张云丽, 王 林, 刘铁民
(聊城大学体育学院, 聊城 252059)
·综 述·
PI3K/Akt和AMPK信号通路在运动诱导的啮齿动物骨骼肌内GLUT4转位和表达中的作用
张云丽, 王 林, 刘铁民
(聊城大学体育学院, 聊城 252059)
骨骼肌在葡萄糖稳态中扮演重要作用,葡萄糖转运体4(glucose transporter 4,GLUT4)作为骨骼肌内最主要的葡萄糖转运蛋白,其转位和表达的变化与胰岛素抵抗的发生密切相关。本文综述了近年来关于啮齿动物骨骼肌内GLUT4转位和表达的运动激活以及磷脂酰肌醇-3-激酶(phosphatidylinositol 3-kinases,PI3K)/蛋白激酶B(protein kinase B,Akt)和腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)信号通路介导运动改善骨骼肌葡萄糖摄取的研究进展,旨在为全面了解和明确运动影响啮齿动物骨骼肌内GLUT4转位和表达的机制。
骨骼肌; 运动; 胰岛素抵抗; 葡萄糖转运体4(GLUT4); 磷脂酰肌醇-3-激酶(PI3K);蛋白激酶B(Akt); 腺苷酸活化蛋白激酶(AMPK)
骨骼肌是代谢葡萄糖的重要外周组织,其葡萄糖代谢水平在调节全身血糖稳态中发挥着重要作用。葡萄糖转运体4(glucose transporter 4,GLUT4)是骨骼肌内最重要的葡萄糖转运蛋白,其介导的葡萄糖跨细胞膜的转运是骨骼肌葡萄糖代谢的主要限速步骤,而GLUT4的转位和表达的变化可以在一定程度上反映骨骼肌细胞的糖代谢状况。关于GLUT4的转位存在两种不同刺激机制的假说, 胰岛素刺激的GLUT4的转位主要涉及磷脂酰肌醇-3-激酶(phosphatidylinositol 3-kinases,PI3K)/蛋白激酶B(protein kinase,Akt)(PI3K/Akt)信号通路, 而运动刺激的GLUT4的转位主要涉及腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)信号通路[1,2]。
本文基于PI3K/Akt和AMPK信号通路存在复杂的交互作用以及运动对这两种信号通路均可以发挥影响的理论作为依据,对运动刺激的啮齿动物骨骼肌内GLUT4转位和表达中PI3K/Akt和AMPK信号通路的作用进行探讨,这对于了解胰岛素抵抗相关疾病及评价运动对胰岛素抵抗相关疾病的干预效果具有重要意义。
1.1 骨骼肌内GLUT4的转位和表达
GLUT4为跨膜转运糖蛋白,相对分子质量约为45 000~55 000,由12个跨膜片段(M1~M12)和1个位于N 端的胞外环状结构域组成。由GLUT4介导的葡萄糖摄取是骨骼肌利用葡萄糖的主要限速步骤,GLUT4的表达减少、转位受阻及含GLUT4的囊泡不能与细胞膜融合或已融合但GLUT4活性降低等因素被认为是导致骨骼肌葡萄糖摄取缺陷,最终引起胰岛素抵抗的主要因素[3,4]。有研究表明[5],GLUT4基因敲除小鼠出现胰岛素抵抗和葡萄糖耐受不良,靶向破坏肌肉的GLUT4, 引起GLUT4的蛋白表达减少,会使参与转位的GLUT4的数量减少,导致骨骼肌细胞对葡萄糖的摄取与利用发生障碍,进而减弱胰岛素信号转导,并最终引起胰岛素抵抗的发生。
骨骼肌细胞有一个复杂的膜系统,其中包括表面细胞膜和起源于横小管的膜内陷(T-小管)。基础状态下,由于缺乏刺激,GLUT4主要储存于细胞内的囊泡,受刺激时这些囊泡转位至质膜系统,囊泡膜与质膜发生融合,GLUT4插入质膜以增加葡萄糖摄取[6-9]。对新生SD大鼠的骨骼肌细胞进行原代培养,结果表明胰岛素和运动刺激通过不同的信号途径促进骨骼肌细胞GLUT4转位至质膜[10]。
1.2 PI3K/Akt信号通路与骨骼肌内GLUT4转位和表达
