邢献军,杨 静,范方宇,李永玲,张贤文
木屑及其水热炭的热解特性和动力学对比
邢献军1,2,杨 静3,范方宇4,李永玲3,张贤文1,2※
(1. 合肥工业大学先进能源技术与装备研究院,合肥 230009; 2. 合肥工业大学汽车与交通工程学院,合肥 230009; 3. 合肥工业大学机械工程学院,合肥 230009; 4. 合肥工业大学化学与化工学院,合肥 230009)
为全面了解木屑及其水热炭的差异,获取更多关于水热炭作为化工燃料的使用特性。该文使用热重分析仪和傅里叶红外光谱仪对比研究了木屑及其水热炭在热解过程(10 ℃/min升温速率)中的失重特性及其官能团变化,分析了升温速率(10、20、30 ℃/min)对2种样品热解失重过程的影响,采用DAEM(分布活化能模型)计算了2种样品不同转化率下的活化能。结果表明:1)在200℃反应6 h得到的木屑水热炭,化学结构与木屑相似。2)在热解过程(10 ℃/min升温速率)中,木屑与水热炭最大失重速率分别为0.817 %/℃和1.224 %/℃,温度为353.57 ℃和363.42 ℃;不同终温下半焦红外光谱分析发现,水热炭更易解聚,其碳化速度更快。3)对比3种不同升温速率下2种样品的失重曲线可知,水热处理没有影响热滞后现象,样品焦炭生成量与升温速率无关,焦炭生成量平均值水热炭大于木屑。4)DAEM模型适用于2种样品热解反应活化能的求解,木屑及其水热炭活化能分别为99.33~252.72 kJ/mol和63.77~211.68 kJ/mol,当转化率在0.30到0.80范围时,木屑的活化能高于水热炭。研究结果为木屑水热炭热化学转化制备焦炭提供理论依据。
木屑;热解;活化能;水热炭;傅里叶红外光谱
随着人口增长和工业化快速发展,化石燃料的大量消耗对环境和人类社会可持续发展构成了严重的威胁。因此,寻找清洁高效的替代燃料成为人类社发展的迫切需求。生物质作为世界上第四大能源[1-2],具有储量丰富、洁净性、可再生性和温室气体CO2的零排放等特点[3-4],引起了社会的广泛关注。生物质水热炭化是在温度为150~350 ℃、压力为1 400~7 600 kPa下,将生物质放入密闭的水溶液中反应1 h以上以制取焦炭的过程[5-6]。与生物质原料相比,水热炭体具有较高的燃料特性,如固定炭含量增加、氧含量减少、能量密度增加,其品质接近于泥炭和褐煤[7],但反应活性更高,可作为复合固体燃料直接燃用;水热炭化过程也使生物质中的碱金属溶解在水溶液中,减少了水热炭在燃烧或热解时对反应器的腐蚀。因此,水热炭可作为煤的替代品被应用到液化、气化和燃烧过程中。
目前,国内外对于生物质水热炭的研究主要集中在材料领域:如何制备形貌、功能各异的炭微球及其性能表征上,或者水热炭化产物的产率和组分分析上。文献[8]利用硫酸得到表面含有大量官能团的水热炭,该水热炭活化后会表现出良好的电化学特性;文献[9]研究了温度和时间对于稻草水热炭化的影响、稻草水热炭化的机理,分析了气相、液相和固相产物的产率;文献[10]以葡萄糖为原料,分析了水热炭化过程以及生成的焦炭表面官能团物理结构及微观化学组成。对于热反应动力学的研究多集中在生物质原料方面,文献[11]考察了玉米杆、玉米芯、稻草、龙眼枝、荔枝条及其混合燃料的燃烧、着火等特性,并计算了燃烧动力学参数;文献[12]选用了Kissinger-Akahira-Sunose (KAS)、Ozawa-Flyn-Wall (OFW)和Coats-Redfern 3种动力学方法对大豆秸秆的热解动力学参数进行计算并模拟。以上,对水热炭热解特性及其动力学进行的研究很少,水热处理对热解过程的影响缺乏理论认识。
因此,本研究选取常见的松木木屑为原料,采用热重分析和傅里叶红外技术对比研究木屑及其水热炭热解过程中的失重特性和有机结构变化,分析升温速率(10、20、30 ℃/min)对该2种样品失重特性的影响,采用DAEM方法对木屑及其水热炭热解反应过程进行对比研究,详细探讨2种样品热解活化能随转化率的变化规律以及存在的差异。以期为木屑水热炭在热化学转化工艺中的参数优化、能源品质提高等提供参考依据。
1.1 试验原料
试验原料为安徽合肥某家具加工厂的松木余料,经风干、粉碎、过筛后,得到粒度为80~106m木屑,将该木屑(Sawdust, SD)置于105 ℃烘箱中干燥24 h,装入密封袋中备用。
水热炭制备:称取4 g木屑,放入60 mL反应釜中,注入40 mL去离子水后搅拌至混合均匀,密封后将其置于200 ℃烘箱中保持6 h。待自然冷却至室温后分离出固体产物,分别用无水乙醇和去离子水各进行3次清洗,所得水热炭(Hydrochar,HC)置于105 ℃烘箱中干燥24 h,装入密封袋备用。试验样品元素分析和工业分析如表1所示。
表1 试验样品元素分析和工业分析(干基)
注:氧元素含量以差减法获得。
Note: Content of O was determined by difference.
