徐国伟,陆大克,孙会忠,王贺正,李友军
干湿交替灌溉与施氮耦合对水稻根际环境的影响
徐国伟1,2,陆大克1,孙会忠1,王贺正1,李友军1
(1. 河南科技大学农学院,洛阳 471003;2. 扬州大学江苏省作物遗传生理重点实验室,扬州 225009)
为了探讨不同水氮耦合对水稻根际土壤环境及根系分泌有机酸总量的影响,以新稻20号为材料,进行盆栽试验,设置浅水层、轻度(−20 kPa)和重度干湿交替灌溉(−40 kPa)3种灌溉方式及不施氮肥,中氮(normal nitrogen, MN, 240 kg/hm2)和高氮(high nitrogen, HN, 360 kg/hm2)3种氮肥水平9个处理。结果表明:轻度干湿交替灌溉及中氮增加了土壤酶活性,提高土壤中微生物数量,根系分泌有机酸总量显著提高(<0.05);重度干湿交替灌溉及重施氮肥则降低土壤酶活性及微生物的数量,显著(<0.05)减少根系分泌有机酸的总量;相关分析表明:根际土壤酶活性及微生物数量与不同生育期根系分泌有机酸总量呈显著(<0.05)或极显著(<0.01)的正相关关系。土壤酶活性、微生物数量及有机酸总量的供氮效应为正效应,轻度干湿交替灌溉供水效应及耦合效应均为正效应,而重度干湿交替灌溉的控水及耦合效应则为负效应。研究可为通过水氮耦合调控水稻良好的根际环境提供依据。
灌溉;氮肥;微生物;水稻;土壤酶;有机酸
土壤酶在土壤养分的转化、释放及固定等方面起着非常重要的角色,是土壤肥力及微生物活性的重要标志[1-3]。土壤微生物直接参与有机质的分解、加速腐殖质产生吸收、固定并释放营养物质,改善与调节植物根际营养状况,在土壤肥力维持及生态系统修复中具有重要的作用[4-6],因此土壤酶与土壤微生物作为根际微生态系统的重要组成部分,已经成为现代科学研究的一个热点。水分与氮肥是作物生长发育过程中不可或缺的重要因素,水分和氮肥因子融为一体,对改善作物生长环境和提高肥料的利用效率有着重要作用[7]。国内外学者就种植方式、施氮水平、根系分泌物运用、秸秆还田、灌溉方式、肥料类型等方面对土壤酶活性及微生物群落进行了众多的研究[8-16],得出有机无机肥配施、秸秆还田、根系分区灌溉及适宜的施氮水平有利于提高土壤的酶活性提高和微生物数量增加,但有关水氮互作对于土壤酶及微生物影响的研究较少,且大多集中在番茄、黄瓜等蔬菜以及小麦、玉米、烟草等旱作作物上[17-21],这些作物水分管理方式与水稻完全不同。作物生长发育是水肥多因子交互作用的结果,其关系要比单因子作用复杂得多。根系分泌物中有机酸种类及含量与根系合成的激素等物质一起构成根系化学信号,向根际周围及地上部输出,从而对根际及地上部作物的生长起调控作用[22-25]。水氮耦合下根际分泌物中有机酸有何差异,与土壤酶活性及微生物数量有何关系,前人对此研究较少。本试验通过对水分的动态控制,研究整个生育期不同水氮条件对水稻根际环境的影响及其耦合效应,以此探索水氮耦合机理,为水稻高产高效及根际生态提供理论及科学依据。
1.1 材料与试验地点
试验于2014-2015年在河南科技大学盆栽场进行。供试品种为新稻20,常规粳稻品种。试验地气候属温带半湿润半干旱大陆性季风气候,年降水量600 mm,年辐射量491.5 kJ/cm2,年日照时数2 300~2 600 h,无霜期215~219 d。试验采用盆栽方式,塑料大棚挡雨。盆钵规格:直径25 cm,高30 cm,盆钵内装过筛土15 kg左右。土壤为粘壤土,土壤有机质14.9 g/kg,碱解氮65.3 mg/kg,有效磷5.9 mg/kg,有效钾115.6 mg/kg。
1.2 试验设计
进行灌溉方式×氮肥水平2因素随机试验。设计3种灌溉方式:保持浅水层(分蘖末期进行晒田,其余生育期保持1~2 cm水层)、轻度干湿交替灌溉(分蘖末期进行晒田,其余生育期先灌1~2 cm水层,至土壤水势降到−20 kPa再灌浅水层,如此反复)、重度干湿交替灌溉(分蘖末期进行晒田,其余生育期先灌1~2 cm水层,至土壤水势降到−40 kPa再灌浅水层,如此反复),盆钵内用负压计以观测土壤水势,陶土头底部置于15 cm土层处,生育期间塑料大棚挡雨。全生育期氮肥水平为3个水平:不施氮肥(0N),中氮(normal nitrogen, MN, 240 kg/hm2,以N计,下同)和高氮(high nitrogen, HN, 360 kg/hm2),氮肥运筹按照4∶1∶5于移栽前1 d、移栽后7 d和穗分化期施用。磷、钾肥各处理均一致,移栽前施用过磷酸钙(含P2O513.5%)300 kg/hm2和氯化钾(含K2O 52%)195 kg/hm2。大田育秧:5月6日播种,6月10日进行移栽,每盆栽插3穴,每穴2苗,每个处理30盆,全生育期严格监测水分及病虫害,其余管理同高产田一致。
1.3 测定项目与方法
1.3.1土壤酶及微生物数量测定
分别于分蘖盛期、穗分化始期、抽穗期和成熟期,各处理取样3盆。每盆各取根际土样5点混匀,称取泥土500 g储存于4 ℃冰箱中,用于土壤酶活性及微生物数量的测定。土壤脲酶用苯酚钠比色法,碱性磷酸酶用苯磷酸二钠比色法,过氧化氢酶用高锰酸钾滴定法[26]。土壤中细菌测定采用牛肉膏蛋白胨培养基、真菌采用马丁氏(Martin)培养基、放线菌采用改良高氏一号培养基测定[27]。
