克罗恩病多模态磁共振成像

2017-04-06 00:02朱建国李海歌曹鹏
放射学实践 2017年10期
关键词:克罗恩伪影肠壁

朱建国, 李海歌, 曹鹏

·综述·

克罗恩病多模态磁共振成像

朱建国, 李海歌, 曹鹏

克罗恩病是一种消化道的慢性炎症,多发生于肠道,以往对该病的诊断和随访多依赖于内镜和实验室检查。随着影像技术的发展,诸多的磁共振成像技术被用于克罗恩病的临床研究,这些成像技术丰富了对克罗恩病的研究手段,能够从微结构和微循环的角度讨论克罗恩病,拓宽了研究视野。本文在概括前人研究的基础上,就不同磁共振成像技术的原理、实际应用、问题不足做一综述,并对未来的发展方向提出展望。

Crohn病; 多模态; 磁共振成像

肠道克罗恩病(Crohn's disease,CD)是一种原因不明的慢性、反复发作的消化道炎性病变,多见于青少年,跳跃性分布是该病的特征。以往对CD的诊断和随访主要依赖于内镜、微生物和血清学检查。随着技术的发展,影像学越来越多地被用于监控CD病情、观察并发症、评估疗效。上个世纪九十年代开始,磁共振(magnetic resonance,MR)凭其高组织分辨率、无辐射、非侵入性的优势,逐步应用于CD的研究。在软硬件水平的提高基础上,多种磁共振成像技术被应用于CD的临床研究,其中以磁共振肠道造影(magnetic resonance enterography/enteroclysis,MRE),磁共振弥散加权(diffusion weighted magnetic resonance,DW-MR)、磁共振动态增强(dynamic contrast enhanced magnetic resonance,DCE-MR)技术相对成熟,使用最为广泛。近年来,磁化传递(magnetization transfer,MT)、超微超顺磁氧化铁粒子增强磁共振[ultrasmall super paramagnetic iron oxide-(USPIO-) enhanced MR]以及正电子发射型计算机断层-磁共振成像(positron emission computed tomography-MR,PET-MR)等成像技术也开始应用临床。上述多模态MR成像技术有助于观察病灶分布、病变形态并能从细胞学、微循环和组织代谢角度分析CD的病理改变,丰富了对CD 的研究手段。本文就多模态MR成像技术在CD中的研究情况做一综述。

MRE的应用研究

根据检查前的准备方式不同,MRE分口服法(enterography)和经导管灌入法(enteroclysis)两种。两者的共同之处都是使用1000~2000 mL对比剂充盈肠道[1],不同之处在于前者是在MR扫描前60 min分次口服对比剂,后者首先经鼻向十二指肠远端-空肠近端插入小肠导管,经导管以100 mL/min的速度直接向小肠内注入对比剂。两者的目的均为MR扫描前用对比剂充分充盈肠道,既能防止萎陷的肠管掩盖病变、产生误诊,又能减少肠腔气体,避免磁敏感伪影。相对于MR enteroclysis,MR enterography操作简便,但摄入的量有限,扩张肠道的效果不如MR enteroclysis; MR enteroclysis的缺点是需要插入十二指肠导管,对操作者有技术要求,患者需忍受一定的痛苦。对比剂的应用以双相对比剂居多[2],即在T1WI为低信号,T2WI为高信号,包括甲基纤维素水混合液、聚乙烯醇溶液、等渗甘露醇等。Zhu等[3]研究2.5%甘露醇溶液味微甘易被患者接受,且为等渗溶液,不被肠道吸收,充盈肠道效果最为理想。充盈肠道后的MR检查应选用快速序列屏气扫描,如T1WI二维的快速扰相梯度回波(fast spoiled gradient recalled echo,FSPGR)、三维的肝脏容积快速扫描(liver acceleration volume acquisition,LAVA)、容积式内插法扫描(volumetric interpolated breath-hold examination,VIBE),T2WI的单次激发快速自旋回波(single shot fast spin echo,SSFSE)或半傅立叶采集单次激发快速自旋回波(half-fourier acquisition single shot turbo spin echo,HASTE)、真实稳态进动快速成像(true fast imaging with steady precession,trueFISP)。达到缩短扫描时间,避免呼吸运动伪影和减少肠蠕动伪影目的。