1.2 表征及方法
热重测试采用Setaram公司生产的Setsys Evo型同步热分析仪。高纯度氮气流量为60 mL/min,样品质量为15 mg,分别以10、20、30 ℃/min升温速率将样品从室温程序升温至800 ℃,同时进行空白试验以消除系统误差。
傅里叶变换红外光谱测试采用美国Thermo Nicole公司Nicolet 67型傅里叶变换红外光谱仪,对2种样品热重试验(升温速10 ℃/min)不同终温下(200、400、600、800 ℃)热解固体产物、原样品进行红外光谱测试,红外扫描区间为400~4 000 cm-1,采用金刚石晶体压片,测试方法为傅里叶变换衰减全反射红外光谱法(ATR-FTIR)。
2.1 木屑与水热炭的热解特性和结构分析
图1为木屑及其水热炭傅里叶红外光谱图和热解失重(TG/DTG)曲线。
由图1a可见,SD与HC红外光图谱无明显差异,表明HC的化学成分与SD相似。1 603、1 510和1 422 cm-1为木质素中芳香环骨架上C=C伸缩振动,HC图谱在上述位置处,峰的位置未发生变化,表明该温度条件下HC中木质素仍然保存着完整的芳香结构。891、1 163 cm-1处为-(1→4)-糖苷键连接的C-O-C伸缩振动,主要用于连接纤维素中-D-吡喃葡萄糖,表明200℃保温6 h水热条件下,糖苷键连接的C-O-C未被破坏,纤维素中环状-D-吡喃葡萄糖在该条件下仍较稳定。1 730和1 639 cm-1处主要为半纤维素中C=O伸缩振动,HC图谱中几乎未发现该峰的存在,表明半纤维素中脂键断裂,半纤维素完成了脱羰基反应。1 160~900 cm-1(C-O-C、C-O)吸收峰增强,在900~700 cm-1出现了新的C-H弯曲振动,表明发生了芳香环重整,有新的芳香环生成[13]。由以上结论可知,200℃保温 6 h条件下发生的水热炭化反应,未使木屑生物质完全降解,纤维素与木质素仍然存在并发生了芳香环重整,而半纤维素降解[14-15]。
a. ATR-FTIR
b. TG and DTG curves
注:升温速率为10 ℃/min;图1b中失重曲线放大图温度在50~167 ℃;TG和DTG分别为热重曲线和微分热重曲线。
Note: Heating rate is 10 ℃/min; The temperature range of larger version of figure 1b between 50-167 ℃; TG and DTG are thermogravimetric curve and differential thermogravimetric curve, respectively.