1.3.2 根系分泌物中有机酸含量测定
分别于分蘖盛期、幼穗分化始期、抽穗期和成熟期,各材料取样3盆,用自来水和蒸馏水洗净后,置于装有去离子水的烧杯(800 mL)中并封上烧杯口,每杯放1穴(水分胁迫处理在水中加入PEG-6000,轻度水分胁迫为10%,重度水分胁迫为30%)。在光下(光强为700~800mol/(m2·s),冠层温度28~30 ℃)培养4 h,收集烧杯中的溶液,用高效液相色谱测定溶液中有机酸浓度[28]。
1.3.3 各因素效应的计算公式[29-30]
供氮效应=[(土壤水分胁迫与氮肥处理-土壤水分胁迫与无氮肥处理)+(正常水分与氮肥处理-正常水分与无氮肥处理)]/2
控水效应=[(土壤水分胁迫与氮肥处理-正常水分与氮肥处理)+(土壤水分胁迫与无氮肥处理-正常水分与无氮肥处理)]/2
耦合效应=[(土壤水分胁迫与氮肥处理-正常水分与无氮肥处理)-(正常水分与氮肥处理-正常水分与无氮肥处理)-(土壤水分胁迫与无氮肥处理-正常水分与无氮肥处理)]/2
1.4 数据处理与分析
本试验数据用SAS/STAT (version 6.12,SAS Institute,Cary,NC,USA)进行方差分析,SigmaPlot 10.0进行图表绘制。
2.1 水稻土壤酶及微生物数量的处理效应
在2014 和2015 2a中,土壤酶活性、微生物数量及根系分泌有机酸总量在施氮水平、灌溉方式间存在显著差异(<0.01),灌溉方式´氮肥水平存在互作效应,其余的互作效应均不显著(表1)。所测定的主要指标年度间差异均不显著,说明灌溉方式、施氮水平对根际特性的影响在年度间重演性较好。故本文土壤酶活性及微生物数量主要取2015年的数据。
表1 水氮耦合下土壤酶活性、微生物数量及根系分泌有机酸总量的方差分析
注:NS表示在在0.05 水平上不显著。*与**表示在在0.05及 0.01 水平上差异显著与极显著。所有指标均为抽穗期测定数据。Y表示年度间,W表示灌溉方式,N表示施氮水平,下同。
Note: NS, not significant (>0.05). * and** represents<0.05 and P<0.01, respectively. The indicator data were determined at heading stage. Y, W and N represents year, irrigation regime and nitrogen level, respectively, the same below.
2.2 水氮耦合对土壤酶活性及耦合效应的影响
2.2.1 水氮耦合对土壤脲酶活性影响
土壤脲酶活力在水稻生育过程中表现为先增加后降低,在幼穗分化始期达到峰值(图1a)。在同一氮肥水平下,与保持水层相比,轻度干湿交替灌溉总体增加土壤中脲酶活性,幼穗分化期(PI, panicle initiation)及成熟期尤为明显,重度干湿交替灌溉则显著(<0.05)降低酶活性,说明适宜的水分才能促进土壤脲酶活性的提高;在同一灌溉方式下,土壤脲酶活性随着施氮量的增加而明显提高,如幼穗分化期,土壤脲酶活性增加了20.2~28.1个酶活力单位,说明增施氮肥能显著提高土壤脲酶活性。从水氮耦合来看,高氮轻度干湿交替灌溉下土壤脲酶活性最高。
2.2.2 水氮耦合对蔗糖酶及过氧化氢酶活性影响
土壤蔗糖酶及过氧化氢酶活性在水稻生育过程中表现为先增加后降低,抽穗期活性最高(图1b、1c)。在同一氮肥水平下,与对照保持水层相比,轻度干湿交替灌溉增加土壤中蔗糖酶及过氧化氢酶活性,重度干湿交替灌溉则降低酶活性;在同一灌溉方式下,土壤蔗糖酶及过氧化氢酶活性在MN下最高,进一步增施氮肥反而降低蔗糖酶活性,如在抽穗期,HN处理蔗糖酶降低了5.8%~12.7%(图1b),过氧化氢酶降低了9.1%~11.3%(图1c),说明过量施用氮肥并不能显著提高土壤蔗糖酶及过氧化氢酶活性。从水氮耦合来看,轻度干湿交替灌溉耦合中氮下土壤蔗糖酶及过氧化氢酶活性最高。
注:0N:不施氮肥;MN:施氮240kg·hm-2;HN:施氮360kg·hm-2;0 kPa:浅水层灌溉;−20 kPa:水分胁迫−20kPa;−40 kPa:水分胁迫−40 kPa;同一生育期不同小写字母表示各处理在0.05水平上差异显著,下同。
Note: 0N: No nitrogen applied. MN: Nitrogen 240 kg·hm-2. HN: Nitrogen 360 kg·hm-2. 0kPa: Submerged irrigation. −20 kPa: Water stress −20 kPa. −40 kPa: Water stress −40 kPa. Values within the same growth period followed by different lowercase letters are significantly different at 0.05 level, the same below.
