刘羽,刘盛雨,卢娟芳,于庆帆,席万鹏,2,4
(1西南大学园艺园林学院,重庆 400716;2石河子大学农学院,新疆石河子 832000;3新疆兵团第四师农科所,新疆伊犁 835000;4南方山地园艺学教育部重点实验室,重庆 400715)
新疆红肉苹果3个品系的风味品质与抗氧化能力评价
刘羽1,刘盛雨1,卢娟芳1,于庆帆3,席万鹏1,2,4
(1西南大学园艺园林学院,重庆 400716;2石河子大学农学院,新疆石河子 832000;3新疆兵团第四师农科所,新疆伊犁 835000;4南方山地园艺学教育部重点实验室,重庆 400715)
【目的】明确新疆红肉苹果风味物质组成与含量特征,了解其营养品质状况,为开发利用提供信息。【方法】分别采用高效液相色谱(High Performance Liquid Chromatography,HPLC)和气相色谱-质谱联用(Gas Chromatography-Mass Spectrometer,GC-MS)技术,以富士苹果‘长富2号’为对照,检测分析3个新疆红肉苹果品系果皮和果肉的糖、酸和挥发性成分的组成及含量,并测定评价其提取物的总酚、总黄酮的含量以及抗氧化活性。【结果】3个供试品系的可滴定酸含量为21.01—27.71 mg·mL-1,是对照的3.68—4.85倍,pH为3.12—3.39,显著低于对照(P<0.05)。共检测到果糖、葡萄糖、蔗糖3种可溶性糖,其中以果糖(56.71%—64.07%)为主,蔗糖的含量最低,仅仅占总糖含量的 8.89%—31.12%。供试品系中可溶性糖的含量均显著低于对照;果肉中果糖的含量显著高于果皮,而葡萄糖和蔗糖的含量无显著差异(P<0.05)。共检测到5种有机酸,包括柠檬酸、酒石酸、草酸、苹果酸和奎宁酸,以苹果酸(56.53%—95.07%)的含量最高,其次为柠檬酸(2.11%—40.72%),其他酸的含量均低于0.6 mg·g-1FW,奎宁酸只在‘13-3’中检测到。果皮、果肉中,苹果酸含量分别是对照的6.56—8.99倍和5.58—6.61倍,柠檬酸的含量是对照的16.80—117倍和4.50—16.17倍;果肉中苹果酸的含量显著高于果皮,而柠檬酸的含量显著低于果皮(P<0.05)。共检测到85种挥发性成分,醛类、酯类和萜类的含量最为丰富,共占总香气物质的 92.32%—97.84%。‘13-3’与对照相似,以酯类和萜类为主,丁酸乙酯、2-甲基丁酸乙酯、己酸甲酯、乙酸己酯是主要酯,苏合香烯、D-柠檬烯、α-法尼烯是主要萜,而‘P3’和‘新农’以醛类和萜类为主,己醛和反-2-己醛是主要的醛。果皮中挥发性成分的含量显著高于果肉(P<0.05)。果皮中总酚、总黄酮的含量分别是对照的2.31—2.65倍和1.23—1.61倍,果肉中分别是对照的5.53—16倍和1.43—3.49倍,3种自由基清除能力也显著高于对照。果皮的总酚、总黄酮含量均高于果肉,且抗氧化活性也远高于果肉,‘13-3’的总酚、总黄酮及抗氧化能力最高。【结论】3个供评价的品系材料均属于新疆红肉苹果中的高酸类型;低可溶性糖、高苹果酸、高柠檬酸、低总糖苹果酸比,以及特征香气成分己醛、2-己烯醛、丁酸乙酯、己酸乙酯、乙酸己酯、2-甲基丁酸乙酯在其独特的风味品质决定中有重要作用,‘P3’和‘新农’属“青香型”苹果,‘13-3’属“果香型”。供试品系风味特征鲜明、营养价值高,是研究风味品质及选育功能性加工苹果的良好材料,其中‘13-3’的表现最优。
新疆红肉苹果;糖;酸;香气物质;抗氧化活性
【研究意义】苹果是世界第一大水果,中国是全球第一大苹果生产国和消费国[1-2]。2014年中国苹果产量已达到4.09×107t,约占全球产量的1/2(FAO)[3]。目前,‘富士’系苹果是中国的主栽品种,占栽培苹果的50%以上,栽培品种比较单一,专用加工品种也比较缺乏。尽管许多品种果实色泽等外观品质较好,但风味、营养等内在品质不佳。新疆红肉苹果(Malus sieversii f. neidzwetzkyana(Dieck)Langenf)是新疆野苹果的变型,也是世界上许多栽培苹果的祖先种,不仅遗传多样性丰富,而且果实多酚及Ca等功能成分含量均高于其他品种,是苹果品质育种和种质创新的重要材料[4-5]。新疆红肉苹果中,部分类型由于酸度高和富含类黄酮等特点成为提纯天然苹果酸、加工苹果醋和生产调味品的良好材料,为未来选育风味良好、功能型加工苹果的珍贵资源提供参考。【前人研究进展】风味是苹果的重要品质因子之一,由可溶性糖、有机酸和香气物质等共同决定[6-8]。迄今,有关苹果风味品质的研究并不鲜见。王海波等[9]研究了‘早丰甜’‘早金冠’‘岱绿’等6个早熟苹果品种的糖、酸组成情况和‘皇家嘎拉’‘茂利元帅’等中早熟品种的风味品质[10];车根等[11]评价了‘太平洋嘎啦’苹果的风味品质;ANTONIO等[12]鉴定分析了‘金冠’苹果的挥发性成分。王岩等[13]比较了‘富士’‘国光’‘花牛’和‘金冠’苹果果皮和果肉的抗氧化活性;王燕等[14]评价了‘紫红 1号’果肉的抗氧化能力。【本研究切入点】尽管已经有较多研究涉及苹果风味和营养品质,但未见新疆红肉苹果风味品质的生化基础和营养品质的相关报道。【拟解决的关键问题】本研究以 3个新疆红肉苹果品系的果皮及果肉为材料,以富士系品种‘长富 2号’为对照,采用色谱技术检测分析果实中可溶性糖、有机酸、香气物质、总酚、总黄酮的含量与组成情况,评价果实提取物的总抗氧化能力,摸清供试品系风味物质组成与含量特征,并初步探讨其营养品质状况,为功能型苹果育种和风味品质调控提供依据。
试验于2015年10—12月在西南大学南方山地园艺学教育部重点实验室进行。
1.1 材料
