平行四边形易错题解析

2017-06-05 14:21:13周杰
初中生世界 2017年18期
关键词:对顶角周杰平行线

周杰

平行四边形易错题解析

周杰

平行四边形是中心对称图形中最基本的几何图形,也是“空间与几何”领域的研究对象之一.下面,我们总结分析同学们在学习这部分知识时易出现的几类错误,希望能帮助大家走出误区.

一、基础不牢

例1已知四边形ABCD,如图1,AD∥BC,试着再添加一个条件,使四边形ABCD为平行四边形.

图1

【错解】∠3=∠4或AB=CD.

【剖析】由题意可知,四边形已经有一组对边平行,所以只要这组对边相等或另一组对边平行即可.而错解中由∠3=∠4推出的还是已知的AD∥BC,所以添加的这个条件是无效的.相反,添加∠1=∠2是可行的,因为由∠1=∠2可推出AB∥CD,此时利用两组对边分别平行的判定定理即可.错解中的AB=CD也不行,等腰梯形就是一个反例.

【正解】∠1=∠2或AB∥CD等.

【点评】这道题实际考查同学们对平行线判定的掌握情况,所以大家不仅要掌握好平行四边形的判定定理,还要对之前所学的平行线的判定方法了如指掌,这样,才能百战百胜.

二、理解不深

例2已知四边形ABCD,有下列四个条件:①AB∥CD;②AD=BC;③∠A=∠C;④AB= CD,以其中的两个条件为一组,能判定四边形ABCD是平行四边形的有().

A.2组B.3组C.4组D.5组

【错解】A.

【剖析】所给的四个条件中,两个一组,共有六种情况:①②、①③、①④、②③、②④、③④,其中①④、②④是课本上的判定定理,同学们能够很快判断出来,但是对于①③(一组对边平行,一组对角相等)这样的命题,一些同学没有进行深入思考,所以会有所遗漏.实际上,这是一个真命题,很容易就能证明四边形ABCD是平行四边形.

【正解】B.

【点评】对于平行四边形的判定问题,我们能够运用的工具不仅有教材中相关的判定定理,还有一些相关的真命题(推论),把它们的条件稍作转化,就可以进行判定了.所以,在解题过程中,同学们要认真审题,对照判定定理仔细思考,方能得出正确结论.

三、考虑不周

例3平面直角坐标系内有A(-2,1)、B(-3,-1)、C(0,-1)三点,点D也在坐标平面内,且以A、B、C、D四个点为顶点的四边形是一个平行四边形,则点D的坐标为.

【错解】(1,1).

【剖析】如图2,先把A、B、C三点的坐标在平面直角坐标系中标出来.

图2

因为以A、B、C、D四个点为顶点的四边形是一个平行四边形,所以线段AB不是边就是对角线.过C、A、B三点分别作AB、BC、AC的平行线,然后利用平行四边形的定义,将符合条件的点找出,即D1、D2、D3.因此符合题意的D点共有三个.

【正解】(1,1)、(-5,1)、(-1,-3).

【点评】已知三个点求第四个点,使它们构成平行四边形,解题的关键是根据平行四边形的定义(两组对边平行的四边形是平行四边形),正确画出所有符合条件的平行四边形.顺便提醒同学们,以后遇到没有给出图形的平行四边形问题时,要善于画出所有可能的情形,当题目中有不确定的已知条件时,要注意分类讨论,全面考虑,这样才不至于漏解.

四、说理不严

例4已知平行四边形ABCD,如图3所示,AC、BD交于点O,OE⊥AD于E,OF⊥BC于F.求证:OF=OE.

图3

【错解】∵四边形ABCD是平行四边形,∴OA=OC,∵OE⊥AD,OF⊥BC,垂足分别为E、F,∴∠AEO=∠CFO=90°,又∠AOE=∠COF(对顶角相等),∴△AOE≌△COF(AAS),∴OF=OE.

【剖析】错解中,因为题目中未明确指出点E、O、F在同一直线上,因此不能肯定∠AOE与∠COF是对顶角,若用到这个条件,必须先给出严格的证明.

【正解】∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠DAO=∠FCO,∵OE⊥AD,OF⊥BC,垂足分别为E、F,∴∠AEO=∠CFO=90°,∴ΔAOE≌ΔCOF(AAS),∴OF=OE.

【点评】运用平行四边形的性质证明三角形全等,当对应角的位置关系似乎是对顶角时,要根据所给出的条件认真识别,看它是否满足对顶角的条件,若不满足,则须另找判断三角形全等的条件,不可主观臆断.

江苏省扬州市田家炳实验中学)

猜你喜欢
对顶角周杰平行线
Percolation transitions in edge-coupled interdependent networks with directed dependency links
《相交线与平行线》巩固练习
平行线
May You Always
“相交线”检测题
添加平行线 求角真方便
不可思议的平行线
理解邻补角和对顶角
辨析对顶角与邻补角
Characteristics of Meteorological Factors over Different Landscape Types During Dust Storm Events in Cele,Xinjiang,China