蜂产品及蜜蜂疾病与劳动分工行为研究概况

2017-03-16 08:10韩日畴
环境昆虫学报 2017年1期
关键词:蜂蜜幼虫蜜蜂

张 祎,韩日畴

(广东省生物资源应用研究所,广东省动物保护与资源利用重点实验室,广东省野生动物保护与利用公共实验室,广州 510260)

蜂产品及蜜蜂疾病与劳动分工行为研究概况

张 祎,韩日畴*

(广东省生物资源应用研究所,广东省动物保护与资源利用重点实验室,广东省野生动物保护与利用公共实验室,广州 510260)

蜜蜂是重要的农业昆虫,传花授粉、促进农作物增产增收,生产蜂产品、满足市场需求;也是一种典型的社会性模式昆虫,具有重要的科研价值。本文综述了目前蜜蜂备受关注的三方面研究工作:(1)蜜蜂授粉和蜂产品;(2)蜜蜂的疾病与免疫;(3)蜜蜂的劳动分工行为。

蜜蜂;蜂产品;疾病与免疫;行为

前言

蜜蜂是人类的良友,不仅生产具有保健和药用作用的蜂产品,而且在作物授粉与生态平衡中发挥重要作用(Kleinetal., 2007; 苏松坤和陈盛禄,2009; Pottsetal., 2010; Calderone, 2012)。蜜蜂对多种病原敏感,易罹患疾病。我国养蜂业经历了美洲幼虫腐臭病、“爬蜂病”、蜂螨病等折磨,损失惨重(金汤东等,2007)。2006年前后,美国等国家爆发蜜蜂群体崩溃失调病(Colony Collapse Disorder, CCD),养蜂及相关产业尝尽苦涩(Cox-Fosteretal., 2007)。蜜蜂疾病研究与防控不可或缺。此外,蜜蜂也是一种典型的社会性昆虫,具有高度组织、分工明确的社会形态和严密的社会行为(Menzeletal., 2006; Weinstocketal., 2006; 郑火青和胡福良,2009)。本文着重综述蜜蜂的经济价值、病虫害与免疫以及社会行为。

1 蜜蜂的经济价值

1.1 授粉

世界上80%的被子植物属于虫媒植物,大概有30000种,其中17000种由蜜蜂传粉(Calderone, 2012)。Klein等(2007)调查了200个国家的主要农作物(水果、蔬菜及坚果类)对蜜蜂等传粉昆虫的依赖程度,发现76%农作物依赖蜜蜂等昆虫授粉,增产幅度90%以上的农作物占12%;增产幅度为40%-90%占28%;增产幅度为10%-40%占25%;增产幅度10%以下占20%。蜜蜂授粉带来的间接经济价值更可观,占到农作物总产值5%-15%(Kleinetal., 2007)。我国2006-2008年间36种主要作物蜜蜂授粉的年均价值高达3042.20亿元,是中国蜂业总产值76倍,相当于中国农业总产值12.3%(刘朋飞等,2011)。目前,国外评估蜜蜂授粉经济价值的方法有4种(1)产值估价法:以授粉作物的总价值简单地评估蜜蜂授粉经济价值;(2)蜜蜂依存度估价法:以各种作物的产值与该作物蜜蜂授粉的依存度乘积之和来评估蜜蜂授粉价值;(3)条件价值法:根据假设性市场的支付意愿估算蜜蜂传粉的价值;(4)替代成本法:根据人工授粉与蜜蜂授粉之间的成本变化评估蜜蜂授粉的价值(刘朋飞等,2011)。虽然各种方法都存在局限性,但蜜蜂授粉确实带来了巨大的经济价值(Calderone, 2012)。

1.2 蜂产品

1.2.1 蜂蜜

蜂蜜是蜜蜂采集各种植物分泌物并经过蜜蜂加工的一种天然食品,包括花蜜和植物分泌的蜜露。蜂蜜的主要成分是两种糖:葡萄糖和果糖,以及少量的18种其他糖:麦芽糖,蔗糖,麦芽酮糖,松二糖,异麦芽糖,昆布二糖,黑曲霉唐,曲二糖,龙胆二糖,β-海藻糖,麦芽三糖,吡喃葡糖基蔗糖,松三糖,1-蔗果三糖,异葡糖基三糖,异麦芽三糖,潘糖,G6-葡基蔗糖。不同的蜜源植物其蜜糖的成分含量不一样(Bogdanovetal., 2004)。另外还有一些有机酸:乳酸,果酸,酪酸,酒石酸,酒石酸,乙酸,柠檬酸,草酸,琥珀酸,苹果酸,马来酸,酮戊二酸,葡萄糖-6-磷酸,焦谷氨酸以及乙醇酸。其中葡糖酸是最常见的一种,由葡萄糖经葡萄糖氧化酶氧化而来的。蜂蜜中含有几种非常重要的酶,如葡萄糖氧化酶,过氧化氢酶,酸性磷酸酶,淀粉酶以及转化酶。正是由于这些酶,使得蜂蜜不同于其它甜味物质。蜂蜜中还含有丰富的矿物质无机盐,约0.02%-0.1%,因此蜂蜜不能长时间的低温保存。蜂蜜中还含有水分(17.3%±0.8%),还原糖,电解质,自由酸,维生素,挥发性物质,蔗糖以及羟甲基糠醛,这些物质也会影响蜂蜜的营养价值,粘性,质地,味道以及药用价值(Siddiquietal., 2017)。另外,由于不同植物或地区的花蜜和蜜露中微生物种类不一样,这些微生物可能会导致蜂蜜加工过程中的二次污染。花蜜中主要有属于子囊菌Ascomycetes的酵母Metschnikowia, 假丝酵母Candida, 接合酵母Zygosaccharomyces, 德巴利(氏)酵母属Debariomyces的Starmerella和担子菌Basidiomycetes的隐球菌Cryptococcussp.和Cystofilobasidiumsp.(Olgaetal., 2012)。蜂蜜不仅美味营养,还有极高的药用价值,早在古埃及(公元前1553-1550年)就有记载,蜂蜜具有促进伤口愈合,利尿,减肥,排毒及治疗肠道疾病的功效。现代医学证明蜂蜜具有治疗十二指肠病变,消炎,镇痛,抗动脉硬化,抗血栓,抗癌及增强免疫力的功效(Yaghoobietal., 2008;Mesaiketal., 2014)。