a. 水氮耦合对水稻土壤脲酶活性的影响
a. Effect of water and nitrogen interaction on urease enzyme activity in rhizosphere soil
b. 水氮耦合对水稻土壤蔗糖酶活性的影响
b. Effect of water and nitrogen interaction on sucrose enzyme activity in rhizosphere soil
2.2.3 水氮耦合下土壤酶耦合效应分析
不同水氮处理条件下土壤酶效应表现不一(表2)。土壤酶的供氮效应均表现为正效应,说明施用氮肥可以提高土壤酶的活性。土壤脲酶供氮效应随着施氮量的增加而提高。蔗糖酶供氮效应在施氮处理间差异较小,过氧化氢酶供氮效应在MN处理下最高,HN处理下反而降低,如:抽穗期过氧化氢酶在高氮下的供氮效应仅为中氮处理的66.3%(−20 kPa)及61.7%(−40 kPa),说明重施氮肥并不能显著(<0.05)地增加土壤中过氧化氢酶的活性;轻度干湿交替灌溉控水效应为正效应,说明其促进土壤酶活性的增加,而重度干湿交替灌溉的控水效应为负效应,说明其抑制土壤酶活性的增加,不同的氮肥水平间表现一致;水氮耦合效应方面:轻度干湿交替灌溉土壤酶表现为正效应,而重度干湿交替灌溉土壤脲酶及蔗糖酶(抽穗前)则表现为负效应,说明轻度干湿交替与中氮耦合能够促进土壤酶活性提高。
表2 水氮耦合对土壤酶耦合效应的影响
2.3 水氮耦合对土壤微生物数量及耦合效应的影响
2.3.1 对细菌数量的影响
随着生育进程,土壤中细菌数量表现为先上升后降低的趋势,在抽穗期达到峰值(图2a)。在同一氮肥水平下,与保持水层相比,轻度干湿交替灌溉提高土壤中细菌的数量,这在幼穗分化时期及抽穗表现尤为明显,而重度干湿交替灌溉则明显降低土壤中细菌的数量,如分蘖盛期细菌数量降低7.7%~15.0%;在同一灌溉方式下,施用氮肥明显增加了土壤中细菌数量,MN和HN下细菌数量增加了20.0%~30.0%(保持浅水层)、13.6%~22.7%(−20 kPa)与29.4%~41.2%(−40 kPa);与MN相比,高氮处理下土壤中细菌数量反而显著性(<0.05)降低,这在成熟前表现尤为明显,说明施用高氮并不能显著(<0.05)提高土壤中细菌数量。从水氮耦合方面分析,中氮耦合轻度干湿交替灌溉处理细菌数量最多,如抽穗期,细菌数量达到65×106g-1,比对照(0N, 0 kPa)提高116.7%,可见中氮轻度干湿交替灌溉最有利于土壤细菌数量的提高。
2.3.2 对真菌数量的影响
土壤中真菌数量随着生育进程,表现为先提高后下降的趋势,抽穗期达到峰值(图2b)。在同一施氮水平下,与保持水层相比,轻度干湿交替灌溉提高土壤中真菌的数量,这在幼穗分化时期及抽穗表现尤为明显,而重度干湿交替灌溉则明显降低土壤中真菌的数量,如幼穗分化时期真菌数量降低12.5%~16.7%;在同一灌溉方式下,施用氮肥增加了幼穗分化及抽穗期土壤中真菌数量,MN和HN下真菌数量平均增加了15.0%(保持浅水层)、8.4%(−20 kPa)与32.2%(−40 kPa);随着施氮量的增加,土壤中真菌数量先增后降,MN处理下土壤中真菌数量最多,高氮处理下土壤中真菌数量反而显著性(<0.05)降低,这在分蘖盛期以后表现尤为明显,说明施用高氮并不能显著性(<0.05)提高土壤中真菌数量。从水氮耦合方面分析,中氮耦合轻度干湿交替灌溉处理真菌数量最多,如抽穗期,真菌数量达到67×104g-1,比对照(0N,0 kPa)提高48.9%,可见中氮轻度干湿交替灌溉最有利于土壤真菌数量的提高。
2.3.3 对放线菌数量的影响
随着生育进程,放线菌数量表现为先增加后降低的趋势,在抽穗期最大(图2c)。在同一氮肥水平下,与保持水层相比,轻度干湿交替灌溉提高土壤中放线菌的数量,这在抽穗期表现尤为明显,而重度干湿交替灌溉则明显降低土壤中放线菌的数量,如成熟期放线菌数量降低18.2%~21.4%;在同一灌溉方式下,施用氮肥增加了幼穗分化及抽穗期土壤中放线菌数量,MN和HN下放线菌数量增加了50.0%~60.0%(保持浅水层)、14.3%~28.6%(−20 kPa)与50.0%~75.0%(−40 kPa);随着施氮量的增加,土壤中放线菌数量先增后降,MN处理下土壤中放线菌数量最多,高氮处理下放线菌数量反而显著性降低,说明高氮并不能显著(<0.05)提高土壤中放线菌数量。从水氮耦合方面分析,中氮耦合轻度干湿交替灌溉处理放线菌数量最多,如抽穗期,真菌数量达到64×105g-1,比对照(0N 0 kPa)提高60%,可见中氮轻度干湿交替灌溉最有利于土壤放线菌数量的提高。
a. 水氮耦合对水稻土壤细菌数量的影响
a. Effect of water and nitrogen coupling on bacteria quantity rhizosphere soil
