论初中数学教学兴趣的培养

2017-05-24 12:29侯建红
魅力中国 2016年33期
关键词:兴趣小组数学家美的

侯建红

俗话说:“兴趣是最好的老师”。有许多同学在踏进中学大门的同时就已经担心起能否学好数学。如何利用数学兴趣小组这种形式来激发学生学习数学的兴趣,从而培养数学应用的能力,提高數学教学质量。

数学是有用的,有用在哪些方面通过不同主题的活动分别向学生介绍,激发他们的数学兴趣。

一、结合课堂教学内容,介绍背景知识,培养数学兴趣。

初中数学,从初一代数起,就进入了形式运算阶段,而小学数学属于具体运算阶段。当然,不可能要求学生向数学家那样去重新发现问题。但是通过介绍背景知识学生也就不只是简单的死记结论了。

初一代数首先出现代数式。这时教师就可向学生介绍为什么要用字母代替数。幼儿学数,总是和量连在一起的。比如,2只苹果,3支铅笔。到了小学已经不满足于具体的量了,而喜欢学比较抽象的数。这时,2不仅可以表示“2只苹果”,还可以表示“2本书”,“2个小孩”等等,它的意义更广泛了。所以,从量到数,是认识上的一次飞跃。到了初中,我们不满足于具体的数了,需要进一步抽象化。日常生活中,我们常常需要超越具体的数量,一般地表示某个量。这时,一般的表示比具体的表示具有更重要更普遍的意义。例如,乘法交换律可以用公式a×b=b×a来表示,这里a、b表示什么数?可以是整数,也可以是分数;可以是正数,也可以是负数;还可以是0。数是用一个单位去量它的同类量而得到的结果。它的特点是抽象,正因为抽象所以用处就更大。而字母又是数的进一步抽象,它可以更加一般地表示数以及数与数之间的运算规律。如果说一个数可以表示无穷多个有实际内容的量。那么,一个字母就可以表示无穷多个有实际意义的数,它的作用可说是无限的。代数,不妨理解为“用字母代替数”这正体现出代数比算术更高明。

而在初学几何时,教师就可以通过兴趣小组活动向学生介绍“几何就在你身边”。因为初学几何,学生往往会感到这门学科枯燥乏味。有的知识似曾相识,似懂非懂;有的知识则似乎很“玄”,离我们很远。其实日常生活中有几何,几何就在你身边。当你起自行车时,想过自行车的轮子为什么是圆形的,而不能是“鸡蛋形”的呢?因为“圆”形的特性可以使自行车平稳地前进;自行车的轮子有大有小,可供人们选择;两个轮子装的位置必须装得恰当,骑时会感到方便。这说明,物体的形状、大小、位置关系与日常生活有着紧密的联系,这也正是几何这门学科所要研究的。

这样利用兴趣小组的活动。经常性的结合教材内容向学生介绍各种知识背景,加深他们对教材的理解,培养学习兴趣。

二、介绍数学史、数学家轶事等,培养数学兴趣。

在兴趣小组活动中,向学生生动的讲述一些数学史,使学生在陶醉于我们祖先的伟大成就而深感自豪的同时,激发他们对数学的占有的想往。例如,介绍中国是最早使用负数的国家;古巴比伦人遗留下来的平方数表;中国数学的世界之最;关于勾股定理的发现等等。这些数学史话适时地讲解给学生听,能引起他们对数学的很大兴趣。而数学家们的轶事则不仅能引起学生的兴趣更能使他们从中学到数学家们的治学精神。

祖冲之这位从5世纪至15世纪,世界上最具数学才能的数学家的故事当然一定要向同学们介绍。因为在千年之中,祖冲之一直保持着π七位小数近似值的记录。他在数学,天文历法上的伟大成就以及他勇于革新,敢于坚持真理的大无畏精神受到中国和世界各国科学界的高度评价,受到广大人民群众的无比崇敬。

陈景润一生的梦想与事业是攻克哥德巴赫猜想。那么什么是哥德巴赫猜想?数学家哥德巴赫在研究中发现:大于6的偶数可以写成两个质数的和的形式。如6=3+3,8=3+5,10=3+7,12=5+7,……人们验证了许许多多的偶数,结论都成立。但数字是无穷无尽的,大偶数这个结论成立吗?陈景润用了一生的热情去解决这个问题。他的研究把问题的解决推倒了最边沿。遗憾的是,他也未能彻底给出证明,留给我们或我们的后辈去解决了。陈景润为攻克这个世界难题,草稿就写了好几麻袋,我们应该学习他这种勇攀高峰的精神!

三、介绍数学美,培养数学兴趣。

美是人类创造性实践活动的产物,是人类本质力量的感性显现。通常所说的美以自然美,社会美以及在此基础上的艺术美,科学美的形态而存在。数学美是自然美的客观反映,是科学美的核心。在一些简单的式子中我们可以发现数学美。如12=3×4,56=7×8,12=3+4+5……这些都是数学等式的趣味美。普洛克拉斯早就断言:“哪里有数,哪里就有美。”在一个偏僻的山庄中,一位五年级的小女孩惊喜地在本子上写下了一个等式 (1+2)×3-4=5。这个等式与小姑娘的美丽可谓相得益彰。你也可以发现,关键在于我们要有一颗发现美的眼睛。从古希腊的时代起,对称性就被认为是数学美的一个基本内容。毕达哥拉斯就曾说过:“一切平面图形中最美的是圆形,一切立体图形中最美的是球形。”这正是基于这两种形体在各方向上都是对称的。几何中具有对称性的图性很多,都能给人以一种舒适优美之感。杨辉三角更组成美丽的对称图案。线段的黄金分割很早就引起人们的注意,主要是因为由此而构成的长方形给人们以“匀称美”的感觉。然而数学的发展已经证明,黄金分割及其有关应用具有重要的数学意义,成为初等数学中对称,和谐美的典型例子。简单性也是数学美的一个基本内容。数学理论的迷人之处就是在于能用最简洁的方式揭示现实世界中的量及其关系的规律。正如爱因斯坦所说:“美在本质上终究是简单性。”在介绍数学美时可以充分运用现代化教学媒体让同学在投影片上看到图形的对称美,甚至可以让他们自己动手制作投影胶片,还可以是电脑多媒体软件上利用几何画板,让同学们自己来制作课件,看到图形的翻转,放大缩小,重合等等。从而欣赏数学的趣味美,对称美,简单美,和谐美,激发强烈的数学兴趣,而且可增长他们的动手能力,观察能力,和创造能力。

四、介绍数学语言的特点,培养数学兴趣。

数学语言是最简洁的通用语言。甚至有人说,如果存在外星人用数学语言与他们交流是最优选择。作为知识体系的科学必须用语言来表达,而在众多的科学语言中唯有数学语言是一切科学都使用的语言,它超越了学科界线,在一切领域中发挥作用。伽里略在400年前曾指出,宇宙大自然的奥秘写在一本巨书上,而这部书是用数学语言写的。通过兴趣小组的活动,使同学们了解到数学是多么的有用,多么的神奇。让他们不由自主的对数学产生浓厚的兴趣,想要进一步揭开数学的神秘面纱。那么我们兴趣小组的目的也就达到了。

猜你喜欢
兴趣小组数学家美的
命途多舛的数学家:安德烈·韦依
法国数学家、物理学家傅里叶
周末加油站(V)
打破平衡
美的校 美的人
这美的朋友 这美的如画
数学家回答“神”问题
不落心外的雨
妙求人数
失踪的十元钱