供试材料为‘P3’‘13-3’‘新农’3个从新疆野生苹果中选育出的新品系,对照为富士系苹果‘长富2号’(图1)。种植于新疆生产建设兵团农四师农科所试验园(49°09' N,81°07' E)。果园土壤类型为沙壤土,有机质含量1.18%,碱解氮45 mg·kg-1,速效磷42.5 mg·kg-1,速效钾97.6 mg·kg-1。栽植株行距为2 m×3 m,砧木为八棱海棠[Malus robusta (Carr.) Rehder],树龄6年,亩产量约1 200 kg,树形为纺锤形,树体健壮,营养状况基本一致。土、肥、水管理,树体修剪和病虫害防治统一按照试验园栽培管理技术流程进行。2014年春季每个品种选择树势相对一致的6棵树进行标记,于2015年10月果实成熟期,在树冠中外围中上部随机挑选大小、成熟度一致的果实作为试验材料。采摘当天运抵实验室进行取样和相关鲜样指标的测定。每20个果实为一个重复,共60个果实。测定色差、硬度等生理指标后,将果皮和果肉分开并迅速用液氮冷冻,置于-80℃超低温冰箱中冷冻保存备用。
1.2 方法
1.2.1 基本生理指标测定 使用CR-400色差仪(日本Konica Minolta公司)测定果实色差。用GY-4 硬度计(石家庄世亚科技有限公司)8 mm直径的头测定果实硬度。采用日本爱宕数字手持式折射仪AYAGO PAL-1测定果实可溶性固形物(TSS)。用滴定法测定果实可滴定酸(TA),10 mL离心后的果浆中加入1%的酚酞指示剂,用0.2 mol·L-1NaOH滴定至pH=8.2,将滴定结果换算成当量苹果酸。使用FE20-SevenEasy™ pH计(梅特勒托利多仪器有限公司)测定pH。上述生理指标每10个果实为一个重复,共设3个重复。
图1 不同苹果品种(系)果实Fig. 1 Fruits of apple cultivars/lines used in the study
1.2.2 糖、酸物质的提取与测定 称取3 g果皮或果肉冻样研磨后加入5 mL 80%乙醇,35℃水浴提取20 min,4℃下10 000 r/min离心15 min,吸取上清液,重复提取3 次,合并上清液,并定容至20 mL。取3 mL提取液10 000 r/min离心5 min,将上清液用氮吹仪吹干。残渣用1.5 mL双蒸水溶解,经过0.22 μm的水膜过滤纯化后待测。每组样品重复3次。
参考ZHANG等[15]的高效液相色谱法测定可溶性糖和有机酸。使用岛津(4.6 mm×250 mm),0.5 μm的NH2柱分离可溶性糖,以乙腈﹕水=7﹕3为流动相,流速为1.2 mL·min-1,等度洗脱,柱温40℃,载气流速设为40 P,漂移管温度为65℃。使用ODS(4.6 mm ×250 mm),0.5 μm的C18柱分离有机酸,流动相为50 mmol·L-1(NH2)2HPO4,以H2PO3为缓冲液调节至pH=2.7,流速为 0.5 mL·min-1,等度洗脱,柱温为25℃,检测波长210 nm。含量以mg·g-1FW表示,每组样品重复3次。
1.2.3 香气物质的分离与鉴定 参照XI等[16]的方法进行。称取5 g果皮或果肉冻样研磨成粉末后加入5 mL饱和氯化钠,混匀后加入10 μL内标物壬酸乙酯(5.77 mg·mL-1),使用DVD/ Carboxen/ PDMS(50/30 μm)针40℃下萃取35 min。用Rt×21MS 毛细管色谱柱(30 m×0.25 mm×0.25 μm)检测,进样口温度250℃。升温程序:34℃保持3 min,以3℃·min-1升至50℃,再以6℃·min-1升至140℃,最后以10℃·min-1升至230℃,保持4 min。质谱载气为He气,流量0.8 mL·min-1,电离方式EI,电子能量70 eV。不分流进样1 μL,离子源温度200℃。检测出的化合物质谱图经计算机NISTLibrary 质谱库匹配,选出相似度大于90%的物质,并结合文献进行图谱解析,确定香气成分。使用内标物法进行定量。含量以μg·kg-1FW表示,每组样品重复3次。
1.2.4 总酚、总黄酮及抗氧化活性的测定 总酚的测定参照 ORTHOFER等[17]的方法进行。称取样品0.45 g于三角瓶中,加入8 mL甲醇,50℃超声30 min,5 000 r/min离心15 min,重复3次,合并上清液,定容至25 mL。取0.25 mL提取液于10 mL离心管中,加入纯水0.75 mL,福林酚试剂1.0 mL,暗处放置5 min后加入1.0 mL 5% Na2CO3溶液,充分混合后,室温放置60 min,于765 nm处测吸光值。以没食子酸制作标准曲线,含量以没食子酸当量 GAE(Gallic acid equivalent)表示,每组样品重复3次。
总黄酮的测定参照KIM等[18]的方法,取0.5 mL提取液于10 mL离心管中,加入纯水0.7 mL,混匀后加0.2 mL 5% NaNO2,静置5 min,加入0.2 mL 10% Al(NO3)3摇匀后静置 6 min,加入 2 mL 1 mol·L-1NaOH,再加1.4 mL纯水定容至5 mL,摇匀后静置15 min,于500 nm处测吸光值。以芦丁制作标准曲线,含量用芦丁当量RE(Rutin Equivalent)表示,每组样品重复3次。
二苯代苦味酰基自由基清除力(DPPH)测定参照GORINSTEIN等[19]的方法,取0.5 mL提取液和3.5 mL DPPH溶液,避光反应30 min后在517 nm处测定吸光值。铁离子还原力(FRAP)测定参照 BENZIE等[20]的方法,取0.1 mL提取液加入1.9 mL FRAP试剂中反应15 min,于593 nm处测定吸光值。2,2-联氮-二(3-乙基苯并噻唑-6-磺酸)二铵盐清除力ABTS测定参照ALMEIDA等[21]的方法,分别取0.2 mL各部位提取液,加入3.8 mL ABTS试剂反应10 min后于734 nm处测定吸光值。以溶于80%甲醇的Trolox为标样做标准曲线,结果用 Trolox当量 TE(Trolox Equivalent)表示,每组样品重复3次。