一般来说,蜂蜜是通过蜜源植物来命名分类的(如荔枝蜜,龙眼蜜等),但是由于蜜蜂会同时采集不同植物上的花蜜或蜜露,因此极少有纯净的单一蜂蜜。蜂蜜一般都是混合蜜并且其口感,色泽,理化性质等都差异不大。颜色是蜂蜜鉴定最直观的参数,不同颜色的蜂蜜具有不同的风味,颜色浅的通常味道比较温和,颜色深的口感比较浓烈。颜色深的蜂蜜含有较多的酚醛酸及其衍生物以及较少的类黄酮物质(Bogdanovetal., 2004)。电导率(Electrical Conductivity)和傅里叶红外变换光谱(Fourier Transform Infrared Spetrum)是最近国际上常用于鉴定纯花蜜的重要参数。大多数纯花蜜的电导率小于0.5 mS/cm,蜜露或其混合蜜则介于0.5-0.8 mS/cm(Saxenaetal., 2014)。pH也是常用的质量参数,因为蜂蜜中含有有机酸,因此蜂蜜的pH介于3.5-5.5,但不同蜜源的pH也有差异(Sanzetal., 2005)。另外一些理化参数还有含糖量,旋光性,氮含量等,但这些参数仅能分辨少数单花蜜,无法鉴别多花蜜。利用蜂蜜的挥发性物质鉴别不同蜜源蜂蜜更准确、有效。常用方法包括:(1)初级荧光光谱(Front Phase Fluorimetric Spectroscopy)可分辨单花蜜和多花蜜(Ruoffetal., 2006)。(2)红外光谱法(Infrared Spectroscopy)可分辨8种单一花蜜及其混合花蜜,中红外光谱可定量分析20种不同理化性质的花蜜(Ruoffetal., 2005),但这种方法受限于没有合适的生物标志物而无法广泛应用。(3)核磁共振光谱(Nuclear Magnetic Resonance,NMR)可鉴别来源于不同植物蜜源单一蜜中的各种糖类含量差异(Consonnietal., 2012),花蜜和蜜露的差别(Simovaetal., 2012),以及不同单一蜂蜜中的羧酸、氨基酸、乙醇以及HMF的差异(del Campoetal., 2016)。核磁共振光谱再结合使用固相萃取技术(Solid-Phase Extraction, SPE)则可鉴定出单一蜂蜜是否被其他蜜源蜜污染。不过,化学标志物依然是非常重要的检测基础,喹啉酸是鉴定栗子(chestnut)蜜的标志物,单萜衍生物环已酮-1,3-二烯-1-羧酸和1-O-β龙胆酯是椴树蜜的标志物,脂肪酸信号则是蜜露的标志物。如果结合高效液相色谱及质谱(HPLC-MS/MS)则可鉴别单一花蜜和多花蜜(Spiterietel., 2016)。

除了鉴别不同植物蜜源,是花蜜还是植物分泌的蜜露,最受关注是如何鉴别蜂蜜是否掺假。蜂蜜中掺假主要是掺入一些其它实物的果浆或饲喂蜜蜂吃蔗糖(Puscasetal., 2013),改变蜂蜜中的果糖/葡萄糖的比率,但又不会被一般技术手段鉴别出来。常被掺入的物质有玉米糖浆、甜菜糖浆、大米糖浆、菊粉糖浆(Siddiquietal., 2017)。通常通过糖类分析鉴定蜂蜜中是否掺假,利用高效阴离子交换色谱-脉冲安培检测(High Performance Anion-exchange Chromatography Pulsed Amperometric Detection, HPAEC-PAD)检测低聚糖的含量以鉴别是否掺入玉米糖浆(Moralesetal., 2008)。利用拉曼波普(FT-Raman)技术则可鉴定是否掺入甜菜糖浆(Paradkar and Irudayaraj,2001)。大米糖浆的掺入会严重影响食品安全,但又不易被检测,利用高效液相色谱与二极管阵列检测技术(High Performance Liquid Chromatography with Diode Array Detection,HPLC-DAD)和三维荧光光谱(Three-dimensional Fluorescence Spectroscopy,3DFS)最多可控制大米糖浆掺假率在10%范围内(Xueetal., 2013)。菊粉糖浆掺假是最常见的多糖掺假,可通过气相-液相色谱(Gas Chromatographic Mass Spectrometric,GC-MS)鉴别(Ruiz-Matuteetal., 2010)。一般来说,所有掺假都可以通过1H NMR技术鉴别,且高效快速高通量。

1.2.2 蜂毒

蜂毒是工蜂或蜂王的毒腺或副腺分泌的防御性物质,对人具有多种药理活性,是蜜蜂身上非常有价值的副产品(高丽娇和吴杰,2013)。蜂毒含有多种多肽和蛋白质,目前所知的主要活性物质有磷脂酶A2、透明质酸酶、蜂毒肽、蜂毒明肽、肥大细胞脱粒肽和镇静肽等毒蛋白(高丽娇和吴杰,2013)。其中,蜂毒肽(melittin)是蜂毒中比重最多的成分,占其干重50%(Habermann,1972),可用于治疗皮肤炎症,神经炎症,抗动脉硬化,关节炎以及肝炎(Lee and Bea, 2016)。这些功能在细胞和动物实验模型上都得到了验证(表1),但是其细胞水平机理还不完全清楚(Lee and Bea, 2016)。

表1 蜂毒肽的抗炎症效果及机制(Lee and Bea, 2016)

