese Journal of Soil Science,2004,35 (4):502—506

[3] 高强,唐艳凌,巨晓棠,等. 长期不同施肥处理对土壤活性氮库的影响. 水土保持学报,2009,23(2):95—99

Gao Q,Tang Y L,Ju X T,et al. Effect of long-term fertilization on soil reactive pool(In Chinese). Journal of Soil and Water Conservation,2009,23(2):95—99

[4] Shrestha R K,Ladha J K,Gami S K. Total and organic soil carbon in cropping systems of Nepal. Nutrient Cycling in Agroecosystems,2006,75(1):257—269

[5] McLauchlan K K,Hobbie S E. Comparison of labile soil organic matter fractionation techniques. Soil Science Society of America Journal,2004,68(5):1616—1625

[6] 潘根兴,赵其国. 我国农田土壤碳库演变研究∶全球变化和国家粮食安全. 地球科学进展,2005,20(4):384—393

Pan G X,Zhao Q G. Study on evolution of organic carbon stock in agriculture soils of China:Facing the challenge of global change and food security(In Chinese). Advances in Earth Science,2005,20 (4):384—393

[7] Rochette P,Gregorich E G. Dynamics of soil microbial biomass C,soluble organic C and CO2evolution after three years of manure application. Canadian Journal of Soil Science,1998,78(2):283—290

[8] 黄威,陈安磊,王卫,等. 长期施肥对稻田土壤活性有机碳和氮的影响. 农业环境科学学报,2012,31 (9):1854—1861

Huang W,Chen A L,Wang W,et al. Effect of long-term fertilization on active organic carbon and nitrogen in paddy soils(In Chinese). Journal of Agroenvironment Science,2012,31(9)∶1854—1861

[9] 张英,褚秋华,邱多生. 11年连续肥料处理对水稻土碳、氮及微生物量的影响. 南京农业大学学报,2001,24(4):112—114

Zhang Y,Chu Q H,Qiu D S. Effect of 11-year continuous fertilizer application on soil carbon,nitrogen and microbial biomass of paddy soil(In Chinese). Journal of Nanjing Agricultural University,2001,24 (4):112—114

[10] 李玲,朱捍华,苏以荣. 稻草还田和易地还土对红壤丘陵农田土壤有机碳及其活性组分的影响. 中国农业科学,2009,42(3):926—933

Li L,Zhu H H,Su Y R. Effects of rice straw incorporation in situ and ex situ on soil organic C and active organic C in agricultural soils in red soil hilly region(In Chinese). Scientia Agricultura Sinica,2009,42(3):926—933

[11] Wu T Y,Schoenau J J,Li F M,et al. Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China. Soil and Tillage Research,2004,77(1):59—68

[12] 骆坤,胡荣桂,张文菊. 黑土有机碳氮及其活性对长期施肥的响应. 环境科学,2013,34(2):676—684

Luo K,Hu R G,Zhang W J. Response of black soil organic carbon,nitrogen and its availability to longterm fertilization(In Chinese). Environmental Science,2013,34(2):676—684

[13] 李文军,彭保发,杨奇勇. 长期施肥对洞庭湖双季稻区水稻土有机碳、氮积累及其活性的影响. 中国农业科学,2015,48(3):488—500

Li W J,Peng B F,Yang Q Y. Effects of long-term fertilization on organic carbon and nitrogen accumulation and activity in a paddy soil in double cropping rice area in Dongting Lake of China(In Chinese). Scientia Agricultura Sinica,2015,48(3):488—500

[14] 曹卫东,黄鸿翔. 关于我国恢复和发展绿肥若干问题的思考. 中国土壤与肥料,2009(4):1—3

Cao W D,Huang H X. Ideas on restoration and development of green manure in China(In Chinese). Soil and Fertilizer Sciences in China,2009(4):1—3

[15] 林新坚,曹卫东,吴一群,等. 紫云英研究进展. 草业科学,2011,28(1):135—140

Lin X J,Cao W D,Wu Y Q,et al. Advance in Astragalus sinicus research(In Chinese). Pratacultural Science,2011,28(1):135—140