2.1 果实基本生理指标
从表1可以看出,3个供试材料L*值为30.36—40.56,果实色泽较深;a*均为正值,果实为红色。供试品系的单果重远远小于对照品种,其中单果重最大的‘新农’也仅为47 g左右,3个品系果实的横径均在40 mm左右,显著小于‘长富2号’,属于小果型品系(图 1)。供试品系的 TSS为 11.37%—13.47%,可滴定酸含量较高,为 21.01—27.71 mg·mL-1,是对照的3.68—4.85倍,pH为3.12—3.39,显著低于对照(P<0.05)。
2.2 果实可溶性糖和有机酸组成
pH-1)酸定滴g·mL可(mTA物形固性S(%)溶TS可度硬Hardness(N)h c*alues maticvroChb*差色esofapplefruita*标指L*理生本siologyindex基实果果Basicphy1 苹表Table1种品Cultivars .29a3.96±0.12c±05.711.26a 0±13.11.78b .08±20c 1.55.87±193.11a 45.54±a 0.87.53±152.19a 8±42.72.13a 43.67±gfu2Chan号2富长3.21±0.41ba 0.37.03±25a 0.82.00±13b 2.21.32±191.34b .86±222.77b 37.89±a 1.09.85±142.15b 2±34.81.89c 36.71±P33.12±0.18ba 0.37.71±270.76b .37±11b 1.32.67±191.31d .32±151.32c 23.41±b 0.326.24±3.24c 4±22.42.75d 30.36±13-3b 0.253.39±b 0.45.01±21a 0.58.47±13a 0.69.74±22a 2.45.79±33c 3.2126.62±a 0.78.3±143.06c 7±21.82.69b 40.56±g onXinn农新.05<0nificantlydifferentatPnfollowedbydifferentlettersaresigesinacolumValu.05)<0(P著显异差间理处示表母字同不列同
lpPuong 肉果Xinn农新Peel皮果Pulp肉果-313Peel皮果lpPulefruit肉果PeelP3皮果例比与量lp含Pu、成肉果组angfu2的Ch酸号机ratioofsolublesugarsandorganicacidsinapp2有富和长Peel糖皮性果溶可中实果果Composition,contentand2 苹nds Table2物mpou表合化Co例)比Ratio (%t量含ntenCog·g-1) (m例)比Ratio (%t量含ntenCog·g-1) (m例比Ratio) (%量含Content g·g-1) (m例比Ratio) (%量含Content g·g-1) (m例)比Ratio (%量含Content g·g-1) (m例)比Ratio (%量含Content g·g-1) (m例比Ratio) (%t量含ntenCog·g-1) (m例)比Ratio (%量含Content g·g-1) (mars lublesugSo糖性溶可1.09b64.07.31±509 59.1d 2.79.24±36.81 57e 0.80.76±31.71 562.78f .01±271 62.40.56d .99±38.54 595.49d 36.11±.57 58a 4.31.93±593.99c44.32.23±44Fructose糖果0.73b27.04.23±21.94 281.22c 17.72±.89 12.17d7.09±0.17 12.44d±05.781 24.2c 0.23.13±15.44 252.22c 15.43±.34 15c 1.38.71±154.99a23.48.13±24Glucose糖萄葡8.89.13d6.99±07 11.8.51d7.27±0.30 29c 0.41.10±16.12 311.62c .83±147 13.3.13d±08.35.02 159.11±1.21d.09 26b 2.97.70±262.01a33.76.18±32crose Su糖蔗Organicacids酸机有0.66.01a0.08±00.221b0.03±0.00 nd0 nd0.17.01b±00.020.251b0.04±0.02.220.02a 6±2.190.0.01b0.04±0alicacid Ox酸草4.431a0.54±0.02.53.04b0.35±02.21.02b±00.282.12.06c0.18±03.35.03b±00.391.980.32±0.07b.48 10.04b0.34±04.01.05b2±00.31Tartaricacid酸石酒0 nd0 nd0.62.06c0.08±02.47.21b±00.210 nd0 nd.41 12.07a0.31±01.46.03b1±00.21inicacid Qu酸宁奎0.25b87.69.69±10.53 567.83±0.47c.07 95a 0.19.18±12.55 85.30c±07.285 88.10.13b .27±10.6619.98±1.28b.62 72.21d1.84±09.5 .13d5±01.11Malicacid酸果苹7.222b0.88±0.02 40.7.28a5.64±02.13.03c±00.279.87.002b ±00.848.33.04b±00.97.17 365.86±0.74a2.27.02c0.06±02.85.01c0.05±0Citricacid酸檬柠easbelowhesameansnotdetectable.T.05.ndm<0ifferentlettersaresignificantlydifferentatPbydContentsinarow同下。到测检未。nd:.05)<0(P著显异差间理处示表母字同不中行一同