续上表

疾病模型Animalmodel作用机制Mechanism实验方式Method剂量Dose参考文献References肌萎缩性侧索硬化减少脊髓和脑干中小神经胶质细胞和phospo⁃p38细胞的数量;增强脊髓的马达作用抑制神经元的死亡;抑制α⁃突触蛋白的错误折叠小鼠,在ST36穴位处每周注射2次01μg/gYangetal.,2011抑制肺中的Iba⁃1和CD14的表达;抑制脾脏中CD14和COX⁃2的表达小鼠,在ST36穴位处每周注射3次01μg/gLeeetal,2014动脉粥样硬化抑制PDGR⁃β酪氨酸磷酸化及其胞内信号转导大鼠主动脉血管平滑肌细胞04-08μg/mLSonetal,2006,2007降低血浆中总胆固醇和甘油三酸酯但增加HDL;降低TNF⁃α,IL⁃1β,VCAM⁃1,ICAM⁃1,及TGF⁃β1小鼠,每周注射2次01mg/kgKimetal,2011抑制IL⁃1β,TNF⁃α和NF⁃κB的活性人单核细胞THP⁃1的衍生巨噬细胞01-1μg/mL增加抗增殖蛋白和膜联蛋白⁃1的表达;减少核内EGFR,ERK及NF⁃κB的表达从而抑制钙网蛋白的表达。经TNF⁃α刺激过的人血管平滑肌细胞2μg/mLChoetal,2013关节炎抑制LPS诱导的COX⁃2,PEG2,cPLA2,NO及iNOS的表达;抑制JUK和NF⁃κB的活性,释放I⁃κB和核转位的p50亚基风湿性关节炎患者的滑膜细胞5-10μg/mLParketal,2004,2007,2008肝炎抑制炎症反应,防止纤维化,抑制肝脏VCAM⁃1,IL⁃6及TNF⁃α的表达小鼠,注射,每周2次,连续12周01mg/kgParketal,2011抑制IL⁃1β,TNF⁃α及IL⁃6的表达大鼠原发性肝星状细胞01-1μg/mL抑制细胞凋亡以及GaIN/LPS诱导的急性肝衰竭的IL⁃1β,TNF⁃α,NF⁃κB的信号小鼠,注射01mg/kgParketal,2012抑制细胞凋亡途径和NF⁃κB的激活小鼠,AML12肝细胞系05-2μg/mLParketal,2014抑制慢性肝损伤中TNF⁃α,IL⁃6和p⁃STAT3的表达小鼠,注射,每周2次,连续4周01mg/kgKimetal,2015

1.2.3 蜂胶

蜂胶是蜜蜂采集植物顶芽和渗出液中的脂类物质,并混合蜂蜡经蜜蜂上颚腺分泌物加工形成的物质,在蜂群中主要用来防御外敌入侵,修复蜂巢,遮风挡雨,保护蜂群健康(Wagh, 2013)。蜂胶并不是蜜蜂的代谢产物,不是由蜜蜂的基因决定的,因此,蜂胶的化学成分差异很大,因植物而异,又取决于环境气候。天然蜂胶的基本成分一般是:50%树脂树香复合物,30%蜂蜡,5%花粉,10%挥发性油以及一些其他物质(Burdock, 1998)。其活性物质有酚、酸、醇、酯、酚、醚、萜、烯、甾醇等(徐响等,2008),具有广泛的药理学活性如抗菌、抗病毒、抗病原虫、抗氧化、抗癌、麻醉、创伤修复、消炎、免疫调节、预防龋齿、心血管保护等(Sforcin and Bankova, 2011),可抗各类癌症如脑癌,颈癌,皮肤癌,肝癌,乳房癌,胰腺癌,肾癌,膀胱癌,前列腺癌,结肠癌,血管癌等(Patel, 2014)。抑制金属蛋白酶活性,抑制血管生成,阻止转移,细胞周期阻滞,诱导凋亡,修复化疗副作用是蜂胶抗癌的关键机制(Patel, 2014)。蜂胶的提取方法直接影响其药用活性,因为不同的溶剂溶解和提取出的物质是不一样的,最常用的是不同浓度的乙醇,甲醇和水(Cunhaetal., 2004)。现代代谢组学也应用于蜂胶成分分析(Andelkovic'etal., 2017)。目前已知被鉴定的化学物质超300种,具有抗癌功效的有咖啡酸苯乙酯,柯因(5,7-二羟黄酮),聚异丙烯基二苯酮,高良姜素(三羟基黄酮),腰果酚,羟基肉桂酸,阿替匹林C等(Kumazakietal., 2014; Patel,2014)。不同产地、不同季节的蜂胶成分和含量差异很大,并且具有一些独特物质(南垚等,2006; de Sousaetal., 2011; 王凯等,2013)。

阿替匹林C(Artepillin C)主要是非洲绿色蜂胶的重要活性成分,使得非洲蜂胶尝起来有辛辣味(Hataetal., 2012)。阿替匹林C除了具有抗癌功能,还有其他具有多种生物学活性(表2),其在人体内的代谢也备受关注。Carrão等(2017)报道在小鼠的肝微粒体中,阿替匹林C的代谢方式符合希尔动力模型(Hill’s kinetic model)S曲线(sigmoidal profile),酶学参数方程为:Vmax=0.757±0.021 μmol/mg蛋白/min,Hill系数=10.90±2.80,底物浓度的最大半数值(Substrate Concentration Half-maximal Velocity) Km=33.35±0.55 μM,因此计算出体内的代谢速率为16.63±1.52 μL/min/mg蛋白,而在人的肝细胞中不符合这个动力模型,但细胞色素P450参与了阿替匹林C的代谢,产生了两个代谢产物CYP2E1和CYP2C9。其细胞作用方式,则可能是先聚集于膜的水相,沿着膜的表面负电荷的阿替匹林C接合于膜的极性区,聚集于膜的薄层区(Pazinetal., 2016)。