b. 水氮耦合对水稻土壤根际真菌数量的影响
b. Effect of water and nitrogen coupling on fungi quantity in rhizosphere soil
Fig 2 Effect of water and nitrogen coupling on microorganism quantity in rhizosphere soil
2.3.4 水氮耦合对土壤微生物耦合效应的影响
新稻20土壤微生物(细菌、真菌及放线菌)的供氮效应大都表现为正效应(表3),说明施用氮肥可以提高土壤微生物的数量,进一步观察发现:与MN相比,HN处理下土壤微生物的供氮效应均较低,如:分蘖中期土壤中真菌在高氮下的供氮效应仅为中氮处理的25%(−20 kPa)及30.7%(−40 kPa),说明重施氮肥并不能显著增加土壤中微生物的数量;轻度干湿交替灌溉控水效应为正效应,说明其促进土壤中微生物数量的增加,而重度干湿交替灌溉为负效应,说明其抑制土壤中微生物数量的增加,不同的氮肥水平间表现一致;耦合效应方面:轻度干湿交替灌溉表现为正效应,而重度干湿交替灌溉整体表现为负效应(真菌抽穗期除外),说明适宜的水氮耦合能够促进土壤中微生物数量的提高。
表3 水氮耦合对土壤微生物耦合效应的影响
2.4 水氮耦合对根系分泌物中有机酸总量及耦合效应的影响
不同水氮肥耦合下根系分泌物中有机酸总量明显存在差异[31]。新稻20根系分泌有机酸的供氮效应均表现为正效应(表4),说明增施氮肥可以促进根系有机酸的分泌。与MN相比,HN有机酸的供氮效应较低,说明重施氮肥并不能明显增加根系分泌有机酸的量;轻度干湿交替灌溉控水效应为正效应,说明其促进根系有机酸总量的增加,而重度干湿交替灌溉控水效应则为负效应,说明其抑制根系分泌有机酸的能力,不同的氮肥处理间表现一致;耦合效应方面:轻度干湿交替灌溉表现为正效应,而重度干湿交替灌溉则表现为负效应,说明适宜的水氮耦合能够促进根系分泌有机酸的量。
表4 水氮耦合对根系分泌有机酸总量耦合效应的影响
2.5 根际土壤酶活性及微生物数量与有机酸总量的相关性分析
根际土壤中脲酶、蔗糖酶及过氧化氢酶活性与不同生育期根系分泌有机酸总量呈显著(<0.05)或极显著(<0.01)的正相关关系(=0.778*~0.987**),同样根际土壤中细菌、真菌及放线菌数量与不同生育期根系分泌有机酸总量呈显著(<0.05)或极显著(<0.01)的正相关关系(=0.757*~0.974**),表明根际土壤中微生物数量及酶活性与根系分泌有机酸量关系密切。
表5 根际土壤微生物及酶活性与有机酸总量的相关分析
3.1 水氮耦合对水稻根际土壤酶及微生物数量的影响
根际是靠近作物根系的微域土区,是作物-土壤生态系统物质与能量交换的重要界面,也是土壤酶及微生物非常活跃的区域[32]。Tang等[8]研究表明,施肥和耕作措施可以平衡土壤的C/N比,改善土壤水热状况,提高土壤酶活性。夏雪等[4]认为施用氮肥可以提高土壤微生物群落碳源利用率、微生物群落的丰富度、功能多样性及土壤酶的活性;低量和中量氮肥能够提高蔗糖酶和脲酶活性,而中量和高量氮肥可以增加碱性磷酸酶活性。本研究表明,增施氮肥显著提高水稻根际土壤酶活性及微生物量。原因是氮肥能够促进作物根系代谢,提高根系生理功能,使根系分泌有机酸、氨基酸、糖及高分子黏胶等物质增加,为微生物的繁殖提供丰富的营养;同时根际土壤微生物的增加能够固定并释放营养物质,改善与调节根际养分,提高土壤酶活性[33]。本研究表明,中氮条件下土壤蔗糖酶、过氧化氢酶及微生物数量较多,进一步增施氮肥反而降低。原因可能是高氮条件下根系土壤处于较高浓度的养分,对根系土壤的微生物产生一定的毒害作用,降低其分解及矿化有机质的能力,影响根际养分水平,降低土壤酶的活性。说明氮肥对微生物数量的变化具有双重性,合理的氮浓度对于土壤微生物的数量提高及酶活性的保持具有促进作用[33]。
蔡晓红等[34]研究认为,土壤酶及微生物生物量在浅水层连续灌溉模式下最小,控水模式和干湿交替模式下土壤微生物量碳最大[14]。本研究表明,轻度干湿交替灌溉下,土壤酶活性及微生物数量明显增加,而重度干湿交替灌溉后土壤酶活性及微生物数量明显下降。究其原因,一方面,轻度水分胁迫下根系土壤通透性增加,有利于土壤微生物的有氧呼吸,给微生物的生长提供良好的条件,有利于土壤酶活性的提高及维持;另一方面,轻度水分下水稻根系生理活性较强,产生较多的分泌物,这些分泌物反而促进土壤微生物的滋生及提供养分;重度干湿交替灌溉下土壤虽然通透性提高,但是根系生理能力降低,微生物赖以生存的物质减少,影响其数量的增加。故本研究结果与蔡晓红等[34]研究不尽一致,是两者之间所处的生长条件并不一致。
3.2 水氮耦合对水稻根系分泌有机酸总量的影响
