时至今日,如果你和你的企业还不懂什么是大数据,只能说明你已经迷失在“时间的战场”,你甚至有必要重新审视企业的顶层设计和商业路径。
大数据并非新鲜事物,它正从单一的技术服务层面逐渐转化到商业化应用层面。
——它可以帮助你洞察与触达消费者,可以优化你的生产流程,可以升级你的产品和商业模式,甚至可以告诉你如何获得最大的投资回报……
具象在企业需求与應用层面,大数据所激发的势能甚至超乎想象。
从某种意义而言,与其说是大数据推动了商业化进程,不如说是一个在商业上激进的时代要求大数据商业化。
大数据正在重塑一切,但它提供的并非正确答案,而是参考答案;大数据也将改变世界,但前提是你需要找到正确的打开方式,重置想象力与竞争力。
以此为维度,我们谈论大数据的价值与变现才更有意义。
如何成为一家数据驱动型公司
我们依然徘徊在时代门口
世间万物,一切皆可量化,一切皆为数据。
毫无疑问,大数据开启了一次重大的时代转型,已渗透到每一个行业和业务领域,深刻影响着人类生活的方方面面。
喧嚣之下,大数据在商业方面的应用实践到底情况如何?
国内知名大数据科学家周涛教授认为,目前大数据的热闹程度远远超过它真正的贡献,就国内情况而言,并未诞生有重大经济社会价值的大数据产品,也没有实质性推动相关传统产业的转型升级。
在周涛看来,大数据自身不能成为一个行业,一定要嫁接在某个或者某几个垂直性行业里面。衡量真正的大数据贡献,应该去看它能否给出原有商务智能方法、简单分析、回归分析等方式不能给出的结果;能否真的帮助企业降低成本、提升效率,缩短周期。大数据的效果不仅是可视化的,而且应该是通过结果导向回来的。
大数据公司“数之联”CTO方育柯也表达了同样的观点。他认为,当前大数据在国内的商业应用主要集中在互联网运营商领域,在传统产业方面的应用比例并不高。很多制造企业在产品需求、生产流程、销售渠道、售后评价方面还是非常传统的拍脑袋决策,根本没有智慧化生产、精细化运营、个性化营销。
究其原因主要有三点:第一是数据挖掘技术门槛高,企业难以获取鲜活、实时、准确的数据;第二是数据和价值分离问题严重,企业难以通过数据把握、直击行业痛点;第三是企业或者政府考虑到数据安全问题,不愿意开放、分享数据。
大数据时代,看上去很美,但我们实际上仍然在时代的大门口徘徊,等待触摸那片星辰大海。
顶层设计决定入场资格
这些年,越来越多的企业家、专家、意见领袖开始强调大数据对于企业经营管理的价值,这些价值既蕴含在企业内部数据,也蕴含在外部数据中。而大家共同强调的一点是,大数据的真正价值在于数据驱动决策—通过数据来做出的决定,要优于常规决策。
美国麻省理工学院一项针对数字业务的研究发现,那些进行数据驱动决策的企业,其生产率比一般企业高4%,利润则要高6%。对于企业来说,似乎只有两种选择:第一,利用数据,做出更好决策;第二,忽略数据,让别人超过你。
那么,如何成为一家数据驱动型公司?