咖啡酸苯乙酯(Caffeic Acid Phenethyl Ester,CAPE)也是蜂胶中一种非常重要的活性组分,属于多酚类化合物,有清除自由基的功效、在抗肿瘤、抗氧化、抗炎症、免疫调节、缺血再灌注保护等方面表现出独特的生理药理作用。在哮喘的治疗上也表现独特的疗效(Maetal., 2016)。CAPE也具有抗氧化抗过敏作用,在抗尿路感染方面具有良好疗效,这是阿替匹林C所不具备的(Allameh and Salamzadeh, 2016)。

表2 阿替匹林C功能及其作用机制

2 蜜蜂的病虫害及免疫

自从2006年报道蜜蜂群体崩溃失调病(Colony Collapse Disorder, CCD)(Cox-Fosteretal., 2007),研究者排查了各种可能影响蜜蜂健康的生物与非生物因素。生物因子有病毒、细菌、寄生虫以及蜜蜂遗传因素,而非生物因子则是环境气候、蜂群管理及化学农药等。根据流行病学分析结果,影响蜂群健康的主要是病毒、细菌、锥形虫以及寄生螨(Cox-Fosteretal., 2007; McMenaminetal., 2016)。

2.1 蜜蜂病原

2.1.1 病毒

至今陆续报道的蜜蜂病毒总数达28种之多(Baileyl, 1981; Gisder and Genersch, 2015; Mordecaietal., 2016),包括Dicistroviridae,Iflaviridae,Baculoviruses和Tymoviridae等属(表3)。国内外有多篇综述介绍常见病毒(Baileyl, 1981; Chen and Siede, 2007; 张炫等,2012;Gisder and Genersh, 2015),这里不再赘述,仅介绍几种新近发现的病毒。

意大利蜜蜂丝状病毒AmFV(A.melliferaFilamentous Virus,AmFV)是其中唯一的一种dsDNA病毒,其基因组也是最大的,达498500 bp,基因组DNA和核蛋白经折叠和环化,形成长450×170 nm的杆状(图 1),根据基因组分析类似于无脊椎动物的杆状病毒(Gauthieretal., 2015)。跟其他病毒一样,其传播方式有水平传播和垂直传播。除了感染意大利蜜蜂还感染中华蜜蜂(Houetal., 2015),甚至一些独栖蜂如熊蜂,具有较广的宿主谱(Ravoetetal., 2014; Hartmannetal., 2015)。AmFV单独感染蜜蜂不会引起明显的病理特征,只有与微孢子虫Nosemaapis共感染时才会致死蜜蜂,死蜂的血淋巴呈乳白色,一般会在春季发病(Ravoetetal., 2014)。在意大利蜂群中检测率很高,瑞士群蜂的检出率为64%,而美国的则100%,并且在蜜蜂各个发育阶段都能检测到;但在狄斯瓦螨Varroadestructor中检出率很低,43头单螨中仅有3头检测到,分组检测29份(每份100头)也仅有3份检测到AmFV,可能其主要的传播媒介不是狄斯瓦螨(Ravoetetal., 2014)。

图1 意大利蜜蜂丝状病毒的形态特征(Ravoet et al., 2014)Fig.1 Morphology of AmFV virions 注:A,B 分别表示电镜下病蜂“牛奶”状血淋巴中意大利蜜蜂丝状病毒的核衣壳蛋白和包装好的病毒粒子的形态特征。Note:A, B, Electron micrographs of “milky” bee hemolymph containing characteristic AmFV nucleoproteins (np) and enveloped virions (v).

西奈病毒(Lake Sinai Virus,LSV),目前发现有7株,LSV1-7。LSV1和LSV2首次发现于美国南达科他(South Dakota)的靠近西奈湖(Lake Sinai)的一个流动养蜂场。2008-2009年期间,在该蜂场采样检测发现,2008年4月和2009年1月份是LSV1的高发期,而2009年7月是LSV2的高发期,但当时对LSV的致病性不了解(Runckeletal., 2011)。但在CCD蜂群中其滴度高于非CCD蜂群。随后在比利时、西班牙、土耳其发现了LSV3,LSV-Navarra,LSV4,LSV5(Granbergetal., 2013; Ravoetetal., 2013; Ravoetetal., 2014, 2015)。LSV 是 +ssRNA病毒,基因组长约5600 bp,基于RdRp序列系统进化分析与CBPV近缘,基于衣壳蛋白序列系统进化分析则与蚊子的Mosino Virus近缘(相似度32%-34%)(Daughenbaughetal., 2015)。LSV2基因组长5904 bp,编码衣壳蛋白57.3 kDa,病毒粒子直径约27 nm(Daughenbaughetal., 2015)。LSV可以通过食物和狄斯瓦螨传播,在狄斯瓦螨,蜜蜂的肠道、胸部、腹部及头部都能检测到,说明LSV可以通过媒介、食物或粪便传播(Daughenbaughetal., 2015)。

随着测序技术的发展与大数据比对分析,发现了一些不了解其致病症状的新病毒。夏威夷莫窟病毒(Moku Virus, MV)是在夏威夷群岛的一种入侵黄蜂Vespulapensylvanica身上发现的,并在意大利蜜蜂和狄斯瓦螨样品也能比对到相似序列。MV是+ssRNA,其基因组全长10056 bp,3′端有一个poly A尾,编码序列长9153 bp,编码3050 Aa,与缓慢性麻痹病毒(Slow Bee Paralysis Virus,SBPV)的编码序列相似性达46%。编码区有3个蛋白,核衣壳蛋白,解旋酶以及RdRp酶以及3C蛋白酶。其病理特征还不清楚(Mordecaietal., 2016)。狄斯瓦螨类黄斑病毒(V.destructorMacula-like Virus,VdMLV)近缘于家蚕的类黄斑病毒(Bombyx Mori Macula-like Latent Virus,BmMLV),是通过蛋白质谱分析发现,预测其体积约30 nm,ssRNA病毒,约6500 bp,其外壳蛋白约24 kD(Erbanetal., 2015)。