[16] 刘春增,李本银,吕玉虎,等. 紫云英还田对土壤肥力、水稻产量及其经济效益的影响. 河南农业科学,2011,40(5):96—99

Liu C Z,Li B Y,Lü Y H,et al. Effect of incorporation of Astragalus sinicus on soil fertility rice yield and economic efficiency(In Chinese). Journal of Hennan Agricultural Sciences,2011,40(5):96—99

[17] 颜志雷,方宇,陈济琛,等. 连年翻压紫云英对稻田土壤养分和微生物学特性的影响. 植物营养与肥料学报,2014,20(5):1150—1160

Yan Z L,Fang Y,Chen J C,et al. Effect of turning over Chinese milk vetch(Astragalus sinicus L.)on soil nutrients and microbial properties in paddy fields(In Chinese). Journal of Plant Nutrition and Fertilizer,2014,20(5):1150—1160

[18] 刘春增,刘小粉,李本银,等. 紫云英还田对水稻产量、土壤团聚性及其有机碳和全氮分布的影响. 华北农学报,2012,27(6):224—228

Liu C Z,Liu X F,Li B Y,et al. Effects of planting Chinese milk vetch on rice yield,soil aggregation and distributions of its carbon and total nitrogen(In Chinese). Acta Agriculturae Boreali-Sinica,2012,27(6):224—228

[19] 卢萍,单玉华,杨林章,等. 绿肥轮作还田对稻田土壤溶液氮素变化及水稻产量的影响. 土壤,2006,38 (3):270—275

Lu P,Shan Y H,Yang L Z,et al. Influence of green manure crop on nitrogen concentration in soil solution of paddy field and rice yield(In Chinese). Soils,2006,38(3):270—275

[20] 熊正琴,邢光熹,鹤田治雄,等. 冬季耕作制度对农田氧化亚氮排放的贡献. 南京农业大学学报,2002,25 (4):49—52

Xiong Z Q,Xing G X,Tsuruta H,et al. Nitrous oxide emissions from agricultural soils as affected by winter cropping system(In Chinese). Journal of Nanjing Agricultural University,2002,25(4):49—52

[21] 王飞,林诚,林新坚,等. 连续翻压紫云英对福建单季稻产量与化肥氮素吸收、分配及残留的影响. 植物营养与肥料学报,2014,20(4):869—904

Wang F,Lin C,Lin X J,et al. Effects of continuous turnover of Astragalus sinicus on rice yield and N absorption,distribution and residue in single-cropping rice regions of Fujian Province(In Chinese). Journal of Plant Nutrition and Fertilizer,2014,20(4):869—904

[22] 王建红,曹凯,张贤. 紫云英还田配施化肥对单季晚稻养分利用和产量的影响. 土壤学报,2014,51(4):888—896

Wang J H,Cao K,Zhang X. Effects of incorporation of Chinese milk vetch coupled with application of chemical fertilizer on nutrient use efficiency and yield of singlecropping late rice(In Chinese). Acta Pedologica Sinica,2014,51(4):888—896

[23] 万水霞,朱宏斌,唐杉,等. 紫云英与化肥配施对安徽沿江双季稻区土壤生物学特性的影响. 植物营养与肥料学报,2015,21(2):387—395

Wan S X,Zhu H B,Tang S,et al. Effects of Astragalus sinicus manure and fertilizer combined application on biological properties of soil in Anhui double cropping rice areas along the Yangtze River(In Chinese). Journal of Plant Nutrition and Fertilizer,2015,21(2):387—395

[24] 鲍士旦. 土壤农业化学分析方法. 第3版. 北京:中国农业出版社,2013

Bao S D. Analytical methods for soil and agro-chemistry. 3rd ed.(In Chinese). Beijing:China Agricultural Press,2013

[25] Yan D Z,Wang D J,Yang L Z. Long-term effect of chemical fertilizer,straw,and manure on labile organic matter fractions in a paddy soil. Biology and Fertility of soils,2007,44(1):93—101

