钠泵功能改变及内质网应激在大鼠离体心脏缺血/再灌注损伤中的作用*

2017-05-20 02:26王海华王海珍王竹青王耀军周萍萍
中国应用生理学杂志 2017年1期
关键词:离体亚基内质网

王海华, 王海珍, 史 娜, 王竹青, 王耀军, 周萍萍, 王 静

(1. 皖南医学院1生理学教研室, 2. 临床医学系, 安徽 芜湖 241002)

钠泵功能改变及内质网应激在大鼠离体心脏缺血/再灌注损伤中的作用*

王海华1△, 王海珍1, 史 娜1, 王竹青2, 王耀军2, 周萍萍1, 王 静1

(1. 皖南医学院1生理学教研室, 2. 临床医学系, 安徽 芜湖 241002)

目的:探讨钠泵活性改变及内质网应激(ERS)在大鼠离体心脏再灌损伤中的作用及其机制。方法:将60只雄性SD大鼠随机分为6组(n=10):正常对照组(NC组)、缺血/再灌损伤组(I/R组)、哇巴因-缺血/再灌损伤组(OUA-I/R组)、地高辛抗血清-缺血/再灌损伤组(Anti-Dig-I/R组)、Src抑制剂PP2-哇巴因-缺血/再灌损伤组(PP2-OUA-I/R组)、PLC抑制剂U73122-哇巴因-缺血/再灌损伤组(U73122-OUA-I/R组)。建立全心缺血30 min,再灌注120 min的Langendorff大鼠离体心脏缺血再灌损伤模型。检测各组相同时间点心功能恢复率、冠脉流出液中乳酸脱氢酶(LDH)和肌酸激酶(CK)活性,心肌中Na+-K+-ATP酶活性和钙离子水平。流式细胞仪检测心肌细胞凋亡率,Western blot检测心肌钠泵α1亚基、葡萄糖调节蛋白78(GRP78)、C/EBP同源蛋白(CHOP)及凋亡蛋白Bcl-2/Bax的表达。结果:与I/R组相比,给予哇巴因预处理可使心功能恢复率明显下降,心肌酶漏出增多,Na+-K+-ATP酶的活性降低,心肌细胞内钙水平升高,细胞凋亡率增多,心肌钠泵α1亚基和Bcl-2表达降低,GRP78、CHOP和Bax表达升高;而Anti-Dig-I/R组与I/R组相比各指标均明显改善;给予Src抑制剂PP2或PLC抑制剂U73122后,哇巴因对心肌的损伤作用被部分阻断,表现为心功能恢复率升高,心肌酶漏出减少,Na+-K+-ATP酶的活性明显恢复,Ca2+水平下降,细胞凋亡率下降,心肌钠泵α1亚基和Bcl-2表达增多,GRP78和Bax表达减少。结论:钠泵功能改变和内质网应激共同参与大鼠离体心脏缺血再灌损伤,钠泵通路(Src和PLC)介导内质网应激是引起大鼠离体心脏缺血再灌损伤细胞凋亡机制之一。

钠泵;内质网应激;离体心脏;缺血/再灌注;细胞凋亡;大鼠

【DOI】 10.12047/j.cjap.5428.2017.010

心肌缺血/再灌注(ischemia/reperfusion, I/R)损伤是影响临床再灌注疗效的一个重要因素,进一步明确其发病机制,减少心肌I/R损伤,是现代心脏病学研究的热点之一。钠泵又称Na+-K+-ATP酶,是三聚体膜蛋白,α亚基为催化亚基单位,β亚基为调节亚基单位,γ亚基是FXYD蛋白家族成员之一,可以调节Na+-K+-ATP酶同细胞内Na+和细胞外K+的亲和力。钠泵α亚基调节酶的催化活性,也是强心苷的结合位点[1]。钠泵除了离子泵功能外,它还是一种重要的细胞受体,与强心苷类物质结合后,可活化酪氨酸蛋白激酶(sarcoma,Src), 磷脂酶C-γ(phospholipase C,PLC)信号转导通路,从而诱导细胞凋亡或改变细胞内的钙稳态[2,3]。Huang H[4]等发现与正常组相比,局灶性脑缺血再灌注过程中Na+-K+-ATP酶的活性显著下降,而且钠泵活性的抑制可能参与了Bcl-2/Bax比例失衡及神经元细胞凋亡的过程。Nawada R[5]等发现缺血预处理改善心肌细胞I/R损伤与增加钠泵的活性有关。国内学者研究发现,慢性间歇性低压低氧可增加钠泵的活性、上调钠泵α亚基表达对豚鼠心肌细胞I/R损伤起保护作用,钠泵抑制剂削弱了慢性间歇性低压低氧对心肌细胞I/R损伤的保护作用[6]。