关于根系分泌物中有机酸的研究,单因子的试验较多,而对于水氮耦合下根系分泌特性研究仍然较少。常二华等[35]研究表明,水稻缺少氮素时会抑制根系有机酸的分泌,其研究的是低氮条件下根系分泌的特性,当氮素含量较少时,水稻从土壤中可吸收的NO3-就比较少,根系分泌的有机酸含量就相对较低。本研究表明,MN条件下根系分泌的有机酸含量整体较高,而高氮则抑制了根系分泌,说明重施氮肥后根系活性降低,根系分泌受到抑制,不利于根系功能的发挥。中氮及高氮条件下的根系分泌特性,更加贴近生产实际,对于不同的氮肥下根系分泌观察更为系统。
Henry等[36]人认为,在干旱的情况下根系的有机酸分泌普遍的高于在淹水条件下的有机酸分泌,尤其是对富马酸、马来酸和丁二酸最为显著。Huang[37]与Marzieh[24]等发现水分的胁迫可以增加根系分物的含碳量,甘蓝型油菜的根系可以分泌出更多的有机酸。可见不同水分对根系分泌有机酸的含量研究结果不尽一致。本试验得出,轻度干湿交替灌溉后根系分泌物中有机酸含量明显增加,而重度干湿交替灌溉则明显降低。究其原因,在轻度水分胁迫下水稻的根系土壤中微生物数量及酶的活性得到提高,根系活性较高,能够主动分泌有机酸的含量,从而提高根系的生理功能,为地上部的生长发育提供物质与能量;同时根系分泌物为根系周围的微生物提供了大量的能源和营养物质,所以根系周围成为了微生物的代谢活动旺盛场所,相关分析也表明,根系分泌有机酸含量与土壤酶及微生物数量呈显著与极显著正相关关系,可见根系分泌物对根际土壤酶活性及微生物数量具有选择塑造作用,根际土壤酶及微生物区系变化也对作物根系分泌及信息传递有着重要的影响。
3.3 水氮耦合对水稻根际耦合效应的影响
关于耦合效应的分析一般采用回归旋转组合及值方差等方法,评价各试验因子的效应[38-41]。本研究通过各因素效应公式计算出各因子大小,从直观上反映各因素效应的有无及效应的高低。研究表明,土壤酶活性、微生物数量及有机酸总量的供氮效应为正效应,说明增施氮肥有利于根际环境的改善,但重施氮肥(360 kg/hm2)后土壤蔗糖酶、过氧化氢酶、微生物数量及根系分泌有机酸的供氮效应反而降低,说明过量施肥并不能显著改善根际环境。轻度干湿交替灌溉供水效应为正效应,而重度干湿交替灌溉的控水效应则为负效应,说明适宜的水分控制能够改善根际环境,过度的水分胁迫则恶化根系生态环境,不利于根系生长代谢。轻度干湿交替灌溉耦合中氮处理土壤酶活性、微生物数量及有机酸总量耦合效应最佳,说明轻度干湿交替灌溉和中氮相互作用产生正效应,有利于根系生长及地上部发育,进一步观察发现,重施氮肥后通过轻度干湿交替灌溉能提高土壤酶活性及微生物数量,能够促进根系分泌,说明氮肥起到部分的“以肥调水”的作用,而重干湿交替下施用氮肥耦合效应为负值,说明其加剧土壤干旱胁迫程度,降低根系分泌功能及恶化土壤环境。这提示在生产实践中,通过轻度干湿交替灌溉耦合中氮(240 kg /hm2)调控,促进根系有机酸的分泌,提高根系的代谢活性,为地上部的生长发育创造良好的环境,有利于水稻产量的提高及资源的高效利用。
本试验是在盆栽条件下观察水氮耦合的根际效应,虽然整个生育期都有大棚挡雨,对水分的管理较严,能够反映不同水氮耦合对根际环境的影响,但水稻生长发育状态与大田条件仍有一定的差异,大田条件下水氮耦合对水稻根际效应的影响有待深入研究。
水稻根际环境及耦合效应在不同水氮处理间存在明显差异。中氮轻度干湿交替灌溉处理创造良好的根际环境,土壤酶活性较强,微生物数量较多及根系分泌物中有机酸含量较高。重度干湿交替灌溉则降低土壤酶活性、微生物数量及根系分泌特性,降低“以肥调水”的效果。水稻根际土壤酶及微生物数量与主要生育期水稻根系分泌有机酸总量呈显著或极显著的正相关,表明通过适宜的水氮耦合提高水稻根系分泌能力,协调地上地下生长,为水稻生长创造良好的环境。
[1] 卜洪震,王丽宏,尤金成,等. 长期施肥管理对红壤稻田土壤微生物量碳和微生物多样性的影响[J]. 中国农业科学,2010,43(16):3340-3347.
Bo Hongzhen, Wang Lihong, You Jincheng, et al. Impact of long-term fertilization on the microbial biomass carbon and soil microbial communities in paddy red soil[J]. Scientia Agricultura Sinica, 2010, 43(16): 3340-3347. (in Chinese with English abstract)
[2] 马晓霞,王莲莲,黎青慧,等. 长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响[J]. 生态学报,2012,32(17):5502-5511.
