李浩++冉彤
摘 要:混合动力汽车拥有内燃机和电动机两种动力,具有高效率和低排放的特点,因此,开发和研究混合动力汽车能够有效解决汽车排放污染和社会能源问题。该文介绍了混合动力汽车的几种常见结构和特点,概述了一种基于CAN总线的混合动力汽车电控系统的结构及控制流程,分析了电控系统各组成部分的控制功能,为今后混合动力汽车电控系统性能的优化提供参考依据。
关键词:电控系统 混合动力 控制流程 分析研究
中图分类号:U46 文献标识码:A 文章编号:1672-3791(2017)03(b)-0059-04
现代社会对汽车节能、环保的要求日益增高,研发节能、环保的新型汽车,成为汽车行业的一种发展趋势。但因当前电池技术和工艺瓶颈的限制,纯电动汽车暂时还无法完全取代燃油发动机的汽车[1]。拥有内燃机和电动机两种动力的混合动力汽车,很好地兼顾了电动汽车和传统汽车的优点,从而成为更加务实的选择。混合动力汽车除发动机、电动机、蓄电池、变速器等主要部件外,更重要的是实现能量在各部件间合理分配以提升整车效率的电控系统,所以研究混合动力汽车的电控系统对推动混合动力汽车的发展具有重要的现实意义。
1 混合动力汽车结构概述
混合动力汽车继承和沿用了大部分内燃机汽车的装置和系统,将内燃机、电动机、能量存储装置(蓄电池)有机地组合在一起,驱动系统一般有串联型、并联型和混联型三种布置形式[2],分别如图1、2、3所示。串联型混合动力汽车的发动机可始终在最佳的工作区域内稳定运行,具有良好的经济性和排放性。特别是在汽车低速运行工况时可关闭发动机,只利用蓄电池向外输出功率,降低汽车的排放污染;并联型混合动力汽车的发动机运行工况受汽车行驶工况的影响比较大,适合于在中、高速稳定工况下行驶。而在其他工况下发动机不在最佳工作区域内运行,发动机的燃油经济性和排污指标不如串联型。混联型的布置形式综合了串联型和并联型的共同优点,在汽车低速行驶时,驅动系统主要以串联方式工作;当汽车在中、高速稳定行驶时,则以并联方式工作。
2 混合动力汽车电控系统类型及结构
随着电控系统的广泛应用,汽车的电控系统已由传统的集中控制系统向现场总线构成的智能化网络系统转化,特别是采用CAN总线网络控制系统的电控技术已成为当今汽车业界的先进技术。混合动力汽车同时拥有内燃机和电动机两种动力,电子控制装置复杂,检测及交换的数据量较大,只有应用高效的电控系统才能实现两种动力的最佳匹配,发挥混合动力的优势[3]。因此,CAN总线构成的电控系统是实现混合动力汽车两种动力合理有效匹配的可靠手段。
为解决能源的协调问题,一种基于CAN总线结构的电控系统在混合动力汽车上得到了广泛应用,其主要由中央控制器、发动机控制系统、电机控制系统及信号反馈和检测装置等几部分组成,具体为整车控制器、发动机电控单元、变速器控制单元、电机控制单元、电池管理系统、高压管理系统、ABS控制单元、仪表及显示系统、监控/标定系统等[4]。整车控制器与各电控子单元、驾驶员及整车共同构成一个闭环控制系统,该系统通过CAN总线从各类传感器上获取驾驶员的操作指令和车辆的运行状态,再通过CAN总线实现各控制单元间信息的共享、交换和传输,最终完成整车动力系统的能量分配。整个控制系统的结构示意图如图4所示,其中驾驶员的各项操作指令位于顶层,整车控制器在中间层,底层为各子控制单元[5]。
3 电控系统各单元控制功能
3.1 整车控制器(VSC)
整车控制器(VSC,Vehicle System Controller),是整个电控系统的核心,具有管理和控制整个车辆的重要功能。主要完成车辆信息采集和驾驶员意图的判别,对采集到的点火、踏板及档位信号、车速、发动机和电动机扭矩和转速、电池电荷状态(SOC)、故障码等主要信息进行迅速处理,并通过内部相应的控制策略,分析计算出发动机、电动机等当前的状态参数,得出满足最佳需求的功率或扭力矩分配、最佳的充电功率、自动变速器的最佳档位控制等,控制车辆的实际运行[6]。当电控系统出现故障时,它会及时对故障进行处理,保证系统的安全运行。
3.2 发动机电控单元(ECU)
汽车发动机电子控制单元(ECU)是发动机控制系统的核心,它根据从各种传感器接受到的信息来控制各种工况下的燃油喷射时刻、喷射量和点火时刻(汽油机),向发动机提供最佳空燃比的混合气,使发动机始终处在最佳工作状态,提高发动机的动力性、经济性和排放性。它通过CAN总线接收整车控制器发出的对发动机的命令,经判断处理后对发动机进行控制,同时也可以通过通讯接口与车内其他电子控制单元进行数据通讯。
3.3 电机控制单元(MCU)
电机控制单元由微处理器、程序和数据存储器、驱动和接口电路及电机调速控制等几部分组成。它不仅能够通过CAN总线接收整车控制器发出的对电动机的控制指令并及时执行,以控制电机的发电与电动状态的切换、电机转速的快慢及输出力矩的正负,还可以向CAN总线发送电机的运转状态,比如实际扭矩、转速、充放电电流、故障码等。同时该控制单元的故障自诊断功能还可保证当电机出现故障时能够自行处理,以保障车辆的行驶安全。