细胞内质网(endoplasmic reticulum, ER)参与调节蛋白质合成及合成后折叠等[7]。各种原因,如缺氧、氧化应激和脂质过氧化等均可导致内质网内未折叠蛋白或错误折叠蛋白积聚或细胞内钙稳态失衡,引起内质网应激(endoplasmic reticulum stress, ERS)[8,9]。ERS激活的信号通路未折叠蛋白反应(unfolded protein response,UPR)与心肌I/R损伤的发病密切相关[10]。心肌I/R时的氧化应激、Ca2+超载及氧自由基生成等均可以诱导ERS[11]。持续的ERS可以通过激活下游的信号通路诱导细胞凋亡,如诱导C/EBP同源蛋白(C/EBP homologous protein,CHOP)表达或活化c-jun氨基末端激酶(c Jun N-terminal kinases, JNK),从而抑制抗凋亡基因Bcl-2,使得Bcl-2/Bax对抗失衡,导致细胞凋亡[12,13]。

文献报道钠泵α亚基可直接与内质网三磷酸肌醇受体(inositol triphosphate acceptor, IP3R)相互作用[14]。沉默钠泵α1亚基使IP3R重新分布,影响内质网Ca2+释放;过表达钠泵α1亚基能恢复IP3R分布,调节内质网Ca2+信号[15]。Saini-Chohan等报道抑制心肌细胞钠泵导致细胞内Ca2+增加与内质网有关[16]。钠泵损伤与ERS均参与了心肌I/R损伤过程的发生发展,二者有何内在联系,鲜有文献报道。本文通过复制大鼠离体心脏再灌损伤模型,探讨钠泵功能改变和内质网应激在心肌I/R损伤的相关性,为心肌I/R损伤防治提供新的实验依据。

1 材料与方法

1.1 动物分组与处理

60只SD雄性大鼠(240±20)g购自合肥蜀山实验动物中心,合格证号:SCXK(苏)2009-0001。分成6组(n=10):(1)正常对照组(NC组):大鼠心脏富氧K-H液灌流210 min;(2)缺血/再灌损伤组(I/R组):大鼠心脏富氧K-H液预灌60 min,缺血30 min,富氧K-H液再灌120 min;(3)哇巴因-缺血/再灌损伤组(OUA-I/R组):大鼠心脏富氧K-H液预灌30 min,富氧含哇巴因(10 μmol/L)K-H液灌流30 min,其余步骤同I/R组;(4)地高辛抗血清-缺血/再灌损伤组(Anti-Dig-I/R组):大鼠心脏富氧K-H液预灌30 min,富氧含地高辛抗血清(10 nmol/L) K-H液预灌30 min,其余步骤同I/R组;(5)Src抑制剂PP2-哇巴因-缺血/再灌损伤组(PP2-OUA-I/R组):大鼠心脏富氧K-H液预灌10 min,富氧含PP2(1 μmol/L) K-H液灌流灌流20 min,其余步骤同OUA-I/R组;⑹PLC抑制剂U73122组-哇巴因-缺血/再灌损伤组(U73122-OUA-I/R组):大鼠心脏富氧K-H液预灌10 min,富氧含U73122(10 μmol/L) K-H液灌流灌流20 min,其余步骤同OUA-I/R组。

1.2 实验方法

1.2.1 主要试剂与仪器 哇巴因为白色粉末,购自美国Sigma公司,将其溶解至无水乙醇中配成10-3mol/L的母液,-20℃避光保存以备用[14];地高辛抗血清(兔抗anti-digoxin Whole serum) 购自北京邦定泰克生物技术有限公司,Na+-K+-ATP酶酶联免疫试剂盒、乳酸脱氢酶(lactate dehydrogenase,LDH)、肌酸激酶(creatine kinase,CK)、钙测定试剂盒、Na+-K+-ATP酶试剂盒购自南京建成生物工程研究所,钙荧光探针(Fluo-3,AM)、Annexin V-FITC(细胞凋亡检测试剂盒)购自北京泛博生物化学有限公司,Na+-K+-ATPase α1抗体购自美国Santa cruz公司,Rabbit-Anti-GAPDH,Lot NO.10A46、Bcl-2 Antibody、Bax Antibody、CHOPAntibody和GRP78 Antibody购自博士德生物工程有限公司,辣根过氧化物酶标记山羊抗兔IgG(H+L)购自合肥博美生物科技有限责任公司。Medlab-U/8c生物信号采集系统和Langendorff灌流装置(南京美易有限公司);UV-3200PCS可见紫外分光光度计(上海精密科学仪器有限公司);D3024R高速微量冷冻离心机;美国赛默飞Multiskan GO全自动酶标仪;倒置荧光显微镜及照相系统(日本Olympus公司)、Model-680型酶标仪、Western blot全套设备(美国Bio-Rad公司)、SK-1型快速混匀器(江苏金坛市荣华仪器制造厂)、DYY-2D型电泳仪(北京市六一仪器厂)、荧光化学发光凝胶成像系统(上海勤翔科学仪器有限公司)、ACEA NovoCyteTM流式细胞仪(美国艾森生物公司)。