胰岛素刺激的骨骼肌内GLUT4的转位主要涉及PI3K/Akt信号通路。主要步骤如下: 胰岛素与胰岛素受体结合,继而激活胰岛素受体底物(insulin receptor substrate, IRS)和PI3K, 导致磷脂酰肌醇三磷酸(phosphatidylinositol 3-phosphate,PIP3)的产生;随后PIP3分别与Akt和非典型蛋白激酶 C(atypical protein kinase C,aPKC)结合, 进而促使GLUT4转位至表面细胞膜以摄取葡萄糖[1]。虽然IRS与PI3K的结合对于高脂饮食诱导的胰岛素抵抗的SD大鼠骨骼肌内GLUT4的转位是必要的, 但是二者的结合还不足以刺激GLUT4介导的葡萄糖摄取的增加, 葡萄糖摄取的增加需要Akt的参与[11]。Akt是一种丝氨酸-苏氨酸蛋白激酶, PIP3与Akt的PH结构域结合, 促进Akt激活, 进而促进GLUT4的转位和肌肉葡萄糖摄取[12]。有研究表明[9], Akt的激活可以促进骨骼肌内GLUT4的转位, 从而增加肌细胞的葡萄糖摄取。在胰岛素刺激下, GLUT4从细胞内囊泡向质膜的转位可以促进葡萄糖摄取增加大约40%[13]。与Akt对GLUT4转位的作用类似, 最近一些证据表明[14], aPKC ζ/λ在胰岛素刺激的骨骼肌GLUT4转位和葡萄糖摄取中也起着重要作用, aPKC ζ/λ的磷酸化激活可以促进胰岛素刺激的GLUT4的转位和L6肌管对葡萄糖的摄取 。PIP3与aPKC ζ/λ的调节域结合导致aPKC ζ/λ的激活, 进而促进GLUT4的转位[15]。
虽然通过Akt刺激骨骼肌内GLUT4转位的精确分子机制仍然不是很清晰, 但相对分子量为160 000 的Akt底物AS160被认为是Akt介导GLUT4转位的一个重要的调控分子[16]。AS160是一种可以与Rab蛋白发生特异性作用的GTP 酶激活蛋白。Rab蛋白是细胞内囊泡运输的分子开关, 其通过与上游调控因子以及下游效应子的相互作用, 参与了囊泡的形成、转运、粘附、锚定和融合等过程。AS160被认为通过与Rab蛋白相互作用参与了Akt对GLUT4的转位调节[17-20]。当AS160的Ser588和Thr642位点突变为丙氨酸时,可以显著抑制胰岛素刺激的GLUT4转位[17], 显示AS160在胰岛素刺激的GLUT4的转位中发挥着重要作用。但也有研究表明[21], Akt促进GLUT4转位过程的调节是非AS160依赖的, 并且已证明其他参与GLUT4转位的Akt底物, 如含FYVE指磷酸肌醇激酶(FYVE finger-containing phosphoinositide kinase, PIKfyve)[22]。Roach等[23]研究表明, 与AS160关系密切的TBC1域家族成员1(TBC1 domain family member 1, TBCID1)也有类似的可以被Akt磷酸化的位点。可见Akt促进GLUT4转位过程中AS160的作用仍然扑朔迷离, 很有可能AS160和其他Akt底物一起共同参与了GLUT4的转位过程。
1.3 AMPK信号通路与骨骼肌内GLUT4转位和表达
除PI3K/Akt信号通路,AMPK的激活也可以促进GLUT4的转位和表达。5-氨基咪唑-4-甲酰胺核苷酸(5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside, AICAR)(AMPK激活剂)激活AMPK后可以上调大鼠比目鱼肌细胞以及原代培养的肌细胞的葡萄糖摄取和GLUT4 mRNA的表达, 提示GLUT4是AMPK 参与糖代谢调节的重要下游靶点[24,25]。Hommes等[26]研究表明,给大鼠注射AICAR引起AMPK的激活,引起大鼠腓肠肌内GLUT4的蛋白表达增加。李蕾等[27]研究表明, AMPK可以通过调节糖代谢的下游靶蛋白, 增加GLUT4的转位, 进而增强肌肉胰岛素敏感性。有研究报道[1], 在AMPK活化的过程中同样会激活AS160。因此,AS160可能是调节骨骼肌内GLUT4转位的PI3K/Akt和AMPK信号通路的一个关键交汇点。但胰岛素刺激和AMPK激活对AS160的影响似乎是通过两个不同的通路。渥曼青霉素(PI3K抑制剂)可以抑制胰岛素对离体大鼠骨骼肌AS160的磷酸化效果,但AICAR所致AMPK激活和AS160磷酸化增加并不涉及Akt的磷酸化改变[28]。