从供试品系中,共检测到3种可溶性糖,包括果糖、葡萄糖和蔗糖(表2)。其中,果糖的含量最高,果皮、果肉中,果糖的含量分别为27.01—36.24 mg·g-1和 31.76—50.31 mg·g-1,分别占总糖含量的56.71%—59.54%和57.80%—64.07%。供试品系的果糖含量显著低于对照‘长富 2号’(P<0.05),3个品系中‘新农’的果糖含量最高;果肉中果糖的含量显著高于果皮中的。葡萄糖是供试品系的第二大糖,果皮、果肉中的含量分别为5.78—17.72 mg·g-1和7.09—21.23 mg·g-1,分别占总糖含量的12.17%—28.94%和12.89%—27.04%,供试品系的葡萄糖含量也显著低于‘长富2号’,其中‘新农’的含量最高;‘13-3’和‘新农’果肉中葡萄糖的含量显著高于果皮,与‘P3’及对照的趋势相反。蔗糖是含量最低的糖,果皮、果肉中分别占总糖含量的11.87%—31.12%和 8.89%—29.30%,对照果皮、果肉中蔗糖含量分别是供试品系的 2.17—4.43倍和1.66—3.82倍;果皮中蔗糖的含量显著高于果肉(P<0.05)。
从供试品系中共检测到草酸、酒石酸、奎宁酸、苹果酸和柠檬酸5种有机酸,苹果酸的含量最为丰富,柠檬酸次之(表 2)。果皮、果肉中,苹果酸的含量分别为7.28—9.98 mg·g-1和10.27—12.81 mg·g-1,分别占总酸含量的56.53%—85.54%和87.69%—95.07%,果皮、果肉中苹果酸含量分别是对照的6.56—8.99倍和5.58—6.61倍,其中‘13-3’的含量最高;果肉中苹果酸的含量均高于果皮。果皮、果肉中柠檬酸的含量为0.84—5.86 mg·g-1和0.26—0.97 mg·g-1,分别占总酸含量的9.87%—40.72%和2.11%—8.33%,果皮、果肉中柠檬酸的含量分别是对照的 16.80—117倍和4.50—16.17倍,‘P3’柠檬酸的含量最高;果皮中柠檬酸的含量都显著高于果肉中(P<0.05)。供试品系中草酸、酒石酸和奎宁酸的含量均低于0.6 mg·g-1,酒石酸和草酸的含量与对照无显著差异;果肉中酒石酸的含量高于果皮中。
2.3 果实香气成分
从供试苹果中,共检测到85种挥发性成分,包括醛类11种、醇类5种、酮类12种、酯类27种、萜类25种(其中单萜12种,倍半萜13种)和萜类化合物5种。醛类、酯类和萜类的含量最为丰富(电子版附表 1)。供试品系果皮总香气物质含量在1 142.14—1 334.37 μg·kg-1,显著低于对照(P<0.05)。醛类是‘P3’和‘新农’的主要香气物质,其中己醛的含量最为丰富。‘P3’果皮、果肉中醛类分别占总香气物质的75.52%和72.71%,‘新农’中分别占81.63%和51.04%。其次是反-2-己烯醛,在‘P3’和‘新农’果皮中的含量分别为 330.43 μg·kg-1和372.26 μg·kg-1。‘13-3’果皮、果肉中醛类物质相对较少,仅分别占13.79%和5.80%。果皮中醛类物质的含量均显著高于果肉中(P<0.05)。与对照‘长富2号’相似,‘13-3’主要香气物质为酯类,果皮、果肉中分别占总香气物质的43.34%和66.15%。‘P3’及‘新农’酯类含量则显著低于对照(P<0.05)。酯类中含量较高的有丁酸乙酯、2-甲基丁酸乙酯和己酸乙酯,在‘13-3’果皮中的含量分别为 182.49、100.92和116.38 μg·kg-1。果皮中酯类的含量均显著高于果肉(P<0.05)。供试品系中,萜类含量也较为丰富,‘P3’和‘新农’的萜类含量相对较低,而‘13-3’果皮、果肉的萜类含量占总香气物质的35.19%和20.68%。其中含量较高的有苏合香烯、D-柠檬烯和α-法尼烯,其中α-法尼烯的含量最高,该成分在‘13-3’果皮中的含量高达 207.36 μg·kg-1。果皮中萜类的含量均显著高于果肉(P<0.05)。与对照相同,供试品系中,醇类、酮类的含量也较少,醇类的含量仅占总香气物质的0.26%—4.43%,酮类占1.90%—5.35%。果皮中醇类、酮类的含量均显著高于果肉(P<0.05)。
2.4 果实总酚、总黄酮以及抗氧化活性
果皮、果肉中,总酚含量分别为5.79—7.99 mg GAE·g-1和1.44—4.16 mg GAE·g-1,分别是对照的2.32—3.20倍和5.44—16倍,‘13-3’的总酚含量最高,果皮中总酚含量均显著高于果肉(P<0.05)(表3)。果皮、果肉中,总黄酮含量为8.58—11.22 mg RE·g-1和2.14—11.22 mg RE·g-1,分别是对照的1.23—1.61倍和 1.43—3.49倍,‘13-3’的总黄酮含量最高,果皮中总黄酮的含量均显著高于果肉中(P<0.05)。
果皮、果肉提取物的DPPH、FRAP和ABTS清除率均显著高于对照(P<0.05),果皮中,DPPH、FRAP和 ABTS分别是对照的 1.76—1.98倍、1.14—2.39倍和1.54—1.93倍,果肉中分别是对照的3.12—5.76倍、1.32—4.09倍和2.44—5.29倍,‘13-3’的3种自由基清除活性最高,果皮自由基清除速率显著高于果肉(P<0.05)。
表3 苹果果实中总酚、总黄酮及抗氧化活性Table 3 Total phenolic, total flavonoid contents and antioxidant activities of apple fruit