1.2.2 离体心脏缺血/再灌注损伤模型的建立 开胸取大鼠心脏,恒温(37℃)、恒压(8.33 kPa),以富氧(充以95% O2和5% CO2饱和气体)K-H液于Langendorff灌流装置上行主动脉逆灌,通过自制乳胶小球囊从左心耳置入左心室,经压力换能器检测心室内压变化,实验前调节左室舒张末压(left ventricular end-diastolic pressure,LVEDP)在0~10 mmHg为准,待心跳节律及心功能指标稳定后开始实验,灌流顺序为富氧K-H液灌流60 min(预灌),全心停灌30 min(缺血),富氧K-H液再灌流120 min(复灌)。

1.2.3 心功能指标及冠脉流出液生化指标检测 经生物信号采集处理系统分别记录预灌稳定点,缺血期,再灌5 min、15 min、30 min、60 min、90 min、120 min时间点心率(heart rate,HR)、左室发展压(left ventricular developed pressure,LVDP)和左室内压最大上升/下降速率(maximal rise/fall rate of left ventricular pressure,±dp/dtmax),以稳定点心功能指标值为基础值(100%),缺血期及再灌各时点心功能值与其基础值相比,计算其恢复率。同时分别收集上述各时间点冠脉流出液,检测其中LDH和CK活性的变化。

1.2.4 心肌钙水平及Na+-K+-ATP酶活性的检测 各组心脏灌注完毕,取心尖部组织,称重0.2 g,与预冷的匀浆介质(Tris 1.21 g/L,EDTA 37.23 mg/L,蔗糖34.2 g/L,再以200 mmol/L的HCl滴定至pH 7.4)1∶9配比,制备10%的心肌匀浆,超速冷冻离心10 min,取上清液置保存于-20℃冰箱,用于检测各组心肌Na+-K+-ATP酶活性。

1.2.5 心肌细胞内钙离子水平及细胞凋亡检测 各组心脏灌注完毕,用无钙台式液[(mmol/L):NaCl 115, KCl 5.4, MgCl21, NaH2PO41, HEPES 5, glucose 10, 以NaOH调整pH 7.4]灌流5 min停搏心脏,灌注心肌消化酶(0.4 mg/ml的II型胶原酶、0.04 mg/ml的胰蛋白酶)循环灌注约20 min。心肌消化酶灌注结束,在台式液中剪碎心肌并逐级复钙,用 200目滤网滤过 ,室温下保存至少1 h后,吸取急性分离后的心肌细胞悬液, 种植于培养皿中进行实验。利用Fluo-3AM检测细胞内钙离子浓度的变化。按照Annexin V-FITC/PI 双染法凋亡试剂盒说明,采用流式细胞术检测心肌细胞凋亡率。

1.2.6 Western blot分析 各组心脏灌注完毕,用含蛋白酶抑制剂的裂解液裂解后提取细胞总蛋白,BCA 法测定蛋白浓度,按每孔加入约50 μg蛋白的上样量加样,进行SDS-PAGE电泳,转膜,5%脱脂奶粉室温下封闭2 h。一抗[Na+/K+-ATPase α1抗体稀释浓度(1∶200);GRP78抗体稀释浓度(1∶200);GAPDH抗体稀释浓度(1∶500); Bcl-2抗体稀释浓度(1∶500);BAX 抗体稀释浓度(1∶500)]4℃孵育过夜,洗膜后加入辣根过氧化酶标记羊抗兔二抗(1∶2 000)室温下孵育 2 h,洗膜后 ECL 试剂显影,用凝胶成像系统携带的白色光源拍照,用Quantity One生物图像处理软件进行灰度分析,以GAPDH蛋白条带作内参照。

1.3 统计学分析

采用SPSS 16.0软件进行统计分析。组间比较用单因素方差分析(One way ANOVA),两两比较用S-N-K法,采用Graph Pad prism 5 软件作图。

2 结果

2.1 钠泵功能改变对大鼠离体心脏I/R损伤心功能的影响

预灌稳定点各心功能指标组间无显著差异;除NC组外,缺血30 min,各组的LVDP、HR、+dp/dtmax、-dp/dtmax均显著下降(P<0.01);同NC组相比,再灌各时间点,I/R组大鼠心功能恢复率明显低下(P<0.01);同I/R组相比,OUA-I/R组、PP2-OUA-I/R组、U73122-OUA-I/R组的心功能恢复率均明显降低, Anti-Dig-I/R组则显著升高(P<0.01);与 OUA-I/R组相比,PP2-OUA-I/R组、U73122-OUA-I/R组再灌注过程中的心功能恢复率明显改善(P<0.01,表1-3)。

GroupStabilizingpointIschemia 30min Reperfusion5min15min30min60min90min120minNC100100.70±0.9697.59±1.7395.29±2.2793.42±2.3089.87±2.0485.72±2.5182.64±2.85I/R1006.62±0.53**46.58±4.02**56.37±4.55**59.64±3.82**56.33±5.01**45.26±3.79**36.47±5.42**OUA-I/R1006.12±0.51**32.90±2.61**##44.53±1.31**##43.07±2.21**##30.80±1.67**##22.48±1.41**##18.07±1.30**##Anti-Dig-I/R1006.32±0.73**57.44±2.20**##73.47±3.93**##79.04±1.98**##79.98±2.31**##73.17±2.58**##66.07±3.53**##PP2-OUA-I/R1006.13±0.62**40.77±1.48**##△△51.40±1.25**##△△49.13±1.18**##△△39.67±2.11**##△△32.41±2.80**##△△25.67±1.13**##△△U73122-OUA-I/R1005.99±0.21**37.97±1.50**##△△47.76±1.91**##△△47.15±1.43**##△△36.25±1.75**##△△30.46±2.54**##△△23.54±2.18**##△△