[26] 廖敏,彭英,陈义,等. 长期不同施肥管理对稻田土壤有机碳库特征的影响. 水土保持学报,2011,25 (6):129—138

Liao M,Peng Y,Chen Y,et al. Effect of longterm different fertilizer management on soil carbon stock characteristics in paddy soil(In Chinese). Journal of Soil and Water Conservation,2011,25(6):129—138

[27] 赵满兴,Kalbitz Karsten,周建斌. 黄土区几种土壤培养过程总可溶性有机碳、氮含量及特性的变化. 土壤学报,2008,45(3):476—484

Zhao M X,Kalbitz K,Zhou J B. Variation of content and structural characteristics of dissolved organic carbon and nitrogen in soluble organic matter during mineralization of several soils in the loess region(In Chinese). Acta Pedologica Sinica,2008,45(3):476—484

[28] 丁婷婷,王百群,何瑞清,等. 施用秸秆对土壤可溶性有机碳氮及矿质氮的影响. 水土保持研究,2014,21 (6):72—77

Ding T T,Wang B Q,He R Q,et al. Effects of addition amounts of straw on soil dissolved organic carbon,nitrogen and mineral nitrogen(In Chinese). Reserach of Soil and Water Conservation,2014,21 (6):72—77

[29] 赵满兴,周建斌,陈竹君,等. 有机肥中可溶性有机碳、氮含量及其特性. 生态学报,2007,27(1):397—403

Zhao M X,Zhou J B,Chen Z J,et al. Concentration and characteristics of soluble organic nitrogen(SON)and carbon(SOC)in different types of organic manures (In Chinese). Acta Ecologica Sinica,2007,27 (1):397—403

[30] Balota E L,Colozzi F A,Andrade D S,et al. Microbial biomass in soils under different tillage and crop rotation systems. Biology and Fertility of Soils,2003,38(1):15—20

[31] Liang B,Yang X Y,He X H,et al. Effect s of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth. Biology and Fertility of Soils,2011,47 (2):121—128

[32] Liu E K,Yan C R,Mei X R,et al. Long-term effect of chemical fertilizer,straw,and manure on soil chemical and biological properties in northwest China. Geoderma,2010,158(3/4):173—180

[33] 高嵩涓,曹卫东,白金顺,等. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性. 土壤学报,2015,52 (4):902—910

Gao S J,Cao W D,Bai J S,et al. Long-term application of winter green manures changed the soil microbial biomass properties in red paddy soil(In Chinese). Acta Pedologica Sinica,2015,52(4):902—910

Effects of Planting and Incorporation of Chinese Milk Vetch Coupled with Application of Chemical Fertilizer on Active Organic Carbon and Nitrogen in Paddy Soil

LIU Chunzeng1CHANG Danna1,2†LI Benyin1CAO Weidong3†LÜ Yuhu4PAN Ziliang4
(1 Institute of Plant Nutrition,Agricultural Resources and Environment Sciences,Henan Academy of Agricultural Sciences,
Zhengzhou 450002,China)
(2 College of Resources and Environmental Science,Huazhong Agricultural University,Wuhan 430072,China)
(3 Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences,Beijing 100081,China)
(4 Institute of Plant Nutrition,Agricultural Resources and Environment Sciences,Xinyang Academy of Agricultural Sciences,Xinyang,Henan 464000,China)