图1 木屑和水热炭的ATR-FTIR图谱和热重曲线
Fig.1 ATR-FTIR spectra and thermogravimetric curves of sawdust and hydrochar
图1b可见,10 ℃/min升温速率下,2种样品的TG和DTG曲线整体变化趋势相似,主要分为3个阶段,第1阶段为样品干燥预热阶段(50~200 ℃),样品失重量不足2%,DTG峰值小,SD和HC最大质量损失率分别为0.014%/℃和0.006%/℃,该阶段失重速率的大小主要由含水量决定。第2阶段为挥发分析出阶段(200~390 ℃),样品TG值随温度升高迅速减小。该阶段2种样品均存在一个明显的DTG峰,对应各自的热解主反应阶段,主要为纤维素以及部分木质素热分解过程。挥发分析出量约占热解阶段失重总量的90%,HC和SD失重速率达到最大值,分别为1.224%/℃和0.817%/℃,对应温度分别为363.42 ℃和353.57 ℃;第3阶段为碳化阶段(390~800 ℃),随温度升高,失重速率放缓,TG、DTG曲线趋近于水平直线,热解反应结束。然而,2种样品热解失重曲线间存在明显差异:在挥发分析出阶段,HC的TG曲线向高温侧偏移,表明HC挥发分析出所需的温度更高。这是因为,HC在低温段(200~400 ℃)热解中[3,16],最易生成挥发分的低分子有机物和半纤维素等组分含量减少[17-18],挥发分含量降低(表1所示),在较高温度范围裂解的纤维素等组分,成为热解阶段析出挥发分的主要物质;HC的DTG峰形状更加尖窄,表明HC热解主要阶段的反应更集中剧烈,HC中纤维素等组分官能团活性较高,当受热加强时,挥发性物质释放更容易,热解反应越剧烈。
图2为10 ℃/min升温速率下,木屑和水热炭在不同终温下的半焦ATR - FTIR图。
a. 木屑
a. Sawdust
b. 水热炭
b. Hydrochar
注:升温速率为10 ℃·min-1。
Note: Heating rate is 10 ℃·min-1.
图2 木屑和水热炭在不同终温下半焦ATR-FTIR图谱
Fig.2 ATR-FTIR spectra of sawdust and hydrochar and their semi-char at different temperatures
图2可见,温度为200 ℃时,SD和HC各自的有机官能团种类同其对应的原料相比几乎未发生变化,但强度降低,说明当温度低于200 ℃时,2种样品热解反应温和,主要发生干燥失水以及官能团解聚[31]。温度高于200 ℃时,随温度升高,2种样品半焦官能团种类开始减少,直至消失,在图2中表现为ATR - FTIR曲线逐渐变平坦。其中,苯环上C=C(1 603 cm-1)吸收峰强度随温度的升高先增强后减弱,说明随温度升高,木质素裂解,酚类等化合物增多;1 455~1 367 cm-1存在饱和烃基的C-H和C-O以及C-H(烯烃)键,温度高于400 ℃时发生环化、小分子脱化等反应,生成CO2、H2O等小分子气体;C-O-C(1 163 cm-1)伸缩振动的吸收峰在400 ℃时基本消失,表明样品中的纤维素在该温度时几乎完全裂解;1 100~1 030 cm-1为醇类C-OH伸缩振动,随着温度升高逐渐减弱,至800 ℃完全消失,表明脱羟基反应发生;900~600 cm-1范围内的吸收峰随着温度的升高而发生变化,原因是芳香环在高温段重新组合并生成H2等轻质气体。由图2进一步分析可知,200 ℃以下,HC官能团强度降低更加明显,表明HC中官能团的活性位较多,低温时官能团连接键更容易解聚。在200~400 ℃范围内,HC绝大部分官能团消失更快,表明HC进入碳化阶段所需时间更短。
2.2 不同升温速率下木屑和水热炭的热解曲线
图3是木屑和水热炭在3种不同升温速率(10、20、30 ℃/min)下的热解失重(TG/DTG)曲线。
a. 木屑
a. Sawdust
图3可见,随着升温速率增大,SD和HC热解起始温度、DTG峰值对应温度以及热解终止温度均向高温侧偏移。这是因为,随着升温速率增大,样品受传热温差和温度梯度影响增大,加重了热滞后现象[19-20]。由TG曲线可知,3种升温速率下2种样品焦炭量变化不大,表明升温速率对SD和HC热解生产焦炭生成量无较大影响;3种升温速率下SD和HC产生焦炭量的平均值分别为25.46%和27.16%,表明水热炭热解完成时失重量相对较少,与表1中挥发分结果一致。由DTG曲线可知,随着升温速率的增大,SD最大失重速率无规律性变化,而HC则呈明显递增趋势。
2.3 热动力学分析