NC: Normal control group; I/R: Ischemia/reperfusiongroup; OUA-I/R: Ouabain-I/R group; Anti-Dig-I/R: Anti-digoxin antiserum-I/R group; PP2-OUA-I/R: PP2 (Src kinase inhibitor)-ouabain-I/R group; U73122-OUA-I/R: U73122 (PLC inhibitor)-ouabain-I/R group; LVDP: Left ventricular developed pressure; HR: Heart rate

**P<0.01vsNC group;###P<0.01vsI/R group;#△△P<0.01vsOUA-I/R group

GroupStabilizingpointIschemia 30min Reperfusion5min15min30min60min90min120minNC100101.07±1.1698.43±2.2394.24±1.7890.18±1.6785.85±1.8583.88±1.1179.88±0.59I/R1006.29±0.39**44.25±1.79**53.57±1.46**58.95±1.42**54.73±1.24**47.76±1.69**41.40±2.16**OUA-I/R1005.73±0.38**32.40±2.56**##40.46±1.96**##43.16±1.56**##39.35±2.06**##33.87±2.56**##30.40±2.58**##Anti-Dig-I/R1005.85±0.40**52.63±2.34**##59.01±3.90**##66.90±1.93**##64.86±1.06**##60.59±1.67**##57.07±0.91**##PP2-OUA-I/R1005.90±0.18**38.15±1.64**##△△47.21±1.91**##△△49.47±3.11**##△△46.92±1.30**##△△40.20±2.58**##△△35.25±0.77**##△△U73122-OUA-I/R1005.88±0.12**36.42±1.90**##△△44.81±1.78**##△△47.26±1.16**##△△43.92±0.98**##△△37.86±1.65**##△△33.53±1.04**##△△

+dp/dtmax: Maximal rise rate of left ventricular pressure

**P<0.01vsNC group;###P<0.01vsI/R group;#△△P<0.01vsOUA-I/R group

GroupStabilizingpointIschemia 30min Reperfusion5min15min30min60min90min120minNC10099.92±1.7797.41±2.9094.33±3.0087.96±2.2084.35±2.2281.61±2.4177.56±2.25I/R1005.95±0.39**42.90±1.06**51.80±2.28**59.59±2.04**56.11±1.51**49.63±2.51**44.33±3.04**OUA-I/R1005.73±0.25**32.60±1.894**##41.31±1.48**##41.45±1.68**##38.83±1.20**##34.55±2.12**##30.19±2.26**##Anti-Dig-I/R1005.76±0.30**52.77±1.73**##62.80±2.70**##74.71±2.96**##74.32±2.15**##71.17±1.99**##65.40±2.38**##PP2-OUA-I/R1006.02±0.18**##△△38.75±0.93**##△△46.65±1.75**##△△47.53±1.32**##△△45.70±1.48**##△△43.08±1.17**##△△39.03±1.62**##△△U73122-OUA-I/R1005.98±0.15**##△△36.39±1.41**##△△45.27±0.85**##△△45.44±1.45**##△△42.72±1.40**##△△40.41±1.54**##△△36.80±1.42**##△△

-dp/dtmax: Fall rate of left ventrxcular pressure

**P<0.01vsNC group;###P<0.01vsI/R group;#△△P<0.01vsOUA-I/R group

2.2 冠脉流出液中乳酸脱氢酶及肌酸激酶活性的组间变化

预灌稳定点各组冠脉流出液中LDH及CK水平均无明显差异;除NC组外,缺血30 min,各组冠脉流出液中 LDH及CK漏出明显增多(P<0.01);同NC组相比,再灌注期间,I/R组冠脉流出液中 LDH及 CK水平显著升高(P<0.01);同 I/R组相比,OUA-I/R组、PP2-OUA-I/R组、U73122-OUA-I/R组冠脉流出液中 LDH及 CK水平均明显下降, Anti-Dig-I/R组则明显升高(P<0.01);与 OUA-I/R组相比,PP2-OUA-I/R组、U73122-OUA-I/R组冠脉流出液中LDH及CK水平明显升高(P<0.01,表4、表5)。

2.3 大鼠心肌Na+-K+-ATP酶的活性、线粒体Ca2+浓度及细胞钙离子活性的组间变化

与NC组相比,I/R组心肌组织中Na+-K+-ATP酶活性明显降低,心肌线粒体内Ca2+浓度明显升高(P<0.01);同I/R组相比,OUA-I/R组、PP2-OUA-I/R组、U73122-OUA-I/R组Na+-K+-ATP酶的活力均明显降低,心肌线粒体内Ca2+浓度明显升高, Anti-Dig-I/R组Na+-K+-ATP酶的活力明显升高,线粒体内Ca2+浓度则明显下降(P<0.01);与 OUA-I/R组相比,PP2-OUA-I/R组、U73122-OUA-I/R组Na+-K+-ATP酶的活力明显升高,心肌线粒体内Ca2+浓度明显下降(P<0.05,P<0.01);与NC组比,I/R组荧光强度增强,差异有统计学意义(P<0.05);与 I/R 组比,OUA-I/R组、PP2-OUA-I/R组、U73122-OUA-I/R组均荧光强度明显增强, Anti-Dig-I/R组则明显减弱(P<0.01);与 OUA-I/R组相比,PP2-OUA-I/R组、U73122-OUA-I/R组荧光强度明显减弱(P<0.01,表6)。