小肠是结肠镜观察的盲区,继发肠道狭窄和肠瘘则是肠镜检查的禁忌症,MRE可以无创、无侵入性的观察整个肠道情况。Samuel等[4]比较MRE和胶囊肠镜对小肠CD病灶检出情况,发现两种方法敏感性相似,但MRE的特异性要显著高于胶囊肠镜。Maccioni等[5]以胶囊肠镜和结肠镜为标准,评估MRE在全肠道CD病灶的检出情况,认为MRE具有与肠镜相同的检查效果。Oussalah等[6]通过定量分析认为MRE对肠壁溃疡的显示具有89%的特异度,甚至超过肠镜。Maglinte等[7]提出肠道CD分为4个阶段:炎症活动、肠瘘穿孔、纤维性狭窄、修复再生。MRE可以结合肠壁及肠系膜的信号特征,对CD的活动性做出判断。CD的肠壁厚度超过3 mm,且炎症越重,肠壁越厚[8];T2WI脂肪抑制序列,肠壁信号的强度亦和炎症反应程度相关[9];肠壁强化的程度和强化方式也能提示炎症活动[10];肠系膜血管增粗、“梳齿征”(comb sign)和短径>1 cm的肠系膜淋巴结也是提示CD活动的征象[11]。在此基础上先后产生了3项MRE评分标准:克罗恩病活动性评分(Crohn's disease activity score,CDAS), 急性炎症评分(acute inflammation score,AIS)、磁共振小肠成像全球评分(MRE global score,MEGS)。经过和临床资料、血清标记物的对比分析证实, MR评分能够反应CD的活动程度,具有70%以上的特异度和敏感度[9,12]。肠壁间条状长T2信号和聚集呈“星状”(star shaped)的肠袢是肠瘘形成的典型表现[13]。Schil等[14]研究76例CD患者手术证实, 不同放射科医师对肠瘘诊断一致性达0.895(观察者间一致性分析)。Ordas等[15]研究48例CD患者在药物治疗12周后,采用MRE评估溃疡愈合情况,准确率达90%。Peyrin-Biroulet等[16]的研究认为在药物治疗2周后,MRE就能观察到肠粘膜的恢复情况。

肠管蠕动、呼吸运动会形成移动伪影,空气等肠内容物导致磁敏感伪影。伪影的产生不仅降低图像质量,影响诊断。胰高血糖素和丁基东莨菪碱是目前使用较多的注射药物,可以在一定程度上减轻肠管运动伪影的影响,但不能完全消除[17]。注射药物的种类、剂量,注射途径和时间都没有统一标准,并且有不良反应的风险[18]。口服对比剂充盈肠道可以排除肠气,减轻磁敏感伪影,但对比剂向肠壁的外渗,表现为T2WI信号增高,形成假阳性结果[2]。高场强(3.0T)能缩短扫描时间、提高时间分辨率,减轻运动伪影的影响,但磁敏感伪影的干扰效应更加突出,图像变形、扭曲,质量下降[19]。

DW-MRI的应用研究

DW-MR基于水分子的布朗运动,无需注入对比剂即可得到细胞构成、细胞膜完整性等分子水平的信息。通过测量表观扩散系数(Apparent diffusion coefficient,ADC),达到定量分析[20]。DW-MR起初广泛应用于神经系统研究,随着软硬件水平的提高,梯度回波序列、多通道线圈和并行成像等技术开发利用,使DW-MR运用于CD的研究成为可能。