表3 蜜蜂病毒

续上表

编号Number属Genus名称Name核酸类型与基因组大小Genomesize参考文献References(14)ApisIridescentVirus(AIV)+ssRNABaileyandBall,1991(15)IflaviridaeVarroadestructorVirus1(VDV⁃1)+ssRNA~10000bpMooreetal,2011(16)IflaviridaeVarroadestructorVirus2(VDV⁃2)+ssRNA~9576bpLevinetal,2016(17)IflaviridaeVarroadestructorVirus3(VDV⁃3)+ssRNA~4202bpLevinetal,2016(18)TymoviridaeBeeMacula⁃LikeVirus(BeeMLV)+ssRNA~6500bpdeMirandaetal,2015(19)IflaviridaeKakugoVirus(KV)+ssRNA~10152bpFujiyukietal,2004(20)IflaviridaeMokuVirus(MV)+ssRNA10,056bpMordecaietal,2016(21)蜜蜂X病毒BeeVirusX(BVX)+ssRNABaileyandBall,1991(22)蜜蜂Y病毒BeeVirusY(BVY)+ssRNABaileyandBall,1991(23)蜜蜂死蛹病病毒DeadPupaeVirus(DPV)+ssRNABaileyandBall,1991(24)阿肯色蜜蜂病毒ArkansasBeeVirus(ABV)+ssRNABaileyandBall,1991(25)伯克立病毒BerkeleyBeeVirus,BBPV+ssRNA~9000ntdeMirandaetal,2015(26)埃及宽蜂病毒EgyptBeeVirus(EBV)+ssRNABaileyandBall,1991(27)囊状幼虫病病毒泰国毒株SacbroadVirus,Thaistrain(TSBV)+ssRNABaileyandBall,1991(28)慢性麻痹病相关病毒ChronicParalysisVirusAssociate(CPVA)+ssRNABaileyandBall,1991

2.1.2 细菌

美洲幼虫腐臭病(American foulbrood,AFB)和欧洲幼虫腐烂病(European foulbrood,EFB)是两大细菌传染性病害(Forsgren,2010)。AFB的病原是Paenibacilluslarvae(Generschetal., 2006),目前仅致病蜜蜂幼虫(Ebelingetal., 2016)。P.larvae属于G+细菌,有鞭毛,产芽孢细菌。芽孢进入孵化36 h后的1-2日龄幼虫,在幼虫的肠道内萌发,繁殖,生长,突破中肠表皮细胞,随后进入血腔,致死幼虫,直至降解幼虫的尸体,耗尽幼虫的能量,最后形成具有毒力的芽孢子团,再由卫生蜂传到其他幼虫(Yueetal. 2008)。卫生蜂的喂食传播是唯一的传播途径。正因为蜜蜂的独特哺育方式,蜂群一旦感染P.larvae,整群毁灭(Ebelingetal., 2016)。经肠道菌基因间重复序列(Enterobacterial Repetitive Intergenic Consensus,ERIC)分析,P.larvae具有4种基因型,后经多位点序列分型(Multi Locus Sequence Typing,MLST)以及基质辅助激光解吸电离飞行时间质谱(Matrix-Assisted Laser Desorption/ionization Time of-Flight Mass Spectrometry,MALDI-TOF MS)都验证了这种分型的准确性。ERIC I,II比较常见,是美洲幼虫腐臭病的常见致病株,III和IV仅存在菌种保藏中心。P.larvae的致病机理如图2,首先在鞭毛的游动帮助下定殖于蜜蜂幼虫中肠内腔,分泌表层蛋白(S-layer protein),抵抗肠腔内的其他细菌和真菌,以及宿主的免疫反应(2A),随后P.larvae会分泌几丁质降解酶PlCBP49(一种溶解性多糖单氧酶,LPMOs),同时,还分泌毒素Plx1和Plx2,三者协同作用具有单-ADP核糖转移酶活性,降解肌动蛋白细胞骨架,突破肠道表皮层,从而进入到血腔,致死幼虫后,继续分解基质直到能量耗尽,细菌形成芽孢(Ebelingetal., 2016)。

图2 Paenibacillus larvae致病机理(Ebeling et al., 2016)Fig.2 Disease mechanism of Paenibacillus larvae (Ebeling et al., 2016)

欧洲幼虫腐烂病全球分布,目前仅新西兰还未见报道(Forsgren, 2010)。EFB的病原是Melissococcusplutonius(Bailey, 1983),G+细菌,尖球状(图3A,B),属微需氧-厌氧菌,需二氧化碳培养。易感染4-5日龄未封盖幼虫,染病幼虫颜色首先变黄,渐渐呈褐色,最后腐烂,呈灰黑色(图3C)。欧腐病一般经食物、粪便及成蜂间接触传播,因为在单个蜜蜂体内,M.plutonius是定殖于蜜蜂幼虫的肠道,但随后幼虫羽化出房排便,M.plutonius会随着粪便留在巢房内,不会被完全清理干净,残留在巢房,感染幼虫食物。幼虫的死亡率与M.plutonius有剂量依赖关系,一般来说>200 CFU/mL会使得幼虫发病,有些染病幼虫立马死亡,有些会在封盖后死亡,其症状有点像美洲幼虫腐烂病,也有些携菌幼虫会继续发育,直至羽化,只是个子比正常蜂小一点(Forsgren, 2010)。发病期间常发生次生感染,次生感染的主要细菌有Paenibacillusalvei,Brevibacilluslaterosporus,Enterococcusfaecalis, 以及Achromobactereurydice等,经基因组测序分析P.alvei可能会分泌一些几丁质降解酶,透明质酸裂解酶,以及一些类似于苏云金芽孢杆菌毒素,促使被感染幼虫加快死亡(Djukicetal., 2012)。欧腐病的诊断技术有ELISA、PCR、以及qRT-PCR,但这些技术比较耗时,一项新的快速检测技术应运而生,那就是胶体金检测技术,通过显色的深浅变化判断是否含有M.plutonius及含量,可以精确至25拷贝的最少含量(Salehetal., 2012)。

图 3 欧洲幼虫腐臭病症状及病原Melissococcus plutonius(Forsgren, 2010)Fig.3 Symptom of European Foulbrood and the bacterium Melissococcus plutonius (Forsgren, 2010)注:A,病原菌的电镜照片(bar=1 μm);B,病原菌的革兰氏染色;C,患病幼虫症状。Note: A, Scanning electron micrograph of Melissococcus plutonius(The bar represents 1 μm); B, Gram staining of Melissococcus plutonius; C, Symptoms of European foulbrood.