2.1 PI3K/Akt和AMPK信号通路存在复杂的交互作用
PI3K/Akt和AMPK信号通路并不是彼此孤立,而是存在复杂的交互作用。首先,AMPK对PI3K/ Akt信号通路可以发挥双向调节作用。有研究者认为[28-31],AMPK的激活以及AICAR的使用可以促进IRS、PI3K和Akt等多种PI3K/Akt信号通路分子的活性增加。通过AICAR激活小鼠C2C12肌管的AMPK, 结果表明AMPK的激活与IRS-1的Ser789位点的磷酸化之间存在直接的相互作用[30]。Jakobsen等[32]研究表明,AMPK的激活可以引起小鼠C2C12肌管的IRS-1的Ser789位点的磷酸化水平增加,进而引起PI3K的活性增加。但Tzatsos等[33]报道,AMPK的激活可以促进IRS-1的Ser794位点磷酸化,进而抑制PI3K/Akt信号通路。而IRS-1的Ser794位点磷酸化增加对PI3K/Akt信号通路的抑制可以导致GLUT4的转位减少[34-36]。其次, PI3K/Akt信号通路可以调节AMPK的活性,比如Akt的激活可以下调AMPK的活性[37,38]。Rider等[39]认为,Akt所致的AMPK的Ser487或Ser491位点的磷酸化是胰岛素引起AMPK活性下降的关键步骤。
Liu等[40]研究表明,高脂喂养引起大鼠骨骼肌内AMPKα的表达和活性受损,而二甲双胍激活AMPK后可以明显改善高脂饮食诱导的胰岛素抵抗,提示AMPK的活化与胰岛素信号通路之间存在关联,而AMPK活性的下降可能会加速胰岛素抵抗和代谢异常的进展。Jessen等[41]报道,运动激活AMPK后,可以通过刺激GLUT4的表达调节Wistar大鼠骨骼肌的胰岛素敏感性。那么在运动影响骨骼肌GLUT4的转位和表达中PI3K/Akt和AMPK信号通路是否共同发挥了作用呢?
2.2 PI3K/Akt信号通路在运动影响骨骼肌内GLUT4转位和表达中的作用
对骨骼肌胰岛素抵抗的研究中, PI3K/Akt信号通路受到众多研究者的关注,但Krook等[42]认为运动对骨骼肌内GLUT4转位和表达的影响与PI3K/Akt信号通路无关。对肥胖Zucker大鼠的研究表明,运动可以上调GLUT4的蛋白表达,但IRS-1的酪氨酸磷酸化水平并无明显变化[43]。这些研究似乎暗示PI3K/Akt信号通路在运动调节骨骼肌内GLUT4的转位和表达中并不起作用。然而,有研究者持不同意见,Chibalin等[44]的研究表明,游泳运动可增强Wistar大鼠IRS-2、PI3K和Akt的活性,同时增加GLUT4的蛋白表达。研究结果的不一致可能与采用的动物模型、使用的干预手段及检测的信号分子等不同有关。
2.3 AMPK信号通路在运动影响骨骼肌内GLUT4转位和表达中的作用
AMPK信号通路在运动增加GLUT4转位和表达中发挥重要作用。一方面, 运动可以诱导GLUT4的转位,其机制涉及AMPK信号通路[45]。另一方面,运动可以通过激活AMPK信号通路增加骨骼肌GLUT4 mRNA和蛋白表达[46]。有研究者认为[42], AMPK是通过非胰岛素依赖的机制增加骨骼肌葡萄糖摄取, 并有一些研究者对此机制进行了深入探讨。有研究者报道[47], AMPK可以通过直接磷酸化过氧化物酶体增殖活化受体γ辅助活化因子1α(α subunit of peroxisome proliferators-activated receptor-γ coactivator-1, PGC-1α)调节骨骼肌GLUT4的表达。还有研究者认为[48,49], AMPK可以通过对p38分裂原激活的蛋白激酶(p38 mitogen activated protein kinases, p38MAPK)或内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)的作用刺激GLUT4转位。此外,AMPK的主要上游激酶(liver kinase B1, LKB1)可能也参与了骨骼肌葡萄糖摄取。据报道[50], 骨骼肌缺乏LKB1导致肌肉收缩诱导的葡萄糖摄取受到抑制。值得关注的是, 抑制AMPK活性对肌肉收缩诱导的小鼠骨骼肌葡萄糖摄取并无明显影响[51,52]。考虑到这些研究结果存在的差异,有必要进一步审查AMPK信号通路在运动影响骨骼肌内GLUT4转运和表达中的作用。