Ma Xiaoxia, Wang Lianlian, Li Qinghui, et al. Effects of long-term fertilization on soil microbial biomass carbon and nitrogen and enzyme activities during maize growing season[J]. Acta Ecologica Sinica, 2012, 32(17): 5502-5511. (in Chinese with English abstract)
[3] Ye Shaoping, Yang Yujie, Xin Guorong, et al. Studies of the Italian ryegrass–rice rotation system in southern China: Arbuscular mycorrhizal symbiosis affects soil microorganisms and enzyme activities in the Lolium mutiflorum L. rhizosphere[J]. Applied Soil Ecology, 2015, 90(6): 26-34.
[4] 夏雪,谷洁,车升国,等. 施氮水平对塿土微生物群落和酶活性的影响[J]. 中国农业科学,2011,44(8):1618-1627.
Xia Xue, Gu Jie, Che Shengguo, et al. Effects of nitrogen application rates on microbial community and enzyme activities in lou soil[J]. Scientia Agricultura Sinica, 2011, 44(8): 1618-1627. (in Chinese with English abstract)
[5] Yusuf A A, Abaidoo R C, Iwuafor E N , et al. Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an Alfisol in the Nigerian savanna[J]. Agriculture, Ecosystem and Environment, 2009, 129: 325-331.
[6] 陶磊,褚贵新,刘涛,等. 有机肥替代部分化肥对长期连作棉田产量、土壤微生物数量及酶活性的影响[J]. 生态学报,2014,34(21):6137-6146.
Tao Lei, Chu Guixin, Liu Tao, et al. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield,soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition[J]. Acta Ecologica Sinica, 2014, 34(21): 6137-6146. (in Chinese with English abstract)
[7] 徐国伟,王贺正,翟志华,等. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响[J]. 农业工程学报,2015,31(10):132-141.
Xu Guowei, Wang Hezheng, Zhai Zhihua, et al. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 132-141. (in Chinese with English abstract)
[8] Tang H M, Xu Y L, Sun J M, et al. Soil enzyme activities and soil microbe population as influenced by long-term fertilizer management under an intensive cropping system[J]. Journal of Pure and Applied microbiology, 2014, 8(2): 15-23.
[9] Liu E K, Zhao B Q, Mei X R, et al. Effects of no-tillage management on soil biochemical characteristics in northern China[J]. Journal of Agricultural Science, 2010, 148(2): 217-223.
[10] 肖新,朱伟,肖靓,等. 适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮[J]. 农业工程学报,2013,29(21):91-98.
Xiao Xin, Zhu Wei, Xiao Liang, et al. Suitable water and nitrogen treatment improves soil microbial biomass carbon and nitrogen and enzyme activities of paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 91-98. (in Chinese with English abstract)
[11] 赵亚丽,郭海斌,薛志伟,等. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响[J]. 应用生态学报,2015,26(6):1785-1792.
Zhao Yali, Guo Haibin, Xue Zhiwei, et al. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1785-1792. (in Chinese with English abstract)
[12] 武际,郭熙盛,鲁剑巍,等. 不同水稻栽培模式下小麦秸秆腐解特征及对土壤生物学特性和养分状况的影响[J]. 生态学报,2013,33(2):565-575.
Wu Ji, Guo Xisheng, Lu Jianwei, et al. Decomposition characteristics of wheat straw and effects on soil biological properties and nutrient status under different rice cultivation[J]. Acta Ecologica Sinica, 2013, 33(2): 565-575. (in Chinese with English abstract)
[13] 黄继川,彭智平,于俊红,等. 施用玉米秸秆堆肥对盆栽芥菜土壤酶活性和微生物的影响[J]. 植物营养与肥料学报,2010,16(2):348-353.
Huang Jichuan, Peng Zhiping, Yu Junhong, et al. Impacts of applying corn-straw compost on microorganisms and enzyme activities in pot soil cultivated with mustard[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 348-353. (in Chinese with English abstract)
[14] 王菲,袁婷,谷守宽,等. 有机无机缓释复合肥对土壤微生物量碳、氮和群落结构的影响[J]. 生态学报,2016,36(7):2044-2051.
Wang Fei, Yuan Ting, Gu Shoukuan, et al. Effects of organic and inorganic slow-release compound fertilizers on microbial biomass carbon and nitrogen, and microbial community structure in soil[J]. Acta Ecologica Sinica, 2016, 36(7): 2044-2051. (in Chinese with English abstract)
[15] 于会泳,宋晓丽,王树声,等. 低分子量有机酸对植烟土壤酶活性和细菌群落结构的影响[J]. 中国农业科学,2015,48(24):4936-4947.
Yu Huiyong, Song Xiaoli, Wang Shusheng, et al. Effects of low molecular weight organic acids on soil enzymes activities and bacterial community structure[J]. Scientia Agricultura Sinica, 2015, 48(24): 4936-4947. (in Chinese with English abstract)
[16] Yu H Y, Liang H B, Shen G M, et al. Effects of allelochemicals from tobacco root exudates on seed germination and seedling growth of tobacco[J]. Allelopathy Journal, 2014, 33(1): 107-120.
[17] 韦泽秀,梁银丽,井上光弘,等. 水肥处理对黄瓜土壤养分、酶及微生物多样性的影响[J]. 应用生态学报,2009,20(7):1678-1684.
Wei Zexiu, Liang Yinli, Inoue M, et al. Effect of different water and fertilizer supply on cucumber soil nutrient content, enzyme activity, and icrobial diversity[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1678-1684. (in Chinese with English abstract)
[18] 郭永盛,李鲁华,危常州,等. 施氮肥对新疆荒漠草原生物量和土壤酶活性的影响[J]. 农业工程学报,2011,27(增刊1):249-256.