炎症越重,肠壁DW-MR信号越高、ADC值越低,其原因是由于炎症导致的灌注增加、炎细胞浸润共同限制了水分子的弥散[21]。根据这一理论,Stanescu-Siegmund[22]认为CD病变段肠壁的ADC值低于正常肠段,以1.56×10-3mm2/s作为截断点,诊断CD的敏感度和特异度分别为97.4%、99.2%。Hordonneau[23]和Zhu等[24]认为ADC能定量评估CD炎症反应程度。Schmid-Tannwald等[25]应用DW-MRI对24例CD患者的144段病变肠管进行研究,发现以1.41×10-3mm2/s作为ADC值截断点可以有效区分肠壁的急性和慢性炎症活动。Li[26]采用多b值DW-MRI对47例CD患者进行研究,认为以1.17×10-3mm2/s为界判别病变静止期和活动期,具有100%敏感度。研究表明,病程10年以上CD患者中1/3都会发生肠道狭窄,早期以炎性狭窄为主,后期向纤维性狭窄转化,因此狭窄性质的判定决定治疗方案[27]。Zhu等[24]研究表明以1.11×10-3mm2/s作为ADC值截断点对狭窄性质的判断有帮助。通过与内镜对照,一项为期3年的随访研究[28]显示DW-MR对疗效评估的敏感度为94.12% ,特异度为73.91%。Buisson等[29]使用肿瘤坏死因子抑制剂治疗CD,观察治疗前后肠壁ADC值的变化,认为治疗前肠壁ADC值<1.96×10-3mm2/s,其疗效更好。

目前,磁场强度和b值是DW-MR应用于CD研究的两个关键因素。相对于1.5T,3.0T场强能够提高疾病诊断的特异性,其不足之处在于受磁敏感伪影影响,图像质量下降[19]。DW-MR扫描参数b值的选取尚无统一标准,ADC值的测量受预设b值大小的影响,b值越大,对检出病灶特异性强,但信号噪声比和对比噪声比同时下降[30]。Oto等[31]早期选用b=600 s/mm2。目前多数学者[11,32]还是采用b=800 s/mm2,认为在此条件下图像质量和检出病灶的敏感性都相对较高。Feng等[30]通过分析对比噪声和信号噪声比,建议采用b=1500 s/mm2,认为对CD病灶检出率90.32%,诊断敏感度81.18%、特异度95.10%,但这只是一组31例患者的小样本研究,有待继续讨论。

DCE-MRI的应用研究

DCE-MRI是一种基于对比剂药物代谢动力学的MRI成像方法,其采用快速T1加权序列追踪经静脉注射、随后通过组织的低分子量对比剂,依据每个体素的信号改变提取反映组织血流动力学的信息,非侵入性观察、分析组织微循环功能状态[33]。炎症刺激会导致微血管生成和血管通透性增加,注入对比剂后,对比剂分子通过高通透性的不成熟新生血管向血管外细胞外间隙(extravascular extracellular space,EES)扩散[34-35]。DCE-MR在对比剂注入血管前、中、后连续采集图像,分析对比剂分子在血管内和EES间隙分布信息,获取药物代谢动力学参数[36]。为了拟合出对比剂分子时间变化浓度曲线,真实反映药物代谢情况,时间分辨率是DCE-MR成像的关键。Ziech等[37]认为相对低场强,3.0T MR能将时间分辨率降低到0.82s,既保证了定量参数的可靠性,又能一定程度克服运动伪影对图像的影响。DCE-MR获得的功能参数包括半定量和定量参数,半定量参数如增强率(rate of enhancement)、初始上升斜率(Initial slope of increase,ISI);定量参数包括容积转运常数(volume transfer coefficient reflecting vascular permeability,Ktrans)、返流常数(flux rate constant,Kep)、血管外细胞外间隙容积分数(extracellular volume ratio reflecting vascular permeability,Ve)、血浆容量(plasma volume fractions,Vp)。相对而言,半定量参数的可靠性和稳定性不如定量参数,和实验室及病理学标记物的相关性也更差,不能直接反应生理病理改变[38];而定量参数反应血管内皮、毛细血管床容积等定量信息更准确,临床使用更广[39-42]。