2.4 PI3K/Akt和AMPK信号通路可能共调运动对骨骼肌内GLUT4转位和表达的影响
早期的研究表明, 胰岛素和运动通过不同的信号传导机制促进GLUT4转位和葡萄糖摄取。然而对PI3K下游的胰岛素信号分子的进一步研究表明, aPKC ζ/λ在胰岛素和运动刺激小鼠肌肉内GLUT4转位和葡萄糖摄取中均发挥了作用[53,54]。Lessard 等[55]研究表明,运动训练可以增加高脂喂养大鼠骨骼肌AMPKα活性,同时可通过增强胰岛素信号通路,促进葡萄糖摄取。这些研究提示PI3K/Akt和AMPK信号通路可能共调运动对骨骼肌内GLUT4转位和表达的影响。
有研究者报道,在某些情况下Akt的激活与PI3K之间存在不一致[55],原因可能与Akt存在非PI3K依赖途径调节有关,如钙/钙调素依赖性蛋白激酶(calcium-calmodulin dependent protein kinase,CaMK)的活化可直接磷酸化Akt的Thr308位点[56]。值得注意的是,CaMK 除了可调节Akt的活性外,还可影响AMPK的激活。李良刚等[25]认为,AMPK可能位于CaMK途径的下游来调节骨骼肌细胞GLUT4 mRNA的表达。可见,AMPK信号通路与胰岛素信号通路在调节运动引起的骨骼肌内GLUT4转位和表达方面存在密切的联系,CaMK可能参与了这种联系。
很多研究者[57-59]认为AMPKα的Thr172位点磷酸化是其激活的关键步骤。但有研究表明[60], AMPKα的Ser485位点的磷酸化也参与了AMPK活性的调节。值得关注的是,AMPKα的 Ser485位点是一个自我磷酸化位点,并且此位点是Akt的一个靶点,即Akt可以通过磷酸化AMPK的Ser485位点调节AMPK的活性。那么,Akt对AMPK的Ser485位点的调节作用是否参与了运动对GLUT4的转位和表达的影响呢?这些问题均有待于进一步的研究给予证实。除AMPK信号通路,运动时还存在其它机制参与了对骨骼肌葡萄糖摄取的调节。有研究显示[61],AMPK失活的转基因小鼠在缺氧或AICAR激活后己糖摄取能力被完全阻断,但收缩刺激的己糖摄取只是部分地被抑制。因此,运动刺激的骨骼肌内GLUT4转位和表达增加很可能是多条信号通路共同作用的结果,而非PI3K依赖的Akt信号通路很可能参与其中。
由于PI3K/Akt和AMPK信号通路之间存在复杂的交互作用,并且二者均与骨骼肌内GLUT4的转位和表达有关,因此本文对近年来关于GLUT4的转位和表达的运动激活以及PI3K/ Akt和AMPK信号通路介导运动改善啮齿动物骨骼肌葡萄糖摄取的研究进展进行了综述,但是运动能否通过PI3K/Akt或非PI3K依赖性Akt信号通路以及AMPK信号通路共调运动刺激的GLUT4的转位和表达仍然存在诸多的不确定性,对于可能联系这种共调作用的具体分子机制依然不甚明了。所以进一步明确运动刺激下参与GLUT4转位和表达的多种信号通路的作用,尤其是深究运动调控的GLUT4改变是否涉及AMPK和PI3K/Akt信号通路之间的交互作用是有必要的,在这方面的研究进展将有助于胰岛素抵抗相关慢性疾病的防治。
[1] Habets DD, Luiken JJ, Ouwens M, et al. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake[J]. Front Physiol, 2012, 3: 361.