依据TA含量可以将苹果按酸度高低划分为低酸(<3.0 mg·mL-1)、中等(3.0—10.0 mg·mL-1)和高酸(>10.0 mg·mL-1)3种类型[22]。有关桃的研究认为,pH在4.0以上的桃果实属低酸类型,而3.9以下为正常果实[23]。本研究发现,供试品系均属于高酸苹果,而对照‘长富2号’属于正常果实。新疆红肉苹果是中国苹果中的稀有品种,目前有6种类型:酸甜红肉苹果、甜红肉苹果、金沙伊拉木、酸红肉苹果、夏红果子和那色匍,供评价的品系属于新疆红肉苹果里面的高酸类型。
大量研究表明,苹果的主要可溶性糖为果糖、其次为葡萄糖和蔗糖,有机酸主要组分为苹果酸,其次为柠檬酸、草酸、酒石酸、琥珀酸等[10,24]。本研究发现,3个供试品系的糖、酸组成与主栽品种‘长富2号’相似,为果糖、葡萄糖和蔗糖,主要有机酸为苹果酸,其次为柠檬酸、草酸、酒石酸、奎宁酸;但在糖酸含量上与主栽品种差异较大。大量研究报道中,普通栽培品种的总可溶性糖含量为83.04—122.76 mg·g-1,有机酸含量为 2.48—5.64 mg·g-1[9-11]。本研究发现,主栽品种‘长富2号’果肉的总可溶性糖含量为102.33 mg·g-1,有机酸含量为2.53 mg·g-1,供试品系的总可溶性糖和有机酸含量分别为54.94—78.53 mg·g-1和8.52—16.20 mg·g-1,其可溶性糖含量明显低于对照,而有机酸含量是对照的 3.39—9.22倍。在可溶性糖中,果糖与蔗糖的差异贡献最大,有机酸中,以苹果酸和柠檬酸的差异贡献最大,果肉中苹果酸含量分别是对照的 5.58—6.61倍,柠檬酸的含量是对照的4.50—16.17倍。大量研究表明,苹果的风味不仅跟可溶性糖和有机酸含量的绝对值有关,也取决于糖酸比[25],特别是糖总量与苹果酸的比值[10,26]。本研究发现,鲜食品种‘长富2号’的总糖苹果酸比为55.62,而供试品系仅为4.51—7.34。因此,低可溶性糖、高苹果酸、高柠檬酸、低总糖苹果酸比在供试的新疆红肉苹果的风味形成中有重要作用。
可溶性糖和有机酸形成果实的背景风味,而特征香气成分赋予果实个性化风味[27]。目前已经报道的苹果香气成分超过 300种,但对其果实香味影响较大的只有约20种[28]。大部分鲜食苹果品种主要以积累酯类和萜类为主[10]。本研究发现,对照‘长富2号’以积累酯类物质为主,占总香气成分的50.01%。赵胜亭等[29]在富士系苹果中共检测到 50种香气物质,其中以乙酸己酯、3-甲基甲酸丁酯为主的酯类物质占总香气成分的59.15%。现有研究证明,不同类型苹果在香气成分上有较大差异,特征性香气成分不尽相同。王海波等[30]对‘早丰甜’、‘贝拉’及‘辽伏’等 3种早熟品种的挥发性物质进行分析,共发现了136种香气成分,1-己醇、(E)-2-己烯醛、乙酸丁酯、乙酸己酯等的含量占总香气物质的93.81%,β-大马酮及草蒿脑为‘早丰甜’所特有,基于香气组分特征,将‘早丰甜’与‘贝拉’分别划为“酯香型”和“醇香型”苹果。本研究从供评价的品系材料中共检测出85种香气成分,其中,醛类、酯类和萜类是含量最丰富的香气物质,共占总香气物质的92.32%—97.84%。因此,尽管供试品系与主栽品种在香气物质的组成上并无明显差别,但主要香气物质的种类和特征成分明显不同,‘P3’和‘新农’的醛类物质含量显著高于‘长富2号’,其中以己醛和 2-己烯醛含量最高,这两种成分的嗅感阈值分别为10.5及17[7,31],嗅感分别为“青草味”和“绿苹果味”[7,32-33],‘13-3’的香气物质的组成与‘长富 2号’相似,酯类物质含量最高,萜类物质次之,以丁酸乙酯、2-甲基丁酸乙酯、己酸乙酯和α-法呢烯为主要香气成分,丁酸乙酯和己酸乙酯的嗅感阈值为 1,2-甲基丁酸乙酯的嗅感阈值仅为0.006[7,32],这些物质阈值极低,嗅感显著,被描述为“果香味”[7,34]。据此,己醛、2-己烯醛、丁酸乙酯、己酸乙酯、乙酸己酯、2-甲基丁酸乙酯为供试品系的主要特征香气成分,‘P3’及‘新农’为“青香型”苹果,‘13-3’与‘长富2号’相同,属“果香型”。
本研究还发现,供评价品系果皮和果肉中,总酚和总黄酮含量均显著高于鲜食品种‘长富2号’,抗氧化能力也显著高于对照;且果皮提取物的总酚、总黄酮及抗氧化能力显著高于果肉,这与前人发现的结果相一致[35]。苹果多酚和黄酮类成分与抗氧化活性呈极显著的正相关关系[13,36-37]。本研究中 3个供试品系材料的总酚和总黄酮含量与抗氧化活性高度一致,表明总酚和总黄酮含量对其总抗氧化活性有重要贡献,但发挥抗氧化活性的具体成分及其贡献大小还有待进一步研究。
3个供试品系的可滴定酸显著高于鲜食品种‘长富2号’,而pH显著低于对照,属于新疆红肉苹果中的高酸类型,果糖和苹果酸是其主要可溶性糖和有机酸,有机酸含量远高于对照,可溶性糖含量显著低于对照,其风味物质特点为低可溶性糖,高苹果酸、柠檬酸,低总糖苹果酸比。从供试品系中共检测到 85种香气物质,主要以醛类、萜类和酯类为主。尽管供试苹果品系与主栽品种在香气物质的组成成分上并无明显差别,但其主要香气物质的种类上明显不同。‘P3’和‘新农’中,己醛的含量最丰富,属“青香型”;‘13-3’与对照相似,以酯类和萜类为主,丁酸乙酯和α-法尼烯的含量最为丰富,属‘果香型’。供试材料的特征香气成分为己醛、2-己烯醛、丁酸乙酯、己酸乙酯、乙酸己酯、2-甲基丁酸乙酯。供评价的3个新疆红肉苹果品系总酚、总黄酮及抗氧化能力显著高于对照‘长富2号’,营养价值高,是研究果实风味品质及选育功能型苹果的良好材料,其中‘13-3’表现较优。
[1] 聂继云. 苹果的营养与功能. 保鲜与加工, 2013, 13(6): 56-59.