2.1.3 寄生螨

蜜蜂寄生螨的主要害螨有狄斯瓦螨,梅氏热厉螨Tropliaelapsmercedesae,武氏蜂盾螨Acarapiswoodi(罗其花等,2010)。其中,狄斯瓦螨对养蜂业危害最大,不仅吸食蜜蜂的血淋巴,对蜜蜂造成直接伤害,还携带和传播病毒,特别是残翅病病毒(DWV)(Rosenkranzetal., 2010; Martinetal., 2012;张祎和韩日畴,2012)。一般在没有狄斯瓦螨的情况下,DWV呈隐性感染,病毒滴度低,蜜蜂形态正常,一旦同时受到狄斯瓦螨的侵染,DWV含量上升,蜜蜂的NF-κB免疫途径遭到损坏,免疫力下降,狄斯瓦螨快速繁殖(Di Priscoetal., 2016),蜂蛹发育受损,幼蜂残翅,群势逐渐削弱,一到冬天便全群崩溃(Highfieldetal., 2009; Dainat and Neumann, 2013)。然而,对于对狄斯瓦螨具有抗性的蜂种来说,其个体对狄斯瓦螨更为敏感,被狄斯瓦螨侵染的幼虫很快死亡,并被快速清除出巢房,采取的策略可能是通过牺牲个体达到拯救群体的目的(Loftusetal., 2016; Mondetetal., 2016; Pageetal., 2016)。狄斯瓦螨的携带会加剧病毒(DWV)的毒力(Ryabovetal., 2014; Lampetal., 2016),降低DWV的多样性,加剧优势株的流行(Martinetal., 2012; Ryabovetal., 2014; Mordecaietal., 2016; Wilfertetal., 2016),改变蜜蜂的微生物群落(Hubertetal., 2016)。而环境气候条件、地理位置、植被蜜源条件及蜂群管理水平都会影响病毒及其他病原的继发感染程度,影响螨害的发展程度,但狄斯瓦螨的对蜜蜂作用机理并不清楚(Anquianoetal., 2016; Giacobinoetal., 2016; Giacobinoetal., 2017)。

为了研究狄斯瓦螨作用蜜蜂的机理,狄斯瓦螨的人工饲养是关键。瓦螨人工饲养的关键条件是:(1)合适的膜供螨刺吸取食;(2)合适的人工培养基(Bruceetal., 1988; Garrido and Rosenkranz, 2003; Garedewetal., 2004; Tabartetal., 2013)。早在1988年,Bruce等 (1988) 便尝试使用封口膜(ParafilmR,成分是聚烯烃)拉成大概10 μm厚,做成囊状,里面包裹幼虫血淋巴(加入甲基蓝)或人工食物(成分是酵母提取物,酪蛋白,盐,维生素,胆固醇,蔗糖明胶,吐温80,鸡蛋黄,RNA提取物,无菌水),24 h后观察到瓦螨有取食血淋巴和人工食物并有产卵,但48 h后发现卵都未孵化且螨的死亡率达到80%;取食人工食物的母代雌螨也最多只能存活5 d,产下有甲基蓝的卵,卵可以孵化并发育至一龄若虫,但不能继续发育至成螨完成一个世代循环。考虑到人工拉扯封口膜并不标准,也容易破,也尝试用其他商业膜或者改进封口膜的拉展方法,但后来都未采用(Milani and Chiesa, 1989)。1991年,Rath尝试用ELISA 96孔板培养狄斯瓦螨,孔深10.5 mm,直径7.0 mm,底部圆弧形,蜜蜂的幼虫作为螨的食物,每孔放一头幼虫一头螨,用聚乙烯膜封盖并在中间打一个直径约0.5 mm的孔,封好后置于35℃,RH75%培养箱中培养。结果发现以意蜂工蜂幼虫为食物的狄斯瓦螨中,有26.8%产卵,但也没有发育至成螨(Rath, 1991)。1994年,Nazzi和Milani尝试用蜂蜡或明胶做成人工巢房,以封盖后0-15 h的幼虫为食物饲养狄斯瓦螨,用滤纸封盖,竖直放在培养皿中,然后置于34.5℃,RH75%的培养箱中培养,12 d后开盖,结果发现在直径为6.0 mm的明胶人工巢房中的螨产卵率达62%,每头螨的产卵量平均达3.5颗,也有27.1%发育至成螨(Nazzi and Milani, 1994)。但是还是不能培养至第二代螨,无法一直持续循环培养;而且以蜜蜂幼虫为食物,也不能调配食物的成分。2013年,Tabart等设计了一套新的培养系统,用壳聚糖做称胶囊状,把螨放在胶囊内,整个胶囊放在盛有人工培养基的无菌96孔板内,螨可以从胶囊内部咬破囊膜吸到外部的食物。食物的配方如下:30%Schneider’s培养基,30% CMRL1066,0.06 M组氨酸,10%胎牛血清,1% Hank’s盐溶液,4%昆虫培养基,25%蜜蜂幼虫血淋巴,混合后置于45℃温育,再加入20%含20 g/L琼脂糖和0.8% FCF亮蓝的磷酸缓冲液,将培养基做成半固体状态。但该实验仅持续了5 d,证实了狄斯瓦螨会刺破囊膜吸食含有蜜蜂血淋巴的“半人工培养基”,仅个别雌螨产卵,卵不发育。因此,至今,还没有成功的可以利用的人工培养系统。因为不知道诱发产卵及促使卵发育的具体物质,无法配置合适的培养基。狄斯瓦螨基因组的解释也许为后续研究提供一些思路(Cornmanetal., 2010)。