[2] Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle[J]. J Appl Physiol (1985), 2005, 99(1):330-337.
[3] 赵海燕, 王勇, 马永平, 等. 胰岛素信号转导障碍与胰岛素抵抗[J]. 新医学, 2010, 41(4):267-271.
[4] Ryder JW, Yang J, Galuska D, et al. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients[J]. Diabetes, 2000, 49(4):647-654.
[5] Zisman A, Peroni OD, Abel ED, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance[J]. Nat Med, 2000, 6(8): 924-928.
[6] Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4[J]. Nat Rev Mol Cell Biol, 2002, 3(4):267-277.
[7] Huang S, Czech MP. The GLUT4 glucose transporter[J]. Cell Metab, 2007, 5(4):237-252.
[8] Larance M, Ramm G, James DE. The GLUT4 code[J]. Mol Endocrinol , 2008, 22(2):226-233.
[9] Thong FS, Dugani CB, Klip A. Turning signals on and off: GLUT4 traffic in the insulin- signaling highway[J]. Physiology (Bethesda), 2005, 20(4):271-284.
[10] Osorio-Fuentealba C, Contreras-Ferrat AE, Altamirano F, et al. Electrical stimuli release ATP to increase GLUT4 translocation and glucose uptake via PI3Kγ-Akt-AS160 in skeletal muscle cells[J]. Diabetes, 2013, 62(5):1519-1526.
[11] Lee SH, Lee HJ, Lee YH, et al. Korean red ginseng (Panax ginseng) improves insulin sensitivity in high fat fed Sprague-Dawley rats[J]. Phytother Res, 2012, 26(1):142-147.
[12] Sasaki T, Sasaki J, Sakai T, et al. The physiology of phosphoinositides[J]. Biol Pharm Bull, 2007, 30(9):1599-1604.
[13] Machado UF, Schaan BD, Seraphim PM. Glucose transporters in the metabolic syndrome[J]. Arq Bras Endocrinol Metabol , 2006, 50(2):177-189.
[14] Bandyopadhyay G, Kanoh Y, Sajan MP, et al. Effects of adenoviral gene transfer of wild-type, constitutively active, and kinase-defective protein kinase C-lambda on insulinstimulated glucose transport in L6 myotubes[J]. Endocrinology, 2000, 141(11):4120-4127.
[15] Farese RV. Function and dysfunction of aPKC isoforms for glucose transport in insulin- sensitive and insulin-resistantstates[J]. Am J Physiol Endocrinol Metab, 2002, 283(1):E1-11.
[16] Eguez L, Lee A, Chavez JA, et al. Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein [J]. Cell Metab, 2005, 2(4):263-272.
[17] Sano H, Kane S, Sano E, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation[J]. J Biol Chem, 2003, 278(17):14599-14602.
[18] Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action[J]. Nat Rev Mol Cell Biol, 2006, 7(2):85-96.
[19] Frφig C, Richter EA. Improved insulin sensitivity after exercise: focus on insulin signaling[J]. Obesity (Silver Spring), 2009, 17(S3):S15-20.
[20] Chen S, Wasserman DH, MacKintosh C, et al. Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking[J]. Cell Metab, 2011, 13(1):68-79.
[21] Bai L, Wang Y, Fan J, et al. Dissecting multiple steps of GLUT4 trafficking and identifying the sites of insulin action [J]. Cell Metab, 2007, 5(1):47-57.
[22] Berwick DC, Dell GC, Welsh GI, et al. Protein kinase B phosphorylation of PIKfyve regulates the trafficking of GLUT4 vesicles[J]. J Cell Sci, 2004, 117(Pt 25):5985-5993.
[23] Roach WG, Chavez JA, Miinea CP, et al. Substrate specificity and effect on GLUT4 translocation of Rab GTPase-activating protein TBC1D1[J]. Biochem J, 2007, 403(2):353-358.
[24] Sakoda H, Ogihara T, Anai M, et al. Activation of AMPK is essential for AICAR-induced glucose uptake by skeletal muscle but not adipocytes[J]. Am J Physiol Endocrinol Metab, 2002, 282(6):1239-1244.