Zhu等[3]的研究发现DCE-MR定量参数Ktrans、Kep和Ve与炎症反应的血清学标记物C反应蛋白浓度呈线性相关,对此解释为炎症刺激高通透性的不成熟血管生成,对比剂分子易于扩散到EES间隙。Jeroen等[43]以20例患者手术切除的50个肠段的病理为基础,认为DCE-MR的参数[最大强化(maximum enhancement,ME)]和ISI有助于鉴别狭窄的性质。

动脉输入函数(arterial input function,AIF)是获取DCE-MRI定量参数(Ktrans、Kep、Ve和Vp)的前提,并决定定量参数的稳定性和可靠性。受年龄、性别、身体机能等多因素影响,加之对时间分辨率的高要求,AIF的稳定性不够理想。学者[44]提出以其他模型取代AIF,但这仅是通过7.0T MR动物实验得出的结论;还有学者[38]提出个体化AIF的概念,并在胶质瘤的临床分级研究中得以实施,类似研究是否能应用于肠道CD有待检验。

前景和展望

多模态MR成像技术相互融合、新技术推广和研究领域拓展将是未来肠道CD研究的方向。

各种成像模式各有优劣,相互结合能提高对CD的诊断效能,综合不同的定量参数,能从更全面的角度解释CD的病理改变。Schmid-Tannwald等[45]对25例CD的研究表明DW-MR结合T2WI能提高对肠瘘、窦道的检出率。Hordonneau等[23]在MR评分中增加了ADC的评价系数,提高了对CD活动性的评估能力。Zhu等[3]将DCE-MR和DW-MR结合,对CD进行研究,发现Ktrans和ADC对CD都有较高的诊断价值,同时Ktrans和ADC之间也具备统计相关性,据此认为可以从微循环和微结构的角度解释CD的病理变化过程。

新兴的MR成像技术也具备CD研究的潜能,受限于设备条件和经济因素,这些新技术处于实验阶段,尚未临床普及。MT基于自由水分子和结合水分子之间的差异,产生图像对比,并能测算结合大分子的浓度。MT脉冲序列施加前、后需要加入2D或3D的梯度平面回波序列,目的是饱和结合性水分子的信号,致使含有高浓度的大分子的组织具有高的MT比[46-47]。胶原沉积被视为肠壁纤维化的标志,因MT具有检测大分子胶原的能力,借以判断肠壁纤维化的程度,此结论已得到动物实验研究[46]和临床研究证实[47]。USPIO粒子是一组能够使血管和免疫细胞双重现象的MRI对比剂。由于粒子表面涂有葡聚糖涂层,当静脉内给药后,血管首先显影,随后炎症部位浸润的巨噬细胞吞噬USPIO颗粒,导致USPIO积聚于巨噬细胞活跃的区域,显示炎症和感染病灶[48-49]。在炎症部位积聚的USPIO粒子能降低T2*弛豫时间,从而使得信号发生改变[50],因此USPIO粒子对于细微的炎症活动都有较高的敏感性,并能定量评估炎症活动程度[51],该观点已被实验[52]和临床研究[53]证实。此外,相对于钆对比剂,USPIO粒子肾毒性更小、使用更安全[54]。氟-18易于积聚在高葡萄糖摄取和利用的炎细胞内,因此被视为炎症反应的标记物。PET-MR可以先后或者同时采集PET、MR图像,是对单纯MRE图像的有益补充,其次PET-MR能够通过氟-18摄取配准,改善肠道MR的结构图像[55]。