近年来,利用分布活化能模型(distributed activation energy model, DAEM)研究活化能与转化率之间的关系成为了新趋势。该模型首先由Vand[21]提出,后经过Anthony等[22-23]研究,建立了DAEM数学描述、理论推导分析,如阶跃近似法[23]、拐点切线法[24]和Miura法[23,25]等。Cai等[26-27]将该方法运用到生物质热解和燃烧反应体系中。DAEM基于2点假设:无限平行反应和活化能分布, 即试验样品的热解或者燃烧反应是由无限相互独立的平行一级反应组成;每一个反应都有独立的活化能,且活化能连续分布。分布式活化能模型如下
式中为到时刻为止反应物析出挥发分的量,%;V为整个反应过程中反应物的总挥发量,%;0为频率因子,s-1;为活化能,kJ/mol;为气体常数,8.314J/(mol·K);为绝对温度,K;()代表活化能分布函数,其满足。
本文使用线性非等温升温程序,即温度随时间线性变化。将升温速率带入式(1)可得
基于上述假设及模型,本文中木屑和水热炭热解过程的DAEM可描述为
本文使用Miura-Maki[29]积分法对DAEM模型进行处理,对式(5)化简得
图4给出了木屑及其水热炭在3种不同升温速率及部分转化率下的Arrhenius图;图5为活化能随转化率的变化曲线,基本数据信息如表2所示。由图4、表2可见,拟合直线的线性相关系数都较高,其均值都大于0.95,表明DAEM模型适用于求解木屑及其水热炭热解反应活化能。
a. 木屑
a. Sawdust
b. 水热炭
b. Hydrochar
注:为温度,K,为升温速率,℃·min-1;每条直线代表一个转化率,图中仅选取了部分拟合直线显示。
Note:is the temperature, K, andis the heating rate, ℃·min-1; Every line represents a conversion rate and part of data are showed in the figure.
图4 不同升温速率下木屑和水热炭热解的ln(/2)−1/图
Fig.4 ln(/2) vs 1/T of pyrolysis for sawdust and hydrochar at different heating rates
由图5可见,2种样品活化能并不随转化率增大呈单调递增趋势,而是都经历了缓慢增大—平稳—急剧增大的变化过程,对应热解挥发分缓慢析出阶段、大量析出阶段和碳化阶段:1)当转化率在0.05~0.30时,HC活化能在99.33~120.22 kJ/mol,大于SD在该范围内活化能,表明在热解初始阶段HC挥发分析出需要的能量较高。2)当转化率从0.30增大到0.80时,该范围内热解反应进入剧烈的主反应阶段,SD和HC的活化能在155和115 kJ/mol附近变化,表明热解主反应阶段,水HC热解需要的能量低于SD;3)当转化率在0.85~0.90附近时,活化能急剧增大,热解反应进入最耗能的碳化阶段,表明随温度升高,原本无序的炭结构逐渐趋于有序,官能团反应活性迅速降低,这与李社峰等[30-31]的研究结果一致。
由上述分析可知,利用DAEM方法求得的2种样品活化能未呈现线性变化关系,表明2种样品的热解过程不是简单的化学反应,而是众多官能团在一定温度条件下,分子键断裂的复杂连续反应的综合;木屑与水热炭的活化能随着转化率的分布变不同,活化能分别为99.33~252.72、63.77~211.68 kJ/mol,表明热解过程中2种样品热解反应机理不同,进一步说明水热炭化改变了木屑化学结构和组分。
表2 样品在多个转化率下的热解活化能和相关系数
1)通过对木屑及其水热炭的红外光谱分析发现,200 ℃保温6 h发生的水热炭化反应,未使木屑生物质完全降解,纤维素与木质素仍然存在并发生了芳香环重构,而半纤维素发生降解。
2)2种样品的热解过程(10 ℃/min升温速率)可分为干燥、挥发分析出和碳化3个阶段,水热炭和木屑最大失重速率分别为1.224 %/℃和0.817 %/℃,温度为363.42 ℃和353.57 ℃,主热解反应更剧烈,进入主热解反应所需温度更高;不同终温下半焦红外光谱分析发现,热解过程是一系列复杂化学反应的综合体现,与木屑相比,水热炭官能团更容易解聚,碳化速度更快。
3)在3种不同升温速率(10、20、30 ℃/min)下,木屑和水热炭各自的焦炭生成量没有发生明显变化;随升温速率增大,2种样品热解失重曲线均向高温侧移动,表明水热处理没有对热滞后现象产生影响。
4)采用DAEM方法得到2种样品拟合直线的线性相关系数平均值都大于0.95,表明DAEM模型适用于木屑及其水热炭热解反应活化能的求解;其中,转化率在0.30到0.80范围内木屑的活化能高于水热炭,表明热解主反应阶段,水热炭挥发分析出所需能量更低。
水热炭化处理改变了木屑原有的热解特性,降低了原材料在主热解阶段所需的能量,并使热解反应在更短的时间内完成。为后续水热炭热解特性以及动力学的分析研究提供理论参考。
[1] 毕于运,高春雨,王亚静,等. 中国秸秆资源数量估算[J].农业工程学报,2009,25(12):211-217.