NIE J Y. Nutritional components of apple and their physiological functions to human health. Storage and Process, 2013, 13(6): 56-59. (in Chinese)
[2] 陈学森, 韩明玉, 苏桂林, 刘凤之, 过国南, 姜远茂, 毛志泉, 彭福田, 束怀瑞. 当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见. 果树学报, 2010, 27(4): 598-604.
CHEN X S, HAN M Y, SU G L, LIU F Z, GUO G N, JIANG Y M, MAO Z Q, PENG F T, SHU H R. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China. Journal of Fruit Science, 2010, 27(4): 598-604. (in Chinese)
[3] 张放. 2012年全球主要水果生产变化简析(一). 统计分析, 2014, 31(2): 23-32.
ZHANG F. Analysis of changes of global main fruit production in 2012 (one). China Fruit News, 31(2): 23-32. (in Chinese)
[4] 陈学森, 张晶, 刘大亮, 冀晓昊, 张宗营, 张芮, 毛志泉, 张艳敏,王立霞, 李敏. 新疆红肉苹果杂种一代的遗传变异及功能型苹果优株评价. 中国农业科学, 2014, 47(11): 2193-2204.
CHEN X S, ZHANG J, LIU D L, JI X H, ZHANG Z Y, ZHANG R, MAO Z Q, ZHANG Y M, WANG L X, LI M. Genetic variation of F1 population between Malus sieversii f. neidzwetzkyana and apple varieties and evaluation on fruit characters of functional apple excellent strains. Scientia Agricultura Sinica, 2014, 47(11): 2193-2204. (in Chinese)
[5] 王延玲. 新疆红肉苹果红色发育机理的初步研究[D]. 泰安: 山东农业大学, 2011.
WANG Y L. Preliminary study on the red development mechanism of Xinjiang Red-fleshed apple [D]. Tai’an: Shandong Agricultural University, 2011. (in Chinese)
[6] 聂继云, 董雅凤. 果品质量安全标准与评价指标. 北京: 中国农业出版社, 2014: 10-38.
NIE J Y, DONG Y F. Standards and Evaluation Indices for Fruit Quality and Safety. Beijing: China Agriculture Press, 2014: 10-38. (in Chinese)
[7] LÓPEZ M L, VILLATORO C, FUENTES T, GRAELL J, LARA I, ECHEVERRÍA G. Volatile compounds, quality parameters and consumer acceptance of ‘Pink Lady®’ apples stored in different conditions. Postharvest Biology and Technology, 2007, 43: 55-66.
[8] BULT J H F, SCHIFFERSTEIN H N J, ROOZEN J P, BORONAT E D, VORAGEN A G J, KROEZE J H A. Sensory evaluation of character impact components in an apple model mixture. ChemicalSenses, 2002, 27: 485-494.
[9] 王海波, 陈学森, 辛培刚, 张小燕, 慈志娟, 石俊, 张红. 几个早熟苹果品种果实糖酸组分及风味品质的评价. 果树学报, 2007, 24(4): 513-516.
WANG H B, CHEN X S, XIN P G, ZHANG X Y, CI Z J, SHI J, ZHANG H. Study on sugar and acid constituents in several early apple cultivars and evaluation of their flavor quality. Journal of Fruit Science, 2007, 24(4): 513-516. (in Chinese)
[10] 王海波, 李林光, 陈学森, 李慧峰, 杨建明, 刘嘉芬, 王超. 中早熟苹果品种果实的风味物质和风味品质. 中国农业科学, 2010, 43(11): 2300-2306.
WANG H B, LI L G, CHEN X S, LI H F, YANG J M, LIU J F, WANG C. Flavor compounds and flavor quality of fruits of mid-season apple cultivars. Scientia Agricultura Sinica, 2010, 43(11): 2300-2306. (in Chinese)
[11] 车根, 刘晓, 窦同考. 太平洋嘎拉苹果果实风味评价. 山东农业科学, 2011(1): 44-46.
CHE G, LIU X, DOU T K. The evaluation of flavor in “Pacific Gala”apple fruit. Shandong Agricultural Sciences, 2011(1): 44-46. (in Chinese)
[12] ANTONIO R, ANTONIO D A, FEDERICO M, REMO B. Effect of soil nutrition on aroma compound formation in organically Grown Apples (cv. Golden Delicious). Flavour Science, 2014, 33: 173-176.
[13] 王岩, 裴世春, 王存堂, 高建伟, 王伟, 薄力影, 郭怡璠. 苹果果皮、果肉多酚含量测定及抗氧化能力研究. 食品研究与开发, 2015, 16(15): 1-8.