CD具有病程长、易反复、难治愈的临床特点,影响全身代谢功能,属于系统性疾病[56-57]。部分患者会出现抑郁、情绪反复、大脑反应异常、癫痫发作等症状[58]。最新研究表明可以通过慢性迷走神经刺激治疗CD,5例患者(5/7)经过6个月治疗,出现不同程度临床症状减轻、生物学和内镜指证缓解[59]。Stovicek等[60]发现治疗前后部分CD患者脑结构发生改变。研究[61]认为可以通过脑功能成像评估CD患者治疗后腹痛症状改善情况。据此,我们认为CD患者的脑功能研究具有理论基础和临床意义,研究尚未深入,值得进一步探讨。

[1] Anupindi SA,Grossman AB,Nimkin K,et al.Imaging in the evaluation of the young patient with inflammatory bowel disease:what the gastroenterologist needs to know[J].J Pediatr Gastroenterol Nutr,2014,59(4):429-439.

[2] Mentzel HJ,Reinsch S,Kurzai M,et al.Magnetic resonance imaging in children and adolescents with chronic inflammatory bowel disease[J].World J Gastroenterol,2014,20(5):1180-1191.

[3] Zhu J,Zhang F,Luan Y,et al.Can dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) evaluate inflammation disease:a preliminary study of crohn's disease[J].Medicine,2016,95(14):e3239.

[4] Samuel S,Bruining DH,Loftus EV,et al.Endoscopic skipping of the distal terminal ileum in Crohn's disease can lead to negative results from ileocolonoscopy[J].Clin Gastroenterol Hepatol,2012,10(11):1253-1259.

[5] Maccioni F,Al Ansari N,Mazzamurro F,et al.Detection of Crohn disease lesions of the small and large bowel in pediatric patients:diagnostic value of MR enterography versus reference examinations[J].AJR,2014,203(5):W533-542.

[6] Oussalah A,Laurent V,Bruot O,et al.Diffusion-weighted magnetic resonance without bowel preparation for detecting colonic inflammation in inflammatory bowel disease[J].Gut,2010,59(8):1056-1065.

[7] Maglinte DD,Gourtsoyiannis N,Rex D,et al.Classification of small bowel Crohn's subtypes based on multimodality imaging[J].Radiol Clin North Am,2003,41(2):285-303.

[8] Oto A,Kayhan A,Williams JT,et al.Active Crohn's disease in the small bowel: evaluation by diffusion weighted imaging and quantitative dynamic contrast enhanced MR imaging[J].J Magn Reson Imaging,2011,33(3):615-624.

[9] Steward MJ,Punwani S,Proctor I,et al.Non-perforating small bowel Crohn's disease assessed by MRI enterography:derivation and histopathological validation of an MR-based activity index[J].Eur J Radiol,2012,81(9):2080-2088.

[10] Zappa M,Stefanescu C,Cazals-Hatem D,et al.Which magnetic resonance imaging findings accurately evaluate inflammation in small bowel Crohn's disease? A retrospective comparison with surgical pathologic analysis[J].Inflamm Bowel Dis,2011,17(4):984-993.

[11] Moy MP,Sauk J,Gee MS.The role of MR enterography in assessing crohn's disease activity and treatment response[J].Gastroenterol Res Pract,2016,(2015):1-13.

[12] Makanyanga JC,Pendse D,Dikaios N,et al.Evaluation of Crohn's disease activity:initial validation of a magnetic resonance enterography global score (MEGS) against faecal calprotectin[J].Eur Radiol,2014,24(2):277-287.

[13] Al-Hawary MM,Zimmermann EM,Hussain HK.MR imaging of the small bowel in Crohn disease[J].Magn Reson Imaging Clin N Am,2014,22(1):13-22.

[14] Schill G,Iesalnieks I,Haimerl M,et al.Assessment of disease behavior in patients with Crohn's disease by MR enterography[J].Inflamm Bowel Dis,2013,19(5):983-990.