GroupStabilizingpointIschemia 30min Reperfusion5min15min30min60min90min120minNC20.37±1.9321.52±1.2020.99±2.6622.59±2.2222.99±2.2424.46±2.3323.77±2.1524.02±1.96I/R22.11±0.7863.67±2.21**119.81±2.54**79.03±3.29**77.24±2.31**74.57±2.12**60.10±2.72**45.86±3.01**OUA-I/R21.05±1.4862.78±2.73**165.28±5.84**##108.94±5.21**##102.79±3.99**##98.48±2.86**##88.76±4.17**##75.67±3.49**##Anti-Dig-I/R21.52±0.5760.89±4.76**95.21±4.00**##66.97±2.38**##66.54±2.61**##61.61±4.00**##47.78±3.29**##33.98±2.15**##PP2-OUA-I/R21.73±1.4263.47±3.77**140.66±1.75**##90.94±1.64**##89.52±1.50**##85.16±1.77**##72.37±1.20**##59.32±1.17**##U73122-OUA-I/R19.97±1.1364.16±2.69**147.49±5.86**##95.06±1.24**##91.78±1.58**##88.24±1.45**##75.98±3.40**##63.53±2.82**##

LDH: Lactate dehydrogenase

**P<0.01vsNC group;###P<0.01vsI/R group;#△△P<0.01vsOUA-I/R group

GroupStabilizingpointIschemia 30min Reperfusion5min15min30min60min90min120minNC21.45±1.1321.43±1.2422.81±1.0022.67±1.25222.82±1.9823.03±2.3523.55±2.4222.46±2.68I/R21.29±1.5645.03±2.89**89.51±2.34**73.15±2.86**66.15±1.77**54.09±1.86**48.00±3.11**41.90±1.56**OUA-I/R21.06±1.3947.07±4.60**113.83±3.50**##102.38±3.79**##95.78±2.66**##83.76±2.66**##74.88±3.15**##62.88±2.75**##Anti-Dig-I/R20.48±1.045.45±2.76**73.51±3.15**##61.79±1.75**##54.14±2.57**##44.70±1.70**##39.25±1.43**##33.12±1.53**##PP2-OUA-I/R20.52±1.5445.02±3.20**101.15±2.38**##△△91.51±1.28**##△△83.58±2.33**##△△70.07±1.33**##△△61.76±3.15**##△△52.17±3.68**##△△U73122-OUA-I/R20.96±1.2946.65±3.12**104.78±3.17**##△△94.14±1.81**##△△86.92±3.87**##△△72.46±2.85**##△△65.25±3.44**##△△55.49±2.18**##△△

CK: Creatin Kinase

**P<0.01vsNC group;###P<0.01vsI/R group;#△△P<0.01vsOUA-I/R group

GroupNa+-K+-ATPase(ng/ml)Ca2+c(mmol/g·prot)FluorescenceintensityofCa2+NC22.01±2.170.57±0.0617.85±1.28I/R13.75±0.92**1.37±0.08**38.57±1.32*OUA-I/R9.48±0.43##1.95±0.07##56.92±1.39##Anti-Dig-I/R16.25±0.53##1.07±0.04##△30.26±2.41##PP2-OUA-I/R11.66±0.53##△△1.64±0.08△△40.98±1.73##△△U73122-OUA-I/R10.98±0.72##△1.70±0.07△47.00±1.47##△△

*P<0.05,**P<0.01vsNC group;###P<0.01vsI/R group;#△P<0.05,△△P<0.01vsOUA-I/R group

2.6 流式细胞术检测心肌细胞凋亡

与NC组比,I/R组心肌细胞凋亡率明显升高(P<0.01);与 I/R 组比,OUA-I/R组、PP2-OUA-I/R组、U73122-OUA-I/R组心肌细胞凋亡率均明显升高, Anti-Dig-I/R组则明显降低(P<0.01);与 OUA-I/R组相比,PP2-OUA-I/R组、U73122-OUA-I/R组凋亡细胞所占比例明显降低(P<0.01,图1)。