WANG Y, PEI S C, WANG C T, GAO J W, WANG W, BO L Y, GUO Y F. Study on polyphenol contents and antioxidant capacity of apple peel and pulp from different varieties. Food Research and Development, 2015, 16(15):1-8. (in Chinese)
[14] 王燕, 陈学森, 刘大亮, 王传增, 宋杨, 陈晓流, 张艳敏. “紫红 1号”红肉苹果果肉抗氧化性及花色苷分析. 园艺学报, 2012, 39(10): 1991-1998. WANG Y, CHEN X S, LIU D L, WANG C Z, SONG Y, CHEN X L, ZHANG Y M. Antioxidant activity and anthocyanins analysis of pulp in ‘Zihong 1’ red-flesh apple. Acta Horticulturae Sinica, 2012, 39(10): 1991-1998. (in Chinese)
[15] ZHANG W S, CHEN K S, ZHANG B, SUN C D, CAI C, ZHOU C H, XU W P, ZHANG W Q, FERGUSON I B. Postharvest responses of Chinese bayberry fruit. Postharvest Biology and Technology, 2005, 37(3): 241-251.
[16] XI W P, ZHANG Q Y, LU X Y, WEI C Q, YU S L, ZHOU ZQ. Improvement of flavor quality and consumer acceptance during postharvest ripening in greenhouse peaches by carbon dioxide enrichment. Food Chemistry, 2014, 164: 219-227.
[17] ORTHOFER R, LAMUELA-RAVENTOS R M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu, s reagent. Method Enzyme, 1999, 299: 152-178.
[18] KIM D O, JEONG S W, LEE C Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 2003, 81(3): 321-326.
[19] GORINSTEIN S, HARUENKIT R, PARK YS, JUNG S T, ZACHWIEJA Z, JASTRZEBSKI Z, KATRICH E, TRAKHTENBERG S, BELLOSO O M. Bioactive compounds and antioxidant potential in fresh and dried Jaffa® sweeties, a new kind of citrus fruit. Journal of the Science of Food and Agriculture, 2004, 84(12): 1459-1463.
[20] BENZIE I F F, STRAIN J J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 1996, 239(1): 70-76.
[21] ALMEIDA M M B, DE SOUSA P H M, ARRIAGA Â M C, DO PRADO G M, DE CARVALHO MAGALHÃES C E, MAIA GA, DE LEMOS T L G. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International, 2011, 44(7): 2155-2159.
[22] YANG B, LAURA D, LAI L C, GANYUAN Z, KENONG X. Uncovering co-expression gene network modules regulating fruit acidity in diverse apples. BMC Genomics, 2015, 16: 612.
[23] DIRLEWANGER E, COSSON P, BOUDEHR K. Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genetics & Genomes, 2006(3): 1-13.
[24] RÓTH E, BERNA A, BEULLENS K, YARRAMRAJU S, LAMMERTYN J, SCHENK A, NICOLAÏ B. Postharvest quality of integrated and organically produced apple fruit. Postharvest Biology and Technology, 2007, 45: 11-19.
[25] 郑丽静, 聂继云, 李明强, 康艳玲, 匡立学, 叶孟亮. 苹果风味评价指标的筛选研究. 中国农业科学, 2015, 48(14): 2796-2805.
ZHENG J L, NIE J Y, LI M Q, KANG Y L, KANG L X, YE M S. Study on Screening of Taste Evaluation Indexes for Apple. Scientia Agricultura Sinica. 2015, 48(14): 2796-2805. (in Chinese)
[26] HARKER F R, MARSH K B, YOUNG H, MURRAY S H, GUNSON F A, WALKER S B. Sensory interpretation of instrumental measurements 2: sweet and acid taste of apple fruit. Postharvest Biology and Technology, 2002, 24: 241-250.
[27] 席万鹏, 郁松林, 周志钦. 桃果实香气物质生物合成研究进展. 园艺学报, 2013, 40(9): 1679-1690.
XI W P, YU S L, ZHOU Z Q. Advances in aroma compounds biosynthesis of peach fruit. Acta Horticulturae Sinica, 2013, 40(9): 1679-1690. (in Chinese)
[28] DIXON J, HEWETT E W. Factors affecting apple aroma/flavor volatile concentration: A review. New Zealand Journal of Crop and Horticultural Science, 2000, 28: 155-173.
[29] 赵胜亭, 齐伟, 徐顺利. 烟台富士苹果香气成分的气相色谱-质谱测定. 安徽农业科学, 2005, 33(4): 632-633.
ZHAO T S, QI W, XU S L. Preliminary Study On the Aroma Components of FUJI Apple in Yantai. Journal of Anhui Agricultural Sciences, 2005, 33(4): 632-633. (in Chinese)
[30] 王海波, 陈学森, 辛培刚, 冯涛, 石俊, 慈志娟. 几个早熟苹果品种香气成分的GC-MS分析. 果树学报, 2007, 24(1): 11-15.
WANG H B, CHEN X S, XIN P G, FENG T, SHI J, CI Z J. GC-MS analysis of Volatile components in several early apple cultivars. Joumal of Fruit Science, 2007, 24(1): 11-15. (in Chinese)
[31] ECHEVERRÍA G, FUENTES T, GRAELL J, LARA I, LÓPEZ M L. Aroma volatile compounds of ‘Fuji’ apples in relation to harvest date and cold storage technology: A comparison of two seasons. Postharvest Biology and Technology, 2004, 32: 29-44.
[32] YAHIA E M. Apple favor. Horticultural Reviews, 1994, 16: 197-234.
[33] PLOTTO A M, DANIEL M R. Characterization of Gala apple aroma and flavor differences between controlled atmosphere and air storage. Journal of the American Society for Horticultural Science, 1999, 124(4): 416-423.
[34] MEHINAGIC E, ROYER G, SYMONEAUX R, JOURJON F, PROST C. Characterization of odor-active volatiles in apples: Influence of cultivar and maturity stage. Journal of Agricultural and Food Chemistry, 2006, 54: 2678-2687.