[15] Ordas I,Rimola J,Rodriguez S,et al.Accuracy of magnetic resonance enterography in assessing response to therapy and mucosal healing in patients with Crohn's disease[J].Gastroenterology,2014,146(2):374-382.

[16] Peyrin-Biroulet L,Deltenre P,de Suray N,et al.Efficacy and safety of tumor necrosis factor antagonists in Crohn's disease:meta-analysis of placebo-controlled trials[J].Clin Gastroenterol Hepatol,2008,6(6):644-653.

[17] Mollard BJ,Smith EA,Dillman JR.Pediatric MR enterography:technique and approach to interpretation-how we do it[J].Radiology,2015,274(1):29-43.

[18] Allen BC,Leyendecker JR.MR enterography for assessment and management of small bowel Crohn disease[J].Radiol Clin North Am,2014,52(4):799-810.

[19] Yoon K,Chang KT,Lee HJ.MRI for Crohn's disease:present and future[J].Biomed Res Int,2015,786802.

[20] Sinha R,Rajiah P,Ramachandran I,et al.Diffusion-weighted MR imaging of the gastrointestinal tract:technique,indications,and imaging findings[J].Radiographics,2013,33(3):655-676;discussion 76-80.

[21] Freiman M,Perez-Rossello JM,Callahan MJ,et al.Characterization of fast and slow diffusion from diffusion-weighted MRI of pediatric Crohn's disease[J].J Magn Reson Imaging,2013,37(1):156-163.

[22] Stanescu-Siegmund N,Nimsch Y,Wunderlich AP,et al.Quantification of inflammatory activity in patients with Crohn's disease using diffusion weighted imaging (DWI) in MR enteroclysis and MR enterography[J].Acta Radiol,2017,58(3):264-271.

[23] Hordonneau C,Buisson A,Scanzi J,et al.Diffusion-weighted magnetic resonance imaging in ileocolonic Crohn's disease:validation of quantitative index of activity[J].Am J Gastroenterol,2014,109(1):89-98.

[24] Zhu J,Zhang F,Liu F,et al.Identifying the inflammatory and fibrotic bowel stricture:MRI diffusion-weighted imaging in Crohn's disease[J].Radiology of Infectious Diseases,2015,2(3):128-133.

[25] Schmid-Tannwald C,Schmid-Tannwald CM,Morelli JN,et al.The role of diffusion-weighted MRI in assessment of inflammatory bowel disease[J].Abdom Radiol (NY),2016,41(8):1484-1494.

[26] Li XH,Sun CH,Mao R,et al.Assessment of activity of Crohn disease by diffusion-weighted magnetic resonance imaging[J].Medicine (Baltimore),2015,94(43):e1819.

[27] Rodrigues C,Oliveira A,Santos L,et al.Biodegradable stent for the treatment of a colonic stricture in Crohn's disease[J].World J Gastrointest Endosc,2013,5(5):265-269.

[28] Sakuraba H,Ishiguro Y,Hasui K,et al.Prediction of maintained mucosal healing in patients with Crohn's disease under treatment with infliximab using diffusion-weighted magnetic resonance imaging[J].Digestion,2014,89(1):49-54.

[29] Buisson A,Hordonneau C,Goutte M,et al.Diffusion-weighted magnetic resonance enterocolonography in predicting remission after anti-TNF induction therapy in Crohn's disease[J].Dig Liver Dis,2016,48(3):260-266.

[30] Feng Q,Yan YQ,Zhu J,et al.Optimal b value of diffusion-weighted imaging on a 3.0T magnetic resonance scanner in Crohn's disease[J].World J Gastroenterol,2014,20(35):12621-12627.

[31] Oto A,Zhu F,Kulkarni K,et al.Evaluation of diffusion-weighted MR imaging for detection of bowel inflammation in patients with Crohn's disease[J].Acad Radiol,2009,16(5):597-603.