2.7 钠泵α1亚基、GRP78、CHOP及凋亡蛋白Bcl-2/Bax表达的组间变化

Westen blot结果显示:同NC组相比,I/R组心肌钠泵α1亚基和Bcl-2表达明显下降,GRP78、CHOP和Bax表达明显升高(P<0.01);同I/R组相比,OUA-I/R组、PP2-OUA-I/R组、U73122-OUA-I/R组心肌钠泵α1亚基和Bcl-2表达降低, GRP78、CHOP和BAX表达升高;而 Anti-Dig-I/R组心肌钠泵α1亚基和Bcl-2表达升高,GRP78、CHOP和Bax表达降低,差异显著(P<0.01);与OUA-I/R组相比,PP2-OUA-I/R组、U73122-OUA-I/R组心肌钠泵α1亚基和Bcl-2表达升高(P<0.01),GRP78、CHOP和Bax表达降低,差异有统计学意义(P<0.01,表7,图2)。

Groupα1/GAPDHGRP78/GAPDHCHOP/GAPDHBax/GAPDHBcl-2/GAPDHNC0.47±0.021.01±0.100.44±0.050.42±0.041.12±0.02I/R0.22±0.01**1.51±0.07**0.77±0.07**0.84±0.05**0.86±0.04**OUA-I/R0.10±0.01##2.08±0.06##1.11±0.06##1.32±0.06##0.59±0.06##Anti-Dig-I/R0.30±0.01##1.19±0.06##0.54±0.06##0.68±0.04##0.96±0.06##PP2-OUA-I/R0.16±0.01##△△1.75±0.07##△△0.87±0.07##△△1.09±0.03##△△0.76±0.05##△△U73122-OUA-I/R0.16±0.01##△△1.79±0.10##△△0.91±0.05##△△1.10±0.04##△△0.75±0.04##△△

**P<0.01vsNC group;###P<0.01vsI/R group;#△△P<0.01vsOUA-I/R group

3 讨论

哇巴因[17]可与钠泵的特异性位点可逆性结合,抑制其活性,但其对钠泵的抑制作用与浓度有关,哇巴因有效控制心衰的血清游离浓度约为 1~10 nmol/L,而抑制 Na+-K+-ATP酶的浓度则远远大于10 nmol/L[18],预实验结果显示高浓度哇巴因(10-6-10-4mol/L)灌流离体心脏30 min 后钠泵活性明显抑制,浓度10-4mol/L的哇巴因可使离体心脏持续室颤甚至停跳,哇巴因(10-5mol/L)为实验选择浓度。除了从植物提取和动物体内获得的强心苷类化合物外,人和动物体内也会通过生物合成途径生成内源性洋地黄类物质[17],研究证实体内许多病理生理过程与其密切相关[19]。亦有实验表明,急性心肌梗死大鼠,血浆及心肌组织中内洋地黄水平显著增加, 心肌膜ATP酶活性明显下降,地高辛抗血清能起到明显拮抗作用,减轻心肌I/R损伤[20]。本实验分别采用哇巴因和地高辛抗血清,观察其对离体心脏的钠泵功能影响,旨在探讨钠泵功能改变和内质网应激在离体心脏I/R损伤的内在联系及其可能机制。

GRP78又称为内质网分子伴侣,为内质网标志分子,早期ERS时GRP78与内质网内误折叠及未折叠蛋白结合,减轻ER负荷,恢复其稳态[21]。CHOP则是ERS反应中重要的凋亡信号转录因子,ERS时表达增加[22],可以通过调节Bcl-2家族蛋白的表达诱导细胞凋亡,Bcl-2与Bax是内质网应激诱导的下游信号分子,在JNK和CHOP的激活下,Bcl-2/Bax对抗失衡,从而诱导细胞凋亡[23]。同NC组相比,I/R组心肌钠泵α1亚基和Bcl-2表达明显下降,GRP78、CHOP和Bax表达明显升高,同I/R组相比,OUA-I/R组、PP2-OUA-I/R组、U73122-OUA-I/R组心肌钠泵α1亚基和Bcl-2表达降低, GRP78、CHOP和Bax表达升高,表明心肌I/R损伤的过程中,钠泵功能改变和内质网应激及其凋亡通路均参与其中。

在钠泵相关的通路(Src和PLC)中,钠泵的α1亚基和Src之间至少是两个位点的结合,α1亚基的CD2和CD3(CD2 和CD3分别位于的α1亚基A结构域和N结构域)分别与Src的 SH2和SH3结合[21]。Haas 等[23]观察到被哇巴因活化的Src可以和EGFR胞内区结合,并激活丝裂原激活的蛋白激酶,募集SH2包含蛋白(Shc)、Ras等调节蛋白至质膜,进而活化Ras/Raf/MEK/ERK级联反应。Haijiang Wu等[24]发现给予Src抑制剂PP2或p38MAPK抑制剂可以通过抑制CHOP的表达及上调Bcl-2/Bax来明显减轻肾小管上皮细胞的凋亡;Ann L等[25]发现,PLC通路的激活可以通过IP3R使得内质网中钙稳态失衡,从而通过死亡受体及细胞色素c等通路介导细胞凋亡。文中给予Src通路抑制剂PP2和PLC通路抑制剂U73122后,PLC及U73122均部分阻断了哇巴因对钠泵的抑制作用,表现为心功能恢复率升高,钙超载现象明显减轻,心肌细胞凋亡率改善,Na+-K+-ATP酶的活性和钠泵α1亚基的表达均明显升高,内质网应激标志蛋白GRP78和CHOP表达下降,促凋亡因子Bax蛋白表达显著下降,抗凋亡因子Bcl-2蛋白表达显著升高。表明钠泵功能改变和内质网应激共同参与大鼠离体心脏缺血再灌损伤,提示钠泵通路(Src和PLC)介导内质网应激是引起大鼠离体心脏I/R损伤细胞凋亡的可能机制之一。

[1] Lingrel JB. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase[J].AnnuRevPhysiol, 2010, 72: 395-412.