[25] 李良刚, 陈槐卿. CaMK和AMPK信号通路能共调收缩信号诱导的骨骼肌细胞GLUT4 基因转录[J]. 生物化学与生物物理进展, 2009, 36(4):471-479.
[26] Holmes BF, Kurth-Kraczek EJ, Winder WW. Chronic activation of 5’-AMP-activated protein kinase increases GLUT4, hexokinase, and glycogen in muscle[J]. J Appl Physiol (1985), 1999, 87(5):1990-1995.
[27] 李蕾, 李之俊. 运动改善胰岛素抵抗与腺苷酸活化蛋白激酶关系的研究进展[J]. 生理学报, 2014, 66(2):231-240.
[28] Bruss MD, Arias EB, Lienhard GE, et al. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity[J]. Diabetes, 2005, 54(1):41-50.
[29] Tao R, Gong J, Luo X, et al. AMPK exerts dual regulatory effects on the PI3K pathway [J]. J Mol Signal, 2010, 5(1):1.
[30] Jakobsen SN, Hardie DG, Morrice N, et al. 5’-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamideriboside[J]. J Biol Chem, 2001, 276(50):46912-46916.
[31] 黄德强, 罗凌玉, 王丽丽, 等. AMPK在胰岛素信号转导通路中的作用[J]. 中国细胞生物学学报, 2011, 33(11):1220-1229.
[32] Jakobsen SN, Hardie DG, Morrice N, et al. 5’ AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside[J]. J Biol Chem, 2001, 276(50):46912-46916.
[33] Tzatsos A, Tsichlis PN. Energy depletion inhibits phosphatidylinositol 3-kinase/Akt signaling and induces apoptosis via AMP-activated protein kinase-dependent phosphorylation of IRS-1 at Ser-794[J]. J Biol Chem , 2007, 282(25):18069-18082.
[34] Ni YG, Wang N, Cao DJ, et al. FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases[J]. Proc Natl Acad Sci U S A, 2007, 104(51):20517-20522.
[35] Leto D, Saltiel AR. Regulation of glucose transport by insulin: traffic control of GLUT4[J]. Nat Rev Mol Cell Biol, 2012, 13 (6):383-396.
[36] Watson RT, Pessin JE. Bridging the GAP between insulin signaling and GLUT4 translocation[J]. Trends Biochem Sci , 2006, 31(4):215-222.
[37] Hahn-Windgassen A, Nogueira V, Chen CC, et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity[J]. J Biol Chem, 2005, 280(37):32081-32089.
[38] Kovacic S, Soltys CL, Barr AJ, et al. Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart[J]. J Biol Chem, 2003, 278(41):39422-39427.
[39] Rider MH. The ubiquitin-associated domain of AMPK-related protein kinases allows LKB1-induced phosphorylation and activation[J]. Biochem J, 2006, 394(Pt3):e7-9.
[40] Liu Y, Wan Q, Guan Q, et al. High-fat diet feeding impairs both the expression and activity of AMPKα in rat’ skeletal muscle [J]. Biochem Biophys Res Commun, 2006, 339(2):701-707. [41] Jessen N, Pold R, Buhl ES, et al. Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles[J]. J Appl Physiol(1985), 2003, 94 (4):1373-1379.
[42] Krook A, Wallberg-Henriksson H, Zierath JR. Sending the signal: molecular mechanisms regulating glucose uptake[J]. Med Sci Sports Exerc, 2004, 36(7):1212-1217.
[43] Christ CY, Hunt D, Hancock J, et al. Exercise training improves muscle insulin resistance but not insulin receptor signaling in obese Zucker rats[J]. J Appl Physiol (1985), 2002, 92(2):736-744.
[44] Chibalin AV, Yu M, Ryder JW, et al. Exercise-induced changes in expression and activity of proteins involved in insulin signaltransduction in skeletal muscle: differential effects on insulinreceptor substrates 1 and 2[J]. Pros Natl Acad Sei U S A, 2000, 97(1):38-43.
[45] Olmes B, Dohm GL. Regulation of GLUT4 gene expression during exercise[J]. Med Sci Sports Exerc, 2004, 36(7):1202-1206.