Bi Yuyun, Gao Chunyu, Wang Yajing, et al. Estimation of straw resources in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(12): 211-217. (in Chinese with English abstract)
[2] 孙克静,张海荣,唐景春. 不同生物质原料水热生物炭特性的研究[J]. 农业环境科学学报,2014,33(11):2260-2265.
Sun Kejing, Zhang Hairong, Tang Jingchun. Properties of hydrochars from different sources of biomass feedstock[J]. Journal of Agra-Environment Science, 2014, 33(11): 2260-2265. (in Chinese with English abstract)
[3] Mckendry P. Energy production from biomass (part 1): overview of biomass[J]. Bioresource Technology, 2002, 83(1): 37-46.
[4] 何咏涛. 利用农林废弃物联产生物油和生物炭[D]. 杭州:浙江工业大学,2012.
He Yongtao. Co-production of Activated Carbon and Bio-oil from Agricultural and Forestry Residues[D]. Hangzhou: Zhejiang University of Technology, 2012. (in Chinese with English abstract)
[5] 吴倩芳,张付申. 水热炭化废弃生物质的研究进展[J]. 环境污染与防治,2012,34(7):70-75.
Wu Qianfang, Zhang Fushen. Progress on hydrothermal carbonization of waste biomass[J]. Environmental Pollution & Control, 2012, 34(7): 70-75. (in Chinese with English abstract)
[6] Titirici M M, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization[J]. Chemical Society Reviews, 2010, 39(1): 103-116.
[7] 高英,石韬,汪君,等. 生物质水热技术研究现状及发展[J].可再生能源,2011,29(4):77-83.
Gao Ying, Shi Tao, Wang Jun, et al. Research status and development of hydrothermal technology for biomass[J]. Renewable Energy Resources, 2011, 29(4): 77-83. (in Chinese with English abstract)
[8] Wang L, Guo Y, Zhu Y, et al. A new route for preparation of hydrochars from rice husk[J]. Bioresource Technology, 2010, 101(24): 9807-9810.
[9] Ding L, Wang Z, Li Y, et al. A novel hydrochar and nickel composite for the electrochemical supercapacitor electrode material[J]. Materials Letters, 2012, 74(5): 111-114.
[10] 汪君,时澜,高英,等. 葡萄糖水热过程中焦炭结构演变特性[J]. 农业工程学报,2013,29(7):191-198.
Wang Jun, Shi Lan, Gao Ying, et al. Structure evolution of char obtained from hydrothermal treatment of glucose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(7): 191-198. (in Chinese with English abstract)
[11] 田红,廖正祝. 农业生物质燃烧特性及燃烧动力学[J]. 农业工程学报,2013,29(10):203-212.
Tian Hong, Liao Zhengzhu. Combustion characteristics and combustion kinetics of agriculture biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 203-212. (in Chinese with English abstract)
[12] Parshetti G K, Hoekman S K, Balasubramanian R. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches[J]. Bioresource Technology, 2012, 135(3): 683-689.
[13] Huang X, Cao J P, Zhao X Y, et al. Pyrolysis kinetics of soybean straw using thermogravimetric analysis[J]. Fuel, 2016, 120(4): A21-A21.
[14] 彭云云,武书彬. TG-FTIR联用研究半纤维素的热裂解特性[J]. 化工进展,2009,28(8):1478-1484.
Peng Yunyun, Wu Shubin. Characteristics and kinetics of sugarcana bagasse hemicellulose pyrolysis by TG-FTIR[J]. Chemical Industry and Engineering Progress, 2009, 28(8): 1478-1484. (in Chinese with English abstract)
[15] Baharuddin A S, Yunos N S H M, Mahmud N A N, et al. Effect of high-pressure steam treatment on enzymatic saccharification of oil palm empty fruit bunches[J]. Bioresources, 2012, 7(3): 3525-3538.
[16] 何选明,王春霞,付鹏睿,等. 水热技术在生物质转换中的研究进展[J]. 现代化工,2014,34(1):26-29.