【Objective】Being the most active part of soil organic carbon and nitrogen,soil active organic carbon and nitrogen play important roles in soil carbon and nitrogen cycles and are very sensitive to fertilization. The practice of planting and incorporating Chinese milk vetch coupled with application of chemical fertilizer has been proved to be an effective way to improve rice yield and soil fertility. Here in this paper,effects of this practice on soil active carbon and nitrogen,rice yield,nitrogen use efficiency and soil fertility,as well as relationships of soil active carbon and nitrogen with rice yield and soil nutrients were studied,to explore significance of soil active organic carbon and nitrogen to soil fertility and productivity and provide a scientific basis for using this practice to increase crop yield and soil fertility.【Method】Based on an 8-year field experiment on planting and incorporation of Chinese milk vetch coupled with application of chemical fertilizer in Xin Yang,Henan province,topsoil samples(0~20 cm)were collected after rice was harvested for analysis of variation of soil active carbon and nitrogen,and soil nutrients and further of their relationships with rice yield and soil nutrients. The experiment was designed to have seven treatments,i.e. CK(no fertilizer),Treatment G(planting and incorporation of Chinese milk vetch),Treatment 100%F (conventional chemical fertilizer N,P,K at 225 kg hm-2,135 kg hm-2and 135 kg hm-2,respectively),Treatment G +100%F(Chinese milk vetch combined with 100% conventional chemical fertilizer),Treatment G +80%F,Treatment G +60%F and Treatment G +40%F.【Result】The results showed that compared with CK,Treatment 100%F had little effect on soil water soluble organic carbon(WSOC),but it increased soil water soluble organic nitrogen(WSON),soil microbial biomass carbon(SMBC)and soil microbial biomass nitrogen(SMBN)by 20.61%,10.49% and 2.70%,respectively. Treatment G increased WSOC,WSON,SMBC and SMBN by 25.52%,36.30%,19.16% and 9.36%,respectively. And the treatments of G+F of whatever rate increased WSOC,WSON,SMBC and SMBN by an extent varying in the range of 12.99%~22.80%,26.66%~56.61%,19.01%~29.56% and 12.80%~26.25%,separately. Fertilization increased the proportion of soil active organic carbon and nitrogen,separately,in soil organic carbon and total nitrogen,however,the effects of Treatment G and Treatment G+F are obviously higher than those of Treatment 100%F. Soil active carbon and nitrogen is positively related to rice yield,SOC,TN and Ammonium nitrogen at significant or extremely significant levels,but negatively to nitrate nitrogen and available potassium. Fertilization increased rice yield and the effect was the most significant in Treatment G+80%F(10 026 kg hm-2in yield). Compared with Treatment 100%F,Treatment G +80%F,Treatment G +60%F and Treatment G +40%F saved the use of chemical fertilizer by 20%~40% without affecting crop yield,while increasing nitrogen agronomic efficiency and nitrogen partial factor productivity by 11.64%~149.65% and 2.66%~149.92%,separately and the contents of SOC,TN and ammonium nitrogen,too,but did decrease the contents of available phosphorus and available potassium.【Conclusion】Compared with application of chemical fertilizer,planting and incorporation of Chinese milk vetch coupled with application chemical fertilizer were more conducive to building up soil active carbon and nitrogen. By taking into full account crop yield,nitrogen fertilizer utilization efficiency,and soil fertility,the practice of incorporating 22 500 kg hm-2of Chinese milk vetch,keeping the normal P and K applications and reducing N application rate by 20% was thought to be the optimal one.

Chinese milk vetch;Soil active organic carbon and nitrogen;Rice yield;Nitrogen use efficiency;Soil nutrients

S142+.1

A

(责任编辑:陈荣府)

* 河南省省院科技合作项目(132106000052)和公益性行业(农业)科研专项(201103005)共同资助 Supported by the Project of Provincial Academy of Science and Technology Cooperation of Henan Province of China(No. 132106000052)and Special Fund for Agroscientific Research in the Public Interest(No. 201103005)

† 通讯作者 Corresponding author,E-mail:caoweidong@caas.cn;chang1988917@126.com

刘春增(1967—),男,河南平顶山人,研究员,主要从事绿肥利用评价与循环农业研究。 E-mail:liucz321@ aliyun.com

2016-07-05 ;

2016-10-08;优先数字出版日期(www.cnki.net):2016-11-14

10.11766/trxb201607050273

猜你喜欢
单施紫云英土壤有机
黑土根际土壤有机碳及结构对长期施肥的响应
氮、磷叶面施肥对云南松苗木萌蘖的影响
石灰、腐植酸单施及复配对污染土壤铅镉生物有效性的影响
化肥减施间种绿肥对茶园土壤肥力及产量的影响
不同播期和配比对油菜与紫云英混播绿肥生物量及养分积累的影响
Zn2+-Mn2+配施处理对生菜种子萌发的影响
那一片紫云英的海
梁永英:盛开在田野的紫云英
不起眼的紫云英
秸秆还田的土壤有机碳周转特征