[35] 陈玮琦, 郭玉蓉, 张娟, 窦姣, 张晓瑞. 干燥方式对苹果幼果干酚类物质及其抗氧化性的影响. 食品科学, 2015(5): 33-37.
CHEN Y Q, GUO Y R, ZHANG J, DOU J, ZHANG X R. Effect of drying methods on polyphenol contents and antioxidant activities of unripe apple fruits. Food Science, 2015(5): 33-37. (in Chinese)
[36] 黄闪闪, 李赫宇, 王磊, 赵玲. 苹果多酚抗氧化特性研究进展. 食品研究与开发, 2014, 35(24): 159-162.
HUANG S S, LI H Y, WANG L, ZHAO L. Research progress of antioxidant properties of apple polyphenols. Food Research and Development, 2014, 35(24): 159-162. (in Chinese)
[37] 徐颖, 樊明涛, 冉军舰, 程拯艮, 戚一曼. 不同品种苹果籽总酚含量与抗氧化相关性研究. 食品科学, 2015(1): 79-83.
XU Y, FAN M T, RAN J J, CHENG Z G, QI Y M. Study of different varieties of apple seed total phenolic content and antioxidant correlation. Food Science, 2015(1): 79-83. (in Chinese)
(责任编辑 赵伶俐)
Evaluation of Flavor Quality and Antioxidant Capacity of Apple Fruits from Three Xinjiang Red-Flesh Lines
LIU Yu1, LIU ShengYu1, LU JuanFang1, YU QingFan2, XI WanPeng1,3
(1College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716;2Agricultural College, Shihezi University, Shihezi 832003, Xinjiang;3Agricultural Science Institute of Agricultural Four Division, the Xinjiang Production and Construction Corps, Yili 841600, Xinjiang;4Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715)
Xinjiang red-flesh apple; sugar; acid; aroma volatiles; antioxidant activity
2016-08-22;接受日期:2017-01-20
国家自然科学基金(31260467)
联系方式:刘羽,E-mail:452056558@qq.com。通信作者席万鹏,E-mail:xwp1999@zju.edu.cn
Abstract:【Objective】In order to characterize the flavor quality of Xinjiang red-flesh apple, the composition and content of flavor compounds were analyzed and a preliminary evaluation on nutritional quality of these fruits was made, which will provide useful information for exploitation and utilization of these apple fruits.【Method】High performance liquid chromatography (HPLC) and gas chromatography-mass spectrometer (GC-MS) were employed to detect and analyze sugars, organic acids and volatile compounds in the peels and pulps of three Xinjiang red-flesh apple lines, and compared with the control Fuji apple ‘Changfu 2’. The contents of total phenols (TP), total flavonoids (TF) and antioxidant activity were also measured and evaluated. 【Result】The titratable acid (TA) of apple tested were 21.01-27.71 mg·mL-1, which were 3.68-4.85 times of the control. The pH values were 3.12-3.19, which was significantly lower than the control (P<0.05). Fructose, glucose and sucrose were identified in these fruits, fructose was the dominant sugar (56.71%-64.07%), while sucrose content was the least and it only accounted for 8.89%-31.12% of total sugar. The contents of soluble sugars in three Xinjiang red-flesh apple were significantly lower than those in the control. Fructose in pulps was higher than those in peels, while no significant differences of glucose and sucrose were found between them (P<0.05). Five organic acids, including oxalic acid, tartaric acid, malic acid, citric acid, and quinic acid, were identified from the lines tested. Malic acid (56.51%-95.11%) was the richest component, followed by citric acid (2.07%-40.72%). The contents of other acids were less than 0.6 mg·g-1fresh weight (FW). Quinic acid was only detected in ‘13-3’. The content of malic acid in peels and pulps was 6.56-8.99 times and 5.58-6.61 times as much as that in control, and the content of citric acid was 16.80-117 times and 4.50-16.17 times of that in control, respectively. The content of malic acid in pulps was significantly higher than that in peels,while citric acid in pulps is significantly lower than that of peels (P<0.05). Totally, 85 volatile compounds were identified from the fruits tested. Aldehydes, esters and terpenes were the most abundant components, accounting for 92.32%-97.84% of the total volatile compounds. Similar with the control,‘13-3’ was characterized by esters and terpenes. Ethyl butyrate, ethyl 2-methylbutyrate, methyl hexanoate and hexyl acetate were the main esters, while styrene, D-limonene and α-farnesene were the dominant terpenes. ‘P3’ and ‘Xinnong’ were mainly characterized by aldehydes and terpenes, hexanal and (E)-2-hexenal were the main aldehydes. The content of volatile components in peels were significantly higher than those in pulps (P<0.05). The contents of TP and TF in peels and pulps of three Xinjiang red-flesh apple lines were 2.31-2.65 times and 1.23-1.61 times as that of the control, and as 5.53-16 times and 1.43-3.49 times as that of the control, respectively. Free radical scavenging ability of extraction from these fruits were also significantly higher than the control. The contents of TP and TF in peels were higher than those in pulps, and its antioxidant capacity were significantly higher than those in pulps. Among the tested lines, ‘13-3’ presented the highest TP and TF contents and antioxidant capacity. 【Conclusion】 The apple lines tested belong to the high-acid type of Xinjiang red-flesh apple. Low soluble sugar, high malic acid and citric acid, low ratio of total sugar to malic acid and the characteristic aroma components, such as hexanal, (E)-2-hexenal, ethyl butyrate, ethyl hexanoate, hexyl acetate and ethyl 2-methylbutyrate, play an important role in flavor quality decision. ‘13-3’ belongs to “fruity odor” fruit, while ‘P3’ and ‘Xinnong’ are the “grassy odor” type. The three lines tested presented characteristic flavor and high nutritional quality, which could be good materials for studying flavor quality and breeding functional processing apple, and ‘13-3’ is the optimal.