2.1.3 其它

另外还有一些真菌病,如蜂球菌Ascoshaeraapis引起白垩病(Qinetal., 2006),还有曲霉Aspergillussp.引起幼虫石化病(Morse and Flottum, 1997),以及微孢子虫(Nosemaapis和Nosemaceranae)(Fries, 2010; Hongetal., 2011)。

2.2 蜜蜂的免疫

蜜蜂的免疫系统比较独特,除了个体免疫,还具有群体免疫(Friesetal., 1996; Evansetal., 2006; Evans and Spivak, 2010; Le Conteetal., 2011; Kurzeetal., 2016)。研究认为蜂群CCD现象中工蜂的整体“消失”是因为蜂群过度反复的积极免疫反应使得巢内蜜蜂大部分或全部死亡(Bulletal., 2012;李贝贝等,2016)。

2.2.1 个体免疫

昆虫主要的免疫机制由三部分组成:(1)表皮,是昆虫抵抗外界微生物的天然物理屏障;(2)细胞免疫;(3)体液免疫(Evansetal. 2006; Kurzeetal., 2016;郑树安,2016)。蜜蜂的免疫系统启动的诱导物没有针对特定的诱导源,也没有相应的特异性结果,为“非专一性”免疫,不同的诱导源均可产生类似的抗菌物质,且经诱导产生的抗菌物质具有广谱性,而非针对特定的诱导物质(Kurzeetal., 2016)。由于蜜蜂开放式的血液循环,血淋巴遍布于所有组织和器官,当外来病原体或异物进入后,蜜蜂依靠血细胞的吞噬、成瘤、包囊等作用杀灭病原菌,并通过凝集作用修复伤口,以防止外来物进一步侵入体腔(郑树安,2016)。体液免疫主要有Toll途径,Imd途径,Jak/STAT途径,JNK (Jun N-terminal kinase)-MAPK (Mitogen-Activated Protein Kinases)途径以及RNAi途径(Evansetal., 2006; Brutscheretal., 2015)。RNAi途径则由dsRNA触发的序列特异性的转录后基因调控的病毒沉默机制,目前在黑腹果蝇Drosophilamelanogaster, 埃及伊蚊Aedesaegypti及冈比亚按蚊Anophelesgambiae中都得到了实验验证。蜜蜂的RNAi抗病毒途径也取得重大进展。经信息生物学分析发现在蜜蜂的基因组中存在RNAi途径上的重要元件基因,如dicer-1,ago-2,r2d2, 以及dicer-like,许多重要的抗病毒免疫基因也得到证实(表4)(Brutscheretal.,2015)。一些特异性dsRNA触发RNAi途径,可以特异性抵抗RNA病毒。在实验条件下,IAPV,DWV以及CSBV都可以通过给蜜蜂喂食特异性dsRNA,抑制蜜蜂体内病毒的增殖,提高存活率(Maorietal., 2009; Liuetal., 2010; Desaietal., 2012),并且已有商业化的抗病毒dsRNA制剂可用于蜂群防御(Hunteretal., 2010)。在自然条件下,蜜蜂体内也存在很多病毒特异性siRNA,如在CCD蜂群中有大量负链IAPV-siRNA,这些负链siRNA结合IAPV的(+)ssRNA基因组,发挥RNAi作用。高通量测序分析不同样品(Varroa-infested, DWV-infected, VDV-1-infected)中的小RNA发现,大量病毒特异性的正链siRNA,与相应病毒量呈正比关系。如果没有狄斯瓦螨的侵染,蜜蜂体内的siRNA足够抵御病毒的繁殖(Chejanovskyetal., 2014)。由于蜜蜂群居,微环境复杂,往往是多条途径共同发挥作用才能保护蜜蜂的健康(Brutscheretal.,2015)。

表4 免疫途径与基因(Brutscher et al., 2015)

2.2.2 群体免疫

群体免疫(Social Immunity)是社会性昆虫基于群体水平抵御疾病的方式,包括理毛行为(Grooming),清洁行为(Hygienic behavior)和移走行为(Undertaking)(Friesetal., 1996; Evans and Spivak, 2010; Le Conteetal., 2011),也有文献认为清洁行为包括“开盖”和“移走”行为(Palacioetal., 2005; Swansonetal., 2009)。理毛行为有个体的自我理毛,主要是清除自身的颗粒物和花粉,也有相互理毛,就是两头蜜蜂之间互相为对方清理身上的颗粒异物,这个特性在中华蜜蜂抗螨过程中发挥作用(Rath, 1999; Bahreini and Currie, 2015),但也可能导致疾病的快速传播。清洁行为不是我们理解的一般意义上的打扫卫生,清理巢房,而是指成年工蜂抵抗疾病和寄生虫的行为,是蜜蜂的群体免疫的重要组成部分(Bigioetal., 2014)。最初是发现在抵抗美洲幼虫腐臭病和白垩病中发挥作用(Gilliametal., 1988; Evans and Spivak, 2010; Invernizzietal., 2010),其中挥发性气味物质在诱导这种行为中发挥了作(Swansonetal., 2009)。随后研究表明在中华蜜蜂抗螨特性中,清洁行为发挥了重要作用,蜜蜂能够检测到有螨寄生的巢房,然后打开巢房盖,让螨逃走或者移走受螨侵染的蛹(Pengetal., 1987a,1987b),为了了解清洁行为的强弱,经典测定实验是幼虫冻伤后放回蜂箱,24或48 h后检查被清理冻死幼虫的数量和比例(Spivak and Gilliam, 1998a; Palacioetal., 2005),实验证明能够迅速清走这些冻死幼虫其抵抗受狄斯瓦螨的能力也很强(Morettoetal., 2006),而不同的意大利蜜蜂其清洁行为也有差异并且受到特定基因的调控(Boutinetal., 2015)。由于现在意大利蜜蜂螨害严重,急需获得具有抗螨特性的蜂种,基于清洁行为特性研究为选育抗螨蜂种提供了思路。