[46] Holmes B, Dohm GL. Regulation of GLUT4 gene expression during exercise[J]. Med Sci Sports Exerc, 2004, 36(7):1202-1206.
[47] J ger S, Handschin C, St-Pierre J, et al. AMP-activaed protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α[J]. Proc Natl Acad Sci U S A, 2007, 104(29):12017-12022.
[48] Li J, Hu X, Selvakumar P, et al. Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle[J]. Am J Physiol Endocrinol Metab, 2004, 287(5):E834-841.
[49] Li J, Miller EJ, Ninomiya-Tsuji J, et al. AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart[J]. Circ Res, 2005, 97(9):872-879.
[50] Sakamoto K, McCarthy A, Smith D, et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction[J]. EMBO J, 2005, 24(10):1810-1820.
[51] Atherton PJ, Babraj J, Smith K, et al. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation[J]. FASEB J, 2005, 19(7):786-788.
[52] J rgensen SB, Viollet B, Andreelli F, et al. Knockout of the alpha2 but not alpha1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle[J]. J Biol Chem, 2004, 279(2):1070-1079.
[53] Farese RV, Sajan MP, Yang H, et al. Muscle-specific knockout of PKC-lambda impairs glucose transport and induces metabolic and diabetic syndromes[J]. J Clin Invest, 2007, 117(8): 2289-2301.
[54] Richter EA, Vistisen B, Maarbjerg SJ, et al. Differential effect of bicycling exercise intensity on activity and phosphorylation of atypical protein kinase C and extracellular signalregulated protein kinase in skeletal muscle[J]. J Physiol, 2004, 560(Pt 3):909-918.
[55] Lessard SJ, Rivas DA, Chen ZP, et al. Tissue-specific effects of rosiglitazone and exercise in the treatment of lipid-induced insulin resistance[J]. Diabetes, 2007, 56(7):1856-1864. [56] Kumari S, Liu X, Nguyen T, et al. Distinct phosphorylation patterns underlie Akt activation by different survival factors in neurons[J]. Brain Res Mol Brain Res, 2001, 96(1-2):157-162.
[57] Leclerc I, Rutter GA. AMP-activated protein kinase: a new beta-cell glucose sensor: Regulation by amino acids and calcium ions[J]. Diabetes, 2004, 53(S3):S67-74.
[58] Zang M, Zuccollo A, Hou X, et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells[J]. J Biol Chem, 2004, 279(46):47898-47905.
[59] Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status[J]. Endocrinology, 2003, 144(12):5179-5183.
[60] Horman S, Vertommen D, Heath R, et al. Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491[J]. J Biol Chem , 2006, 281 (9):5335-5340.
[61] Mu J, Brozinick JT Jr, Valladares O, et al. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle[J]. Mol Cell, 2001, 7(5):1085-1094.
PI3K/Akt and AMPK Signaling Pathway and Effect of Exercise on Rodent Skeletal Muscle GLUT4 Translocation and Expression
ZHANG Yun-li, WANG Lin, LIU Tie-min
(Liaocheng University, Liaocheng 252059, China)
Skeletal muscles play an important role in glucose homeostasis. The translocation and expression changes of glucose transporter 4 (GLUT4) as one of the most important glucose transporter proteins in skeletal muscle are closely associated with insulin resistance. This paper reviewed the recent research progress on the exercise-induced translocation and expression of GLUT4 as well as the improvement of exercise-induced glucose uptake by phosphatidylinositol 3-kinases (PI3K) / protein kinase B (Akt) and AMP-activated protein kinase (AMPK) signaling pathways in rodent skeletal muscle. The purpose of this paper is to clearly understand the mechanism underlying GLUT4 translocation and expression in rodent skeletal muscles.
Skeletal muscle; Exercise; Insulin resistance; Glucose transporter 4 (GLUT4); Phosphatidylinositol 3-kinases (PI3K); Protein kinase B (Akt); AMP-activated protein kinase (AMPK)
Q95-33
A
1674-5817(2017)01-0076-07
10.3969/j.issn.1674-5817.2017.01.017
2016-06-15
山东省自然科学基金资助项目(ZR2011CM040)
张云丽(1977-), 女, 讲师,
E-mail: zhangyunli@lcu.edu.cn