Guo Yongsheng, Li Luhua, Wei Changzhou, et al. Effect of nitrogen fertilizer on biomass amount and soil enzymes activity of desert grassland in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.1): 249-256. (in Chinese with English abstract)
[19] 米国全,袁丽萍,龚元石,等. 不同水氮供应对日光温室番茄土壤酶活性及生物环境影响的研究[J]. 农业工程学报,2005,21(7):124-128.
Mi Guoquan, Yuan Liping, Gong Yuanshi, et al. Influences of different water and nitrogen supplies on soil biological environment in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(7): 124-128. (in Chinese with English abstract)
[20] 谢英荷,李延亮,洪坚平,等. 不同水氮调控措施对旱地冬小麦产量形成及酶活性的影响[J]. 应用与环境生物学报,2013,19(3):339-403.
Xie Yinghe, Li Yanliang, Hong Jianping, et al. Effects of different water and nitrogen control schemes on yield of winter wheat and soil enzyme activity in dryland[J]. Chinese Journal of Applied Environment Biology, 2013, 19(3): 339-403. (in Chinese with English abstract)
[21] 王杰,李刚,修伟明,等. 氮素和水分对贝加尔针茅草原土壤酶活性和微生物量碳氮的影响[J]. 农业资源与环境学报,2014,31(3):237-245.
Wang Jie, Li Gang, Xiu Weiming, et al. Effects of nitrogen and water on soil enzyme activity and soil microbial biomass in Stipa baicalensis steppe, inner mongolia of north china[J]. Journal of Agriculture Resources and Environment, 2014, 31(3): 237-245. (in Chinese with English abstract)
[22] Sunghyun K, Hyewon L, Insook L. Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. Journal of Bioscience and Bioengineering, 2010, 109(1): 47-50.
[23] Zhou N, Liu P, Wang Z Y, et al. The effects of rapeseed root exudates on the forms of aluminum in aluminum stressed rhizosphere soil[J]. Crop Protection, 2011, 30(6): 631-636.
[24] Marzieh T, Mohsen J. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents[J]. Chemosphere, 2016, 155(7): 395-404.
[25] Takashi L, Tsuyoshi O, Li D H, et al. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus Camaldulensis Dehnh[J]. Phytochemistry, 2013, 94(10): 142-147.
[26] 关松荫. 土壤酶及其研究法[M]. 北京:农业出版社,1986.
[27] 姚槐应,黄昌勇. 土壤微生物生态学及其实验技术[M]. 北京:科学出版社,2006.
[28] 戢林,李廷轩,张锡洲,等. 水稻氮高效基因型根系分泌物中有机酸和氨基酸的变化特征[J]. 植物营养与肥料学报,2012,18(5):1046-1055.
Ji Lin, Li Tingxuan, Zhang Xizhou, et al. Characteristics of organic acid and amino acid in root exudates of rice genotype with high nitrogen efficiency[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1046-1055. (in Chinese with English abstract)
[29] 陈新红. 土壤水分与氮素对水稻产量和品质的影响及其生理机制[D]. 扬州:扬州大学,2004.
Chen Xinhong. Effects of Soil Moisture and Nitrogen Nutrient on Grain Yield and Quality of Rice and Their Physiological Mechanism[D].Yangzhou:Yangzhou university, 2004. (in Chinese with English abstract)
[30] 樊小林,史正军,吴平. 水肥(氮)对水稻根构型参数的影响及其基因型差异[J]. 西北农林科技大学学报:自然科学版,2002,30(2):1-5.
Fan Xiaolin, Si Zhengjun, Wu ping. Effects of nitrogen fertilizer on parameters of rice (Oryza sativa L.) root architecture and their genotypic difference[J]. Journal of Northwest Sci-tech University of Agriculture and Forestry: Natural Science Edition, 2002, 30(2): 1-5. (in Chinese with English abstract)
[31] 徐国伟,吕强,陆大克,等. 干湿交替灌溉耦合施氮对水稻根系性状及籽粒库活性的影响[J]. 作物学报,2016,42(10):1495-1505.
Xu Guowei, Lü Qiang, Lu Dake, et al. Effect of wetting and drying alternative irrigation coupling with nitrogen application on root characteristic and grain-sink activity[J]. Acta Agronomica Sinica, 2016, 42(10): 1495-1505. (in Chinese with English abstract)
[32] 吴林坤,林向民,林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报,2014,38(3):298-310.
Wu Linkun, Lin Xiangmin, Lin Wenxiong. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. (in Chinese with English abstract)
[33] 郭天财,宋晓,马冬云,等. 施氮量对冬小麦根际土壤酶活性的影响[J]. 应用生态学报,2008,19(1):110-114.
Guo Tiancai, Song Xiao, Ma Dongyun, et al. Effects of nitrogen application rate on soil enzyme activities in wheat rhizosphere[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 110-114. (in Chinese with English abstract)
[34] 蔡晓红,杨京红,马维娜,等. 稻田根际微生物生物量碳与水分、氮素影响效应分析[J]. 浙江大学学报:农业与生命科学版,2008,34(6):662-668.
Cai Xiaohong, Yang Jinghong, Ma Weina, et al. Effects of nitrogen supply levels and water schemes on rice rhizosphere microbial biomass carbon in rice development stage at paddy field[J]. Journal of Zhenjiang University: Agriculture & Life Science, 2008, 34(6): 662-668. (in Chinese with English abstract)
[35] 常二华,张慎凤,王志琴,等. 结实期氮磷营养水平对水稻根系和籽粒氨基酸含量的影响[J]. 作物学报,2008,
34(4):612-618. Chang Erhua, Zhang Shenfeng, Wang Zhiqin, et al. Effect of nitrogen and phosphorus on the amino acids in root exudates and grains of rice during grain filling[J]. Acta Agronomica Sinica, 2008, 34(4): 612-618. (in Chinese with English abstract)
[36] Henry A, Doucette W, Norton J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress.[J]. Journal of Environmental Quality, 2007, 36(3): 904-912.