1.得到尽可能多的数据
数据驱动决策的第一步是,你要有数据。当前的数据收集和分析工具允许将任何东西变成数据,所以企业真的没有理由不收集和存储尽可能多的数据。
2.制定可衡量的目标
制定一些可衡量的目标,通过查看数据去发现哪些变量影响了业务的哪些环节。企业做的每件事都应该有一些可以去测量的成果,这些“目标”不仅仅适用于高层,也应该被用于单个项目和个人目标设定。
3.确保每个人都能使用数据
企业一旦收集并存储所有的数据,需要确保每个人都能使用,而不应该局限于数据科学家或IT部门,因此培训基层员工了解数据非常重要。
企业还需要一个“首席数据官”级别的人负责数据策略,这个人要带领公司推动数据驱动决策,并通过自上而下的命令和指导,来推动公司建立数据思维。
4.雇佣数据科学家
员工应该了解数据,但不能指望他们会掌握复杂的算法和数据挖掘技术,因此企业还应该雇佣一些数据专家。这些人非常了解数据科学、数据洞察、数据营销和策略,可以让企业知道如何更好地把基于数据的产品和服务转变成行之有效的商业模式。
5.挑选合适的数据分析工具
企业可以选择一款敏捷型的数据分析工具,基于这些工具再进行定制化开发,打造出最满足自己分析需求的数据平台。比如,可以用免费的流量监测网站,来判断企业官网的搜索指数,监测App运营状况等。
6.让数据变成优先级
成为一个数据驱动公司的最好方法就是使数据成为一个优先级的任务,有远见的公司已经把数据驱动决策融入到他们的日常工作。他们在做决策时可以接受质疑,只要这些质疑是基于数据和分析的基础上。
大思维与“小时代”
大数据不是大企业的特权,中小型企业大数据应用难以落地的根本原因是缺乏大数据思维。对于大多数中小企业而言,搭建大数据体系初始成本较高,在这种情况下,建立大数据思维,做好“数据借力”,或许是一条生存之道。
关于“数据借力”,普华永道首席数据科学家姚远提供了五条办法:
第一,做好数据价值调研。企业在购买搜索关键字、投放DSP(精准定位人群)广告等大数据业务前,要先做调研,对数据是否能带来期望的商业回报做到心中有数。
第二,确认核心数据属性,建立海量数据与核心数据以及内部数据与外部数据间的关联标准。比如,对于零售企业来说,CRM(客户关系管理)和客户营销数据一定是核心数据,而推广活动所收集的消费者信息和社会化媒体产生数据则是外围数据的重要来源。确认数据属性之后,一定将内部数据与外部数据打通,形成合力。
第三,用虚拟人脉交换来获取数据。对中小企业而言,数据的缺失是一种常态,但它们可以通过扩展人脉,来加强对数据的获取能力。比较常见的做法是建立企业自媒体,通过不同行业领域的企业人脉互相交换。企业还可以通过线下人脉寻找优质的高端群体用户,通过收集其详细资料、分析其行为爱好,将相关分析存储到自己的系统中,就能形成优质的大数据资源。
第四,在关注大数据的同时要关注好小数据。企业的大数据起步,要从小数据开始,从核心数据开始。以业务为主导做好小数据,有助于企业做好企业内部的精细化管理、对市场的观察,以及未来发展方向的规划。
第五,赋予高管更多的权力。做好大数据应用需要企业内部建立大数据文化,比如,灵活的部门间协作机制,管理人员使用数据分析模型的习惯养成等。这就要求企业赋予高管更多的决策权,以帮助其突破制度限制、协调资源、协同合作,更积极主动地应对大数据挑战。
综上,中小企业可以通过各种方法,因地制宜打造自身在数据获取和分析上的能力,成就自己的“小时代”。
做前端的收割者
“一切都被记录,一切都被分析”,这句话很好地诠释了大数据时代的魔性——任何行为都可能被“数据化”。一个显而易见的事实是:通过高速发展的移动互联与无处不在的智能终端,人类生活的各种行为都将被深度采集,并事无巨细地被翻译成数据。
作为整个大数据链条的最前端,数据采集是一切能量变现的基础,尤其是在实践应用中,它更是在很大程度上扮演了“大侦探”的角色。
特朗普的“上帝之眼”
大数据帮助特朗普“干掉”希拉里,最终当选美国总统。
一些西方媒体披露特朗普获胜背后的重要原因:一家名叫“剑桥分析”的大数据公司如同实施“靶向治疗”一般,帮助特朗普团队精准定位了美国选民的喜好并投放广告。
迄今为止,大部分竞选活动的组织架构依照的是人口统计学概念,大家收到的宣传信息都基本相同。相比之下,剑桥分析公司却独辟蹊径地加入了心理学指标,并定量描绘人物性格,进而推断该受调查者的政治倾向。