He Xuanming, Wang Chuanxia, Fu Pengrui, et al. Research development of hydrothermal technology for biomass transform utilization[J]. Modern Chemical Industry, 2014, 34(1): 26-29. (in Chinese with English abstract)
[17] 朱恂,李刚,冯云鹏,等. 重庆地区7种生物质的成分分析及热重实验[J]. 重庆大学学报:自然科学版,2006,29(8):44-48.
Zhu Xun, Li Gang, Feng Yunpeng, et al. Thermogravimetric experiments and component analysis of biomass in Chongqing[J]. Journal of Chongqing University: Natural Science Edition, 2006, 29(8): 44-48. (in Chinese with English abstract)
[18] 白兆兴,曹建峰,林鹏云,等. 秸秆类生物质燃烧动力学特性实验研究[J]. 能源研究与信息,2009,25(3):130-137.
Bai Zhaoxing, Cao Jianfeng, Lin Pengyun, et al. Experimental study on the biomass combustion kinetics[J]. Energy Research and Information, 2009, 25(3): 130-137. (in Chinese with English abstract)
[19] 卢洪波,戴惠玉,马玉鑫. 生物质三组分燃烧特性及动力学分析[J]. 农业工程学报,2012,28(17):186-191.
Lu Hongbo, Dai Huiyu, Ma Yuxin. Combustion characteristics and dynamic analysis of three biomass components[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 186-191. (in Chinese with English abstract)
[20] 姚锡文,许开立. 玉米芯的热解特性及气相产物的释放规律[J]. 农业工程学报,2015,31(3):275-282.
Yao Xiwen, Xu Kaili. Pyrolysis characteristics of corn cob and release rule of gas products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 275-282. (in Chinese with English abstract)
[21] Vand V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum[J]. Proceedings of the Physical Society, 2002, 55(3): 222-246.
[22] Anthony D B, Howard J B, Hottel H C, et al. Rapid devolatilization of pulverized coal[J]. Symposium on Combustion, 1975, 15(1): 1303-1317.
[23] Miura K A. New and simple method to estimate() and0() in the distributed activation energy model from three sets of experimental data [J]. Energy Fuels, 1995, 9(2): 302-307.
[24] Hashimoto K, Miura K, Watanabe T. Kinetics of thermal regeneration reaction of activated carbons used in waste water treatment[J]. Aiche Journal, 1982, 28(5): 737-746.
[25] Miura K, Maki T. A simple method for estimating() and0() in the distributed activation energy model[J]. Energy Fuels, 1998, 12(5): 864-869.
[26] Cai J, Wu W, Liu R. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[J]. Renewable & Sustainable Energy Reviews, 2014, 36: 236-246.
[27] 刘旭光,李保庆. DAEM模型研究大同煤及其半焦的气化动力学[J]. 燃料化学学报,2000,28(4):289-293.
Liu Xuguang, Li Baoqing. Study on gasification kinetice of DaTong coal and its chars[J]. Journal of Fuel Chemistry and Technology. 2000, 28(4): 289-293. (in Chinese with English abstract)
[28] Fischer P E, Jou C S, Gokalgandhi S S. Obtaining the kinetic parameters from thermogravimetry using a modified Coats and Redfern technique[J]. Industrial & Engineering Chemistry Research, 1987, 26(5): 1037-1040.
[29] Narvaez I. Fresh Tar (from a Biomass Gasifier) Elimination over a commercial steam-reforming catalyst. kinetics and effect of different variables of operation[J]. Industrial & Engineering Chemistry Research, 1997, 36(2): 84.
[30] 李社峰,方梦祥,舒立福,等. 利用分布活化能模型研究木材的热解和燃烧机理[J]. 燃烧科学与技术,2006,12(6):535-539.
Li Shefeng, Fang Mengxiang, Shu Lifu, et al. Pyrolysis and combustion mechanism of wood with distribution activation energy model[J]. Journal of Combustion Science and Technology, 2006, 12(6): 535-539. (in Chinese with English abstract)
[31] 陈登宇,朱锡锋. 生物质热反应机理与活化能确定方法Ⅱ.热解段研究[J]. 燃料化学学报,2011,39(9):670-674.