[2] Panayiotidis MI, Franco R, Bortner CD,etal. Ouabain-induced perturbationsin intracellular ionic homeostasis regulate death receptor-mediated apoptosis[J].Apoptosis, 2010, 15(7): 834-849.

[3] Yuan Z, Cai T, Tian J,etal. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex[J].MolBiolCell, 2005, 16(9): 4034-45.

[4] Huang H, Chen YM, Zhu F,etal. Down-regulated Na(+)/K(+)-ATPase activity in ischemic penumbra after focal cerebral ischemia/reperfusion in rats [J].IntJClinExpPathol, 2015, 8(10): 12708-12717.

[5] Nawada R, Murakami T, Iwase T,etal. Inhibition of sarcolemmal Na+,K+-ATPase activity reduces the infarct size-limiting effect of preconditioning in rabbit hearts[J].Circulation, 1997, 96(2): 599-604.

[6] Guo HC, Guo F, Zhang LN,etal. Enhancement of Na/K pump activity by chronic intermittent hypobaric hypoxia protected against reperfusion injury[J].AmJPhysiolHeartCircPhysiol, 2011, 300(6): H2280-2287.

[7] 杨 锐, 贾 强, 刘小粉, 等. 硫化氢对大鼠糖尿病心肌氧化应激及内质网应激的影响[J]. 中国应用生理学杂志, 2016, 32(1): 8-12.

[8]Liu M, Wang XR, Wang C,etal. Panaxquinquefoliumsaponin attenuates ventricularremodeling after acute myocardial infarction by inhibiting CHOP-mediated apoptosis[J].Shock, 2013, 40(4): 339-344.

[9] Xin W, Li X, Lu X,etal. Involvement of endoplasmic reticulum stress-associated apoptosis in a heart failure model induced by chronic myocardial ischemia[J].IntJMolMed, 2011, 27(4): 503-509.

[10]Miyazaki Y, Kaikita K, Endo M,etal. C/EBP homologous protein deficiency attenuates myocardialreperfusion injury by inhibiting myocardial apoptosis and inflammation[J].ArteriosclerThrombVascBiol, 2011, 31(5): 1124-1132.

[11]Kim DS, Kwon DY, Kim MS,etal. The involvement of endoplasmic reticulum stress in flavonoid-induced protection on cardiac cell death caused by ischaemia/reperfusion[J].JPharmPharmacol, 2010, 62(2): 197-204.

[12]Li Z, Xie Z. The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades[J].PflugersArch, 2009, 457(3): 635-44.

[13]Wang Y, Ye Q, Liu C,etal. Involvement of Na/K-ATPase in hydrogen peroxide-induced activation of the Src/ERK pathway in LLC-PK1 cells[J].FreeRadicBiolMed, 2014, 71: 415-426.

[14]Saini-Chohan HK, Goyal RK, Dhalla NS. Involvement of sarcoplasmic reticulum in changing intracellular calcium due to Na+/K+-ATPase inhibition in cardiomyocytes[J].CanJPhysiolPharmacol, 2010, 88(7): 702-715.

[15]Wang Y, Qiu Q, Shen JJ,etal. Cardiac glycosides induce autophagy in human non-small cell lung cancer cells through regulation of dualsignaling pathways [J].IntJBiochemCellBiol, 2012, 44(11): 1813-1824.

[16]Adams KF Jr, Gheorghiade M, Uretsky BF,etal. Clinical benefits of low serum digoxin concentrations in heart failure[J].JAmCollCardi-al, 2002, 39(6): 946-953.

[17]Gruber KA, Whitaker JM, Buckalew VM. Endogenous, digitalis-like substance in plasma of volume-expanded dogs[J].Nature, 1980, 287(5784): 743-745.

[18]Ma J, Esplin MS, Adair CD,etal. Increasing evidence for and regulation of a human placental endogenous digitalis-like factor[J].ReprodSci, 2012, 19(4): 437-448.

[19]He-Gui Wang, Yue-Feng Chu, Jian-Gang Zou,etal. Antidigoxin antiserum prevents endogenous digitalis-like compound-mediated reperfusion injury viamodulating sodium pump isoform gene expression[J].CanJPhysiolPharmacol, 2010, 88(1): 38-44.

[20]Urban P, Pavlíková M, Sivonová M,etal. Molecular analysis of endoplasmic reticulum stress response after global forebrain ischemia/reperfusion in rats: effect of neuroprotectant simvastatin[J].CellMolNeurobiol, 2009, 29(2): 181-192.