在具体操作中,剑桥分析公司从不同的来源购买个人数据,包括土地登记信息、购物数据以及你读什么杂志、上哪个教堂等。随后,该公司将这些数据与共和党的选民名册以及在线数据进行汇总比对,推算出上述人群的心理侧写档案。他们一共分析了美国2.2亿成年人的性格,对每个人平均掌握的数据点在4 000~5 000个。
基于心理侧写与大数据分析,特朗普团队在选战中针对性地对不同个体投放不同的广告信息。比如,关于禁枪问题,如果受众强烈反对,就可以在竞选广告中渲染抢劫威胁和枪支带来的安全感;而如果受众态度偏中立,则可以使用数据说道理。
从这个角度而言,特朗普言论的前后矛盾和反复无常却成了他最宝贵的资产:对每一个选民,他的宣传方式都不尽相同。
“特朗普传达出的每一条讯息都是由数据驱动的。”剑桥分析公司负责人尼克斯曾向媒体介绍,在特朗普和希拉里展开第三场总统辩论时,其竞选团队就拿他的基本立场,在Facebook上测试了17.5万个不同的广告版本,以找到最合适的版本。这些不同版本的差别大多都只是细节,如标题、颜色、照片、视频等,但这样可以用最佳心理方式瞄准接收者。
在数据综合分析基础上,剑桥分析公司判断出什么样的人更有可能投票给特朗普,什么样的广告在什么地方最有效等,并最终将17个州作为选战重点。因此,大选进入最后几周时,特朗普团队根据数据分析,重点主攻密歇根州和威斯康星州,并顺利获胜。
作为特朗普赢得大选的幕后英雄,剑桥分析公司充当了数据的采集者、分析者以及策略制定者。它的成功实践充分说明,当你靠自身的力量无法有效采集、获取外部数据时,雇傭第三方数据公司是最好的选择。因此,随着企业对大数据挖掘、分析的需求日益旺盛,专注不同细分领域的大数据公司将迎来巨大的产业机会。
大王叫我来巡山
聪明的公司如何采集数据?国际巨头给出的路径是,通过一个产品直达用户,然后间接收集数据,为业务提供决策参考。
“2017年2月13日;持续时间:1小时;路程:11千米;消耗热量:623卡路里;平均速度:10千米/小时。”海伦是一名跑步爱好者,这是她最近一次上传网络的跑步记录,她是Nike+的会员之一。
三年前,耐克研发推出了一系列健康追踪应用程序与可穿戴设备,统称Nike+,用于采集用户的运动数据。比如,Nike+跑鞋通过无线Apple NIke+iPod运动组件实现信息互通,可以记录、储存用户的运动日期、时间、距离、热量消耗值等数据。
目前,Nike+这个集硬件、软件、社区为一体的平台已拥有注册用户2 000多万,正是通过采集这些海量用户数据,使得耐克在产品设计、新品推广、精准营销等商业决策中有了重要依据。
谷歌的办法同样直接。2014年,谷歌斥资32亿元美元收购智能家居厂商Nest,一个重要目的就是通过Nest的智能家居产品获取用户家庭的数据。智能家居产品一个重要的工作原理就是可以跟踪、监测家庭用户的活动,并以此控制设备。如此一来,谷歌就能通过智能家居产品为用户提供服务的同时,在不经意间收集居家数据,挖掘每一个家庭的消费潜力。
相比之下,巴黎欧莱雅采集用户数据的方式则比较“隐蔽”。欧莱雅曾推出过一款专属App“时妆时刻”,在这款应用上,用户可以通过彩妆拼图的功能,根据自己的照片在网上进行化妆品试用。另外,“时妆时刻”还为用户提供一些高端的化妆技巧作为参考。
如此一来,欧莱雅通过让用户参与彩妆互动,在收集用户需求信息同时,获得了强大的数据收集和数据分析优势,用于帮助其判断彩妆产品的开发方向。
企业主动收集数据,贵在灵活,要跳出既定思维的框架,借助关联业务去收集所有能够为“我”所用的数据。
场景读心术
顾客逛商场时每一次随机的行走,是先停留在女装区还是童装区,在哪个品牌专柜面前逗留的时间最长……过去,商场从来不会在意这些细节,但现在却拼命收集。
事实上,顾客消费过程的开始,也意味着与商家建立关系的开始,要提供个性化消费体验,商家就要收集顾客的各种行为数据,而“消费场景”无疑是天生的数据采集点。
北京朝阳大悦城在商场的不同位置安装了近200个客流监控设备,结合客流统计系统的分析,获取顾客在卖场内的动线轨迹,同时使用LBS技术对客流进行定位,精准地记录下消费者的位置变化,从而判别顾客的购物喜好。另外,大悦城还通过Wi-Fi站点的登录情况获知客户的到店频率,通过与会员卡关联的优惠券得知受顾客欢迎的优惠产品。
同样的逻辑,银泰在百货门店和购物中心铺设免费Wi-Fi,逐步抓取用户数据,包括进店用户数据和VIP用户数据,利用银泰网,打通了线下实体店和线上的VIP账号。当一位已注册账号的顾客进入实体店,手机连接上Wi-Fi,他过往与银泰的所有互动记录、喜好便会一一在后台呈现。