Chen Dengyu,Zhu Xifeng. The rmal reaction mechanism of biomass and de termination of activation energy II. Pyrolysis section[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 670-674. (in Chinese with English abstract)
Comparison of pyrolysis characteristics and kinetics of sawdust and its hydrochar
Xing Xianjun1,2, Yang Jing3, Fan Fangyu4, Li Yongling3, Zhang Xianwen1,2※
(1230009; 2,230009,; 3230009,; 4230009)
Rapid industrialization and urbanization have brought a severe problem of energy shortage and environmental pollution into our life. As the fourth-largest energy, Nowadays,Lignocellulosic biomass is increasingly regarded as an eco-friendly renewable feedstock for producing various bio-based products. Recently, hydrothermal carbonization (HTC) as a hot topic has attracted a great deal of attention because the process requirements of HTC are comparably low and are able to treat wet feedstock without an energy extensive drying process. But so far, some literatures have focused on the morphology, chemical structure and adsorption capacity of hydrochar, etc. Only few reports have provided a detailed description on the kinetic analysis of hydrochar. Pyrolysis is considered as the first step of the process of gasification, liquefaction, carbonization, and combustion. On the other side, the knowledge of the pyrolysis kinetics is fundament for predicting the pyrolysis behavior of materials and the design of the suitable reactor. In this study, pinesawdust was provided by a factory in Anhui province in 2015. The hydrocharwas hydrothermally obtained from 5 g of sawdust immersed in 40 mL of distilled water in the stainless steel autoclave keeping temperature at 200 ℃ for 6 h, then as-prepared hydrochar was dried in an oven at 105℃ for 24 h. Pyrolysis characteristics and organic structure of both pine sawdust and hydrochar were investigated via thermogravimetric analysis and Fourier transformation infrared spectrometer, respectively. Different heating rates (10, 20, 30 ℃/min) were chosen to study the influence of pyrolysis process. Meanwhile, the distributed activation energy model (DAEM) was used to study the pyrolysis kinetics by means of the relation between conversion rate and activation energy. The results indicated that : 1) Compared with pine sawdust organic structure of hydrochar treated by hydrothermal carbonization process was changed, and the organic function groups of pine sawdust and hydrochar decreased in the different ways with the increase of pyrolysis temperature, but the organic function groups of hydrochar decreased faster than pine sawdust's when the temperature was over 200℃; 2) Thermogravimetric curves showed that hydrochar needed higher temperature and led to the faster loss weight rates than pine sawdust during the pyrolysis process, but the trend of thermogravimetric curves of both products changing with heating rates was same; 3) The values of pyrolysis activation energies of hydrochar and pine sawdust were different ranging within 99.33-252.72 and 63.77-211.68 kJ/mol, respectively. But the trends of the pyrolysis activation energies of hydrochar and pine sawdust were very similar with the increment of conversion rate. In summary, hydrothermal treatment process destroyed organic functional groups and lowered volatile content of pine sawdust, resulting in the changes of pyrolysis characteristics. Specifically, the whole pyrolysis process shifted to higher temperature, the reaction rate was accelerated and the main pyrolysis process occurred in a narrower temperature range shortening the pyrolysis time. Activation energy also was influenced due to the hydrothermal process, leading the reduction of the values at the dominating stage of volatile loss, however, the increase of the values at the initial and final stage of volatile loss. This study provides reference for pyrolysis and mechanism of hydrochar production.
sawdust; pyrolysis; activation energy; hydrochar; fourier infrared spectrum
10.11975/j.issn.1002-6819.2017.04.035
TK6
A
1002-6819(2017)-04-0258-07
2016-06-24
2017-02-12
国家科技支撑计划(2012BAD30B01)
邢献军,男,安徽无为人,博士,教授,博士生导师,主要从事高效清洁燃烧及能源转化利用。合肥 合肥工业大学,230009。
张贤文,男,安徽亳州人,博士,研究员,硕士生导师,主要从事生物质炭材料的研究。合肥 合肥工业大学, 230009。 Email:xianwen.zhang@hfut.edu.cn.
邢献军,杨 静,范方宇,李永玲,张贤文. 木屑及其水热炭的热解特性和动力学对比[J]. 农业工程学报,2017,33(4):258-264. doi:10.11975/j.issn.1002-6819.2017.04.035 http://www.tcsae.org
Xing Xianjun, Yang Jing, Fan Fangyu, Li Yongling, Zhang Xianwen. Comparison of pyrolysis characteristics and kinetics of sawdust and its hydrochar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 258-264. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.035 http://www.tcsae.org