[21]Banerjee M, Duan Q, Xie Z. SH2 Ligand-Like Effects of Second Cytosolic Domain of Na/K-ATPase α1 Subunit on SrcKinase[J].PLoSOne, 2015, 10(11): e0142119.

[22]刘 磊, 王洪军, 辛 晴, 等. 病毒性心肌炎所致小鼠心力衰竭心肌组织内质网应激相关的凋亡关系的研究[J]. 中国应用生理学杂志, 2014, 30(5): 461-464.

[23]Haas M, Wang H, Tian J,etal. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptorrelays the signal from ouabain to mitogen-activated protein kinases[J].JBiolChem, 2002, 277(21): 18694-18702.

[24]Wu H, Shi Y, Deng X,etal. Inhibition of c-Src/p38 MAPK pathway ameliorates renal tubular epithelial cells apoptosis in db/db mice[J].MolCellEndocrinol, 2015, 417: 27-35.

[25]Wozniak ALs, Wang X, Stieren ES,etal. Requirement of biphasic calcium release from the endoplasmic reticulum for Fas-mediated apoptosis[J].JCellBiol, 2006, 175(5): 709-714.

Role of changes in sodium pump activity and endoplasmic reticulum stress in the ischemia/reperfusion induced injury of isolated hearts

WANG Hai-hua1△, WANG Hai-zhen1, SHI Na1, WANG Zhu-qing2, WANG Yao-jun2, ZHOU Ping-ping1, WANG Jing1

(1. Department of Physiology, 2. Department of Clinical Medicine, Wannan Medical College, Wuhu 241002, China)

Objective: To investigate the roles of change in sodium pump activity and endoplasmic reticulum stress (ERS) in ischemia/reperfusion (I/R) injury of the isolated rat hearts. Methods: Sixty male SD rats were randomly divided into 6 groups (n=10 each):normal control group (NC), I/R group (I/R), ouabain-I/R group (OUA-I/R), anti-digoxin antiserum-I/R group (Anti-Dig-I/R), PP2 (Src kinase inhibitor)-ouabain-I/R group (PP2-OUA-I/R),U73122 (PLC inhibitor)-ouabain-I/R group (PP2-OUA-I/R). The isolated rat hearts were perfused on the Langendorff apparatus. Except for NC group, all the hearts were subjected to 30 min global ischemia and followed by 120 min reperfusion. The cardiac function indexes were recorded at the same time. The coronary effluent was collected for estimating the activity of lactate dehydrogenase (LDH) and creatine kinase (CK). The activity of Na+-K+-ATPase and intracellular calcium concentration in myocardial tissue were measured. Apoptosis was evaluated by Flow cytometric analysis. The expressions of sodium pump α1 subunit, glucose regulated protein(GRP78),C/EBP homologous protein (CHOP) and Bcl-2/Bax were determined by Western blot. Results: Pretreatment with ouabain significantly reduced the recovery of cardiac function, increased the levels of CK, LDH and intracellular calcium concentration, decreased the activity of Na+-K+-ATPase. In addition, ouabain markedly increased the myocardial apoptosis index, down-regulated the expressions of sodium pump α1subunit and Bcl-2, up-regulated the expressions of GRP78,CHOP and Bax; while these changes were significantly improved in the Anti-Dig-I/R group compared with those in the I/R group; PP2 or U73122 partially blocked the effects of ouabain on myocardial I/R injury. Compared with the OUA-IR group, the recovery of cardiac function, the activity of Na+-K+-ATPase and the expressions of sodium pump α1 subunit and Bcl-2 were significant higher, meanwhile the leakage of CK and LDH, intracellular calcium concentration, myocardial apoptosis index and the expressions of GRP78 and Bax were significantly lower in PP2-OUA-I/R and U73122-OUA-I/R group. Conclusion: Changes in sodium pump function and endoplasmic reticulum stress all participate in the process of I/R injury. Current findings further suggest that sodium pump mediates ERS by activating signals of Src and PLC pathway, which may be one of the mechanisms of apoptosis induced by I/R injury.

sodium pump; endoplasmic reticulum stress; ischemia/reperfusion injury; isolated heart; apoptosis; mouse

安徽省高校省级科学研究重点项目(KJ2016A729,KJ2013A251);安徽省级大学生创新创业训练计划项目(AH201310368107);国家级大学生创新创业训练计划项目(201510368009)

2016-02-06

2016-10-19

R73-3

A

1000-6834(2017)01-040-07

△【通讯作者】Tel: 13675536187; E-mail: wanghaihua9972@sina.com

猜你喜欢
离体亚基内质网
97份安徽省种植小麦品种HMW-GS组成及品质分析
胃癌中主要SWI/SNF复合物亚基突变/缺失与临床预后及肿瘤免疫反应的关系
愤怒诱导大鼠肝损伤中内质网应激相关蛋白的表达
公告
心脏钠通道β2亚基转运和功能分析
蓝隐藻藻蓝蛋白亚基的分离及特性研究
元胡止痛口服液对缩宫素致小鼠离体子宫痉挛性收缩的影响
灵魂离体
对萼猕猴桃无菌离体再生体系研究
AMPK活性对HeLa细胞内质网功能稳态的影响