[37] Huang C, Webb M J, Graham R D. Pot size affects expression of Mn efficiency in barley[J]. Plant & Soil, 1995, 178(2): 205-208.
[38] Lahiri A N. Interaction of water stress and mineral nutrition on growth and yield[M]//Turner N C, Kramer P J. Adaption of Plant to Water and High Temperature Stress.
New York: John wiley, 1980: 341-352.
[39] Sandhua S S, Mahalb S S, Vashistb K K, et al. Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India[J]. Agricultural Water Management, 2012, 104(1): 32-39.
[40] Sun Y J, Ma J, Sun Y Y, et al. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J]. Field Crops Research, 2012, 127(1): 85-98.
[41] Li Y J, Chen X, Shamsi I H, et al. Effects of irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil[J]. Pedosphere, 2012, 22(5): 661-672.
Effect of alternative wetting and drying irrigation and nitrogen coupling on rhizosphere environment of rice
Xu Guowei1,2, Lu Dake1, Sun Huizhong1, Wang Hezheng1, Li Youjun1
(1.,471003,; 2.,,225009,)
Soil moisture and nitrogen nutrient are the principal factors affecting rice (L.) production. Elucidation of their influences and coupling effects on grain yield of rice would have great significance for high yield and high efficiency. Domestic and foreign scholars have conducted extensive research on the interaction of water and fertilizer. The former focuses on the ground, such as crop growth development, physiological function, hormone change, nutrient absorption and utilization, water use efficiency and other aspects of the studies, few papers are for soil and root secretion characteristics, and their interaction and the conclusions are not consistent. The purposes of this study were to investigate the effects of water and nitrogen coupling on soil enzyme activity, microorganism quantity, root secretion and coupling effect.A mid-seasonrice cultivar of Xindao 20 was pot-grown. Three treatments of different nitrogen levels, i.e. 0N, MN (240kg/hm2) and HN (360 kg/hm2) and three irrigation regimes, i.e. submerged irrigation (0 kPa), alternate wetting and moderate drying (-20 kPa) and alternate wetting and severe drying (-40 kPa) were conducted in 2014 and 2015. Some indices, such as urease enzyme, sucrose enzyme, catalase enzyme, bacteria, fungi, actinomycetes quantity and total organic acid in root at different stages were investigated in the experiment. Results showed that there was a significant interaction between irrigation regimes and nitrogen levels, and no significant difference was observed between the 2 years. In the same nitrogen levels, urease enzyme, sucrose enzyme, catalase enzyme activity in soil at main growth stages were higher under the condition of alternate wetting and moderate drying compared with the submerged irrigation, and meanwhile bacteria, fungi and actinomycetes quantity in soil were also increased at main stages, and total content of organic acid was enhanced. So mild water stress and MN enhanced soil enzyme, microorganism and organic acid content, and formed the best mode in this paper, which was referred as the water-nitrogen coupling management model. The opposite result was observed under the condition of alternate wetting and severe drying. Soil enzyme, microorganism quantity and organic acid content in the root secretion at main stages were decreased significantly. In the same irrigation regime, soil enzyme and microorganism quantity at main growth stages were higher under the condition of MN treatment when compared with no nitrogen applied, and meanwhile total content of organic acid was enhanced significantly. The opposite result was observed under the condition of HN treatment, which indicated that heavy nitrogen application decreased soil enzyme and microorganism quantity, and organic acids of root secretion were also reduced significantly. Correlation analysis showed that there was significant or extremely significant positive correlation between soil enzyme, microorganism quantity and total organic acid content at main growth stages. Positive effects were observed in the effect of nitrogen fertilizer for soil enzyme activities, microbial quantity and total content of organic acid, and water stress and interaction effect were also positive under the condition of alternate wetting and moderate drying, while negative effect was observed under the condition of alternate wetting and severe drying. These results suggest increasing soil enzyme activity and microorganism quantity, and improving organic acids of root secretion through the appropriate regulation of water and nitrogen, will create a good rhizosphere environment for the growth of rice.
irrigation; nitrogen; microorganisms; rice; soil enzyme; organic acid content
10.11975/j.issn.1002-6819.2017.04.026
S511
A
1002-6819(2017)-04-0186-09
2016-6-30
2016-12-29
国家自然科学基金项目(U1304316);江苏省作物栽培生理重点实验室开放基金(027388003K11009);河南省教育厅科学技术研究重点项目(13A210266)。
徐国伟,男,汉族,博士,副教授,主要从事作物栽培生理研究。洛阳 河南科技大学农学院,471003。Email:gwxu2007@163.com
徐国伟,陆大克,孙会忠,王贺正,李友军. 干湿交替灌溉与施氮耦合对水稻根际环境的影响[J]. 农业工程学报,2017,33(4):186-194. doi:10.11975/j.issn.1002-6819.2017.04.026 http://www.tcsae.org
Xu Guowei, Lu Dake, Sun Huizhong, Wang Hezheng, Li Youjun. Effect of alternative wetting and drying irrigation and nitrogen coupling on rhizosphere environment of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 186-194. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.026 http://www.tcsae.org