3.4 电池管理系统(BMS)
电池管理系统(BMS)实时监测电池的电压、容量、充放电电流、电池的SOC值,并将这些信息通过CAN总线发送到整车控制器进行处理,以提升电池性能和寿命[7]。同时,BMS还要对电池系统内单体电池的电荷均衡进行监测和控制,以保证电池组正常工作,也会将电池组的SOC值传送到显示系统进行显示。
3.5 高压管理系统
高压管理系统主要负责高压用电设备的上、下电管理,监测高压设备的工作状态,并通过CAN总线向整车控制器报告。遇到故障或紧急情况时采取保护措施,减小电流冲击,防止设备损坏[8]。
3.6 仪表及显示系统
混合动力汽车的仪表及显示系统除动态显示车速、发动机转速、里程、水温、油量等传统信息外,还能接收CAN总线上的讯号,额外显示工作模式、电池SOC值、充放电电流、电机转速等必要信息。驾驶员能够通过仪表及车载显示系统实时了解车辆的运行状态,因而该系统是整个电控系统的眼睛。
3.7 监控与标定系统
该系统最初用来完成整车控制系统开发、调试与检验。在实现其基本功能后,监控与标定系统一方面可以准确及时地检测发动机转速、车速、节气门负荷、真空度、冷却水温、档位、空调状态等车辆参数,并通过CAN总线送往整车控制器进行决策,送往显示系统进行显示;另一方面又可以通过标定系统的接口来优化各个参数,使车辆运行达到最佳效果。
3.8 电动助力转向(ESP)及防抱死制动系统(ABS)
电动助力转向系统(ESP)通过传感器监测驾驶员施加在方向盘上的力矩和车速,然后根据控制单元内置的算法来控制转向助力电机的运行,向驾驶员提供合适的转向助力力矩;防抱死制动系统(ABS)在车辆制动时,监测车轮的滑移率来自动控制制动器制动力的大小,防止车轮抱死,以保证车轮与地面间的最大附着力。当ABS作用时会通过CAN总线网络向其他控制单元告知其状态,从而触发VSC相应的管理模块,终止制动能量回馈功能,以保证车辆安全。
4 电控系统的控制流程与特点
整车控制器(VSC)根据汽车当前的实际运行状态及驾驶员的操作意图确立合理的运行模式(即发动机驱动与电机驱动模式的选择),以保证车辆的驾驶性能。在选定的运行模式下,VSC可通过CAN总线与各子控制单元或系统进行通讯。整个工作过程中,各子控制单元或系统分别采集各自控制对象的信号和动态参数,通过现场总线发给VSC,VSC利用这些信息,通过控制策略的运算来进行信号流和能量流的处理和分配工作,并通过现场总线向各子控制单元或系统发出执行指令。各子控制单元或系统接受执行指令,并根据控制对象的当前动态参数,再发出对控制对象的控制命令。例如,VSC根据采集到的参数和运算策略计算出目标挡位后,会向变速器控制单元(TCU)发送换挡命令,TCU根据指令将控制变速器的执行部件完成挡位变换。
該电控系统由主控制单元和子控制单元组成,整体是一个高度集成的控制网络。整车控制器(VSC)作为主控单元,负责管理各个子控制单元的能量分配和子部件系统执行元件的工作,显现了很强的集成性能[9]。而子控制单元将控制任务模块化,每个模块都有一个控制单元来接管,降低了系统的故障率,提高了系统的运行可靠性。不仅如此,这种面向对象设计的分布式系统还提高了系统的可扩展性,便于建设、运行和维护。
5 结语
混合动力汽车有效减轻了能源与环保问题,发展前景十分广阔。电控系统肩负着在不同运行工况和驾驶习惯下提升混合动力汽车动力性、燃油经济性和排放性的责任,同时还要兼顾电池寿命、整车部件的安全可靠性及成本,可谓任道而重远。混合动力汽车的电控系统还需在当前的框架之下不断完善其控制过程,来推动汽车工业的发展,这是我们要为之努力奋斗的方向。
参考文献
[1] 刘春娜.混合动力汽车用电池的市场前景[J].电源技术,2013,37(9):1506.
[2] 于秀敏,曹珊,李君,等.混合动力汽车控制策略的研究现状及其发展趋势[J].机械工程学报,2006,42(11):10-16.
[3] 田江学,屈卫东.CAN总线在混合动力汽车中的应用[J].计算机工程,2003,29(19):174.
[4] 何晶.混合动力汽车电控系统的设计[D].大连:大连理工大学,2005.
[5] 李胜利.混合动力汽车动力总成系统分析与控制策略制定[D].沈阳:东北大学,2008.
[6] 陈素梅,王智晶,龚军.混合动力汽车整车控制系统分析研究[C]//河南省汽车工程科学技术研讨会.2013:289.
[7] 张忠义,羌嘉曦,杨林,等.混合动力电池管理系统[J].机电工程技术,2006,35(1):61.
[8] 冯雷,李松,丁富强.电动汽车高压安全管理系统设计[J].科技与企业,2012(11):124-125.
[9] 熊伟威,张勇,舒杰.基于CAN总线的分布式控制网络在串并联式混合动力客车上的应用[J].汽车工程,2008,30(8):664-666.