[32] Neubauer H,Pabst T,Dick A,et al.Small-bowel MRI in children and young adults with Crohn disease:retrospective head-to-head comparison of contrast-enhanced and diffusion-weighted MRI[J].Pediatr Radiol,2013,43(1):103-114.

[33] Goh V,Gourtsoyianni S,Koh DM,editors.Functional imaging of the liver[M].Seminars in Ultrasound,CT and MRI,2013,34(1):54-65.

[34] Orguc S,Tikiz C,Aslanalp Z,et al.Comparison of OMERACT-RAMRIS scores and computer-aided dynamic magnetic resonance imaging findings of hand and wrist as a measure of activity in rheumatoid arthritis[J].Rheumatol Int,2013,33(7):1837-1844.

[35] Truijman MT,Kwee RM,van Hoof RH,et al.Combined18F-FDG PET-CT and DCE-MRI to assess inflammation and microvascularization in atherosclerotic plaques[J].Stroke,2013,44(12):3568-3570.

[36] Barnes SL,Whisenant JG,Xia L,et al.Techniques and applications of dynamic contrast enhanced magnetic resonance imaging in cancer[J].Conf Proc IEEE Eng Med Biol Soc,2014,4264-4267.

[37] Ziech ML,Lavini C,Bipat S,et al.Dynamic contrast-enhanced MRI in determining disease activity in perianal fistulizing Crohn disease:a pilot study[J].AJR,2013,200(2):W170-177.

[38] Zhang N,Zhang L,Qiu B,et al.Correlation of volume transfer coefficient Ktranswith histopathologic grades of gliomas[J].J Magn Reson Imaging,2012,36(2):355-363.

[39] Gawlitza M,Purz S,Kubiessa K,et al.In vivo correlation of glucose metabolism,cell density and microcirculatory parameters in patients with head and neck cancer:initial results using simultaneous PET/MRI[J].PLoS One,2015,10(8):e0134749.

[40] Aryal M,Park J,Vykhodtseva N,et al.Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles:evaluation during tumor progression in a rat glioma model[J].Phys Med Biol,2015,60(6):2511-2527.

[41] Li L,Wang K,Sun X,et al.Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer[J].Med Sci Monit,2015,21(2):376-382.

[42] Ng CS,Wei W,Bankson JA,et al.Dependence of DCE-MRI biomarker values on analysis algorithm[J].PLoS One,2015,10(7):e0130168.

[43] Tielbeek JA,Ziech ML,Li Z,et al.Evaluation of conventional,dynamic contrast enhanced and diffusion weighted MRI for quantitative Crohn's disease assessment with histopathology of surgical specimens[J].Eur Radiol,2014,24(3):619-629.

[44] Lee J,Cardenas-Rodriguez J,Pagel MD,et al.Comparison of analytical and numerical analysis of the reference region model for DCE-MRI[J].Magn Reson Imaging,2014,32(7):845-853.

[45] Schmid-Tannwald C,Agrawal G,Dahi F,et al.Diffusion-weighted MRI:role in detecting abdominopelvic internal fistulas and sinus tracts[J].J Magn Reson Imaging,2012,35(1):125-131.

[46] Dillman JR,Swanson SD,Johnson LA,et al.Comparison of noncontrast MRI magnetization transfer and T2-weighted signal intensity ratios for detection of bowel wall fibrosis in a Crohn's disease animal model[J].J Magn Reson Imaging,2015,42(3):801-810.

[47] Pazahr S,Blume I,Frei P,et al.Magnetization transfer for the assessment of bowel fibrosis in patients with Crohn's disease:initial experience[J].MAGMA,2013,26(3):291-301.

[48] Sadat U,Howarth SP,Usman A,et al.Sequential imaging of asymptomatic carotid atheroma using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging:a feasibility study[J].J Stroke Cerebrovasc Dis,2013,22(8):e271-276.

[49] Alam SR,Shah AS,Richards J,et al.Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction:early clinical experience[J].Circ Cardiovasc Imaging,2012,5(5):559-565.