美国Vail度假管理公司推出了手机EpicMix应用程序,将其与滑雪者的季票连接起来。滑雪者每次乘坐升降机时都要扫描季票,这就在他们穿行滑雪场时产生了“数据排放”。这款应用会计算滑雪者每天下降的垂直英尺数,本季滑雪的总天数等。Vail结合数据,制定挑战、竞赛和奖励方式,让滑雪体验变得更加有趣和欢乐。
地推活动扫码送礼、游览景区扫码获取景点详细信息、用餐时关注餐厅公众号打折……如此种种,都是在具体的“消费场景”中获取顾客数据的方式。有一种能力叫“顾客主动分享数据”,打开“场景”的维度,就能找到你想要的数据。
寻找效率快车道
贵阳物流数字港信息中心大厅,沿墙而设的LED大屏幕上,实时的全国货运物流数据不断跳动着。
据统计,中国一共有700万辆中长途货车,超过3 400万的货车司机,承担了中国公路物流90%以上的运力。然而,分散经营、信息不对称、物流效率低,导致了货车的空载率达40%以上,浪费了大量的能源和资源。
货运交易平台企业“货车帮”建立了一个覆盖全国360多个城市的全国性车货匹配平台,帮助司机发布空车信息、寻找货源、计算运费。“货车帮”平台目前已汇聚了全国35万家物流企业和230万辆货车车主,这些物流企业和车主通过平台发布货运信息每天超过500万条。
“货车帮”不仅仅从货主、物流企业、司机端获取数据,同时还建立声讯中心搭起桥梁,在线上和远端获取司机数据,搭建货车司机和货主产生数据互动。
“货车帮”利用大数据技术对货运信息进行整合传递,海量信息带来的是人、车、货的聚集效应,有效实现了货源与货车司机的信息互联,使货车空驶消耗每天减少约1 000万千米。依托大数据,“货车帮”迅速成长,在2016年12月完成B-1轮股权融资,金额超过1亿美元。
大數据应用让商业变得更透明更高效,对于共享平台型企业而言,数据最大的价值在于打破信息壁垒,帮助B端企业对客群的需求与商品的供应快速、有效匹配起来。在此基础上,平台型企业一定要从用户角度思考,如何利用已有数据创造更大的连接价值和增值服务。
一直以来,供应链管理都是一门非常复杂的学科,对于生鲜零售尤其如此。生鲜零售如果对需求预测不准,采购过多,产品就会过期、腐烂。所以,生鲜行业有句话是:“谁控制了损耗,谁就拥有了毛利”。
宁波M6生鲜超市为了降低损耗,利用大数据始做订单生鲜,先由顾客下订单,然后采购再去订货,最终配送到顾客附近的社区门店。这样做一个直接的效果是,M6目前每天的库存量占配送量不到10%。
那么,数据从何而来?10多年间,M6累计的实名制持卡用户达到10多万个,同时也积累10多年的消费数据。这些数据积累,让M6在精准订货、存储和精准配货等环节发挥了关键作用。另外,M6还利用用户消费数据和从互联网上采集到的天气数据,从中国农历正月初一开始推算,分析不同节气和温度下,顾客的生鲜购买习惯会发生哪些变化,以此来预测市场需求。凭借着这些举措,M6近年来持续保持20%的综合毛利率。
对数据的有效利用程度,往往能反映一个企业供应链管理的水平。就零售企业来说,需求预测是整个供应链的源头,决定了供应链的计划,也直接影响到库存策略、生产安排以及对顾客的订单交付率。因此,企业需要通过定性、定量的预测分析手段,运用大数据将过去的历史需求数据和现有的市场相关因素结合,对将来的需求做出准确预测。
为你喜欢的世界投票
精准营销,是时下非常时髦的一个营销术语,其中的关键在于精准定位的基础上,依托大数据和现代信息技术手段建立个性化的顾客沟通服务体系。
快时尚巨头ZARA以“快”出名,灵敏的供应链系统、多品少量、制售一体的效率化经营模式,使众多服装企业难以望其项背。事实上,在大数据应用方面,许多服装企业投入的热情与ZARA不相伯仲,但获得的收益却判若云泥。
为什么?ZARA推行海量资料整合,通过线下实体店和线上网店的信息收集分析,最终各方信息被分类处理,成为设计、生产、销售的指引。
比如,大数据一项重要的功能就是缩短生产时间,让生产端依照顾客意见,在第一时间修正。走进ZARA店内,柜台和店内各角落都装有摄影机,店经理随身带着iPad。客人向店员反映:“这个衣领图案很漂亮”“我不喜欢口袋的拉链”,这些细枝末节的细项,店员向分店经理汇报;经理通过ZARA内部全球资讯网络,每天至少两次传递资讯给总部设计人员。由总部做出决策后立刻传送到生产线,改变产品样式。