[50] Gaglia JL,Harisinghani M,Aganj I,et al.Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients[J].Proc Natl Acad Sci USA,2015,112(7):2139-2144.

[51] Hedgire SS,Mino-Kenudson M,Elmi A,et al.Enhanced primary tumor delineation in pancreatic adenocarcinoma using ultrasmall super paramagnetic iron oxide nanoparticle-ferumoxytol:an initial experience with histopathologic correlation[J].Int J Nanomedicine,2014,9(4):1891-1896.

[52] Farrell BT,Hamilton BE,Dosa E,et al.Using iron oxide nanoparticles to diagnose CNS inflammatory diseases and PCNSL[J].Neurology,2013,81(3):256-263.

[53] Weissleder R,Nahrendorf M,Pittet MJ.Imaging macrophages with nanoparticles[J].Nat Mater,2014,13(2):125-138.

[54] Nayak AB,Luhar A,Hanudel M,et al.High-resolution,whole-body vascular imaging with ferumoxytol as an alternative to gadolinium agents in a pediatric chronic kidney disease cohort[J].Pediatr Nephrol,2015,30(3):515-521.

[55] Rosenkrantz AB,Balar AV,Huang WC,et al.Comparison of coregistration accuracy of pelvic structures between sequential and simultaneous imaging during hybrid PET/MRI in patients with bladder cancer[J].Clin Nucl Med,2015,40(8):637-641.

[56] 周敏清,谢宝君.克罗恩病的小肠CTE联合CTA诊断[J].放射学实践,2015,30(4):364-368.

[57] 赵亚娥,汪登斌,韩本谊,等.克罗恩病合并泌尿系结石的多层螺旋CT检查价值[J].放射学实践,2011,26(6):631-633.

[58] Rubio A,Pellissier S,Van Oudenhove L,et al.Brain responses to uncertainty about upcoming rectal discomfort in quiescent Crohn's disease-a fMRI study[J].Neurogastroenterol Motil,2016,28(9):1419-1432.

[59] Bonaz B,Sinniger V,Hoffmann D,et al.Chronic vagus nerve stimulation in Crohn's disease:a 6-month follow-up pilot study[J].Neurogastroenterol Motil,2016,28(6):948-953.

[60] Stovicek J,Liskova P,Lisy J,et al.Crohn's disease:is there a place for neurological screening?[J].Scand J Gastroenterol,2014,49(2):173-176.

[61] Hess A,Roesch J,Saake M,et al.Functional Brain Imaging Reveals Rapid Blockade of Abdominal Pain Response Upon Anti-TNF Therapy in Crohn's Disease[J].Gastroenterology,2015,149(4):864-866.

R574; R05; R445.2

A

1000-0313(2017)10-1070-05

2016-09-09

2017-01-23)

210011 南京,南京医科大学第二附属医院医学放射科(朱建国、李海歌);201203 上海,通用电气药业(上海)有限公司(曹鹏)

朱建国(1978-),男,江苏镇江人,博士,副主任医师,主要从事神经系统及消化系统影像诊断工作。

南京医科大学科技发展基金重点项目支持(2015NJMUZD035)

10.13609/j.cnki.1000-0313.2017.10.017

猜你喜欢
克罗恩伪影肠壁
肠壁增厚分层并定量分析对小肠坏死的诊断价值
高频超声诊断小儿原发性小肠淋巴管扩张症
克罗恩病早期诊断的研究进展
克罗恩病与肠系膜脂肪
核磁共振临床应用中常见伪影分析及应对措施
腹性紫癜所致肠壁改变与肠系膜上动脉血流参数变化超声观察
基于MR衰减校正出现的PET/MR常见伪影类型
腹部计算机断层扫描提示大肠肠壁增厚的临床意义
减少头部运动伪影及磁敏感伪影的propller技术应用价值评价
一种无伪影小动物头部成像固定装置的设计