3 蜜蜂的社会行为

蜜蜂作为模式生物受到全世界科学家的重视基于其独特的生物学特性:(1)复杂而精确的社会性结构;(2)繁殖快,生活周期短,易于饲养,个体适中,适于观察。蜜蜂基因组的完成使得蜜蜂生物学研究迅速升温,尤其是:(1)劳动分工;(2)学习与记忆;(3)性别决定;(4)级型分化;(5)免疫调节;(6)自组织调节等,涵盖了昆虫学、生物信息学、进化与发育、神经生物学、细胞与结构生物学等多学科,取得了瞩目进展(Weinstocketal., 2006,郑火青和胡福良,2009)。

蜜蜂最引人注目的是它的社会行为(Social Behaviour)和复杂的劳动分工(Page Jretal., 2000)。级型分化的第一级分化是受精卵发育的雌蜂因为摄入食物的差异形成负责产卵繁殖的蜂王和无繁殖能力的工蜂(李文峰等,2014)。级型分化的两个核心问题是(1)引发级型分化的营养因子;(2)级型发育的调节途径(Shuel and Dixon, 1960)。关键营养因子是蜂王浆主要蛋白组分Royalactin(57 kDa蛋白),其作用机理可能是受脂肪体细胞表皮生长因子受体介导的信号通路调控诱导蜂王的发育(Kamakura, 2011)。但由于受限于蜜蜂不成熟的遗传操作技术,也没有合适的突变体,以及人工蜂王培养技术不完善,直接在蜜蜂体内验证Royalactin的功能还没有实现(李文峰等,2014)。表观遗传修饰也是影响级型分化的因素,dynactin p62基因的甲基化影响幼虫的卵巢和形态发育(Kucharskietal., 2008; Shietal., 2011)。另外,激素水平的平衡控制,胰岛素受体途径和TOR信号通路的调控也都参与级型分化,但细节问题尚无定论(李文峰等,2014)。

第二级分化是成年工蜂的各项细致分工。影响工蜂劳动分工的因素相当复杂, 主要包括: 工蜂的日龄、保幼激素(Juvenile Hormone,JH)浓度、遗传基因、遗传-环境互作和蜂王上颗腺信息素(QMP)等(Denison and Raymond-Delpech, 2008;沈飞英等,2015)。成年工蜂出房后从事巢内劳动(内勤蜂):哺育、筑巢、清洁,2-3周后飞出蜂箱采集花粉和花蜜(外勤蜂),5-7周再次分工,专化采集花蜜或者花粉。根据日龄的基本分工,内勤蜂一旦转化成外勤蜂就很少再回到蜂箱内从事巢内工作(Winston,1987)。根据蜂群需求,这种转变有时加速、有时延迟,也有可能会颠倒(Fahrbach and Robison, 1995)。影响蜂群分工的因素有天气条件,营养状态,蜂龄结构。如果一个蜂群缺少相对老龄的蜂,那么年幼的蜂会压缩在巢内的工作时间,尽快转变为外勤蜂(孙婷等,2008)。分工的不同也伴随激素的变化,内勤蜂体内激素水平低,外勤蜂激素水平高(Fahrbach and Robison, 1995)。从巢内到巢外工作的转变,涉及涉及几千个基因的调控(宗超等,2014),目前研究发现foraging(Amfor),malvolio(Amvl)和vitellogenin(Vg)这3个基因在调控这些行为转变中发挥重要作用 (Denison and Raymond-Delpech, 2008)。Foraging基因与昆虫的趋光性有关,蜜蜂Foraging同源基因Amfor在其脑部的视叶区、蕈形体中表达,外勤蜂的表达水平显著高于内勤蜂,因为内勤蜂在蜂箱内黑暗环境中工作,需避光,而外勤蜂则长时间在蜂箱外采集,具有趋光性(Ben-Shaharetal., 2005)。Amv影响工蜂对蜜源质量(果糖含量)的感知,在蜜蜂采集花粉还是花蜜的分工中担任重要作用(Ben-Shaharetal., 2004)。Vg是一个卵黄蛋白前体基因,与保幼激素共同作用调节蜜蜂内外分工,一般是呈相互抑制关系,JH高则Vg低,JH高促进向外勤蜂转变,降低JH,则延迟转变,用Vg-dsRNA降低Vg的表达,也促进向外勤蜂转变(Nelsonetal., 2007)。但Vg是如何抑制JH的表达,以及相互作用机制还不清楚(Denison and Raymond-Delpech, 2008)。数量性状位点(Quantitative Trait Loci,QTLs)遗传图谱的解析,则更好的诠释了蜜蜂行为的分子生物学基础(Huntetal., 2007)。如影响采集花蜜还是花粉的“花粉(pollen)”QTLs:pln-1,pln-2,pln-3和pln-4。pln-1和pln-2调控蜜蜂识别花粉的颗粒大小,pln-2和pln-3则帮助蜜蜂辨别花蜜中果糖浓度(Huntetal., 1995),pln-4影响采集蜂参与采粉行为的比例。

4 结语

蜂产品贸易是目前养蜂业生存与发展的主要动力。如何进一步提高蜂产品的产量和质量是消费者与养蜂业关注的重点。蜜蜂授粉产业需求强劲、增效可观,被认为养蜂业可持续发展的有力支撑(刘朋飞等,2011;Brownetal., 2016; Spragueetal., 2016)。蜜蜂疾病的高效安全防控是护航养蜂业的根本措施(金汤东等,2007;Chen and Siede, 2007; Gisder and Genersh, 2015; McMenaminetal., 2016)。建立蜜蜂疾病流行规律、病原与宿主相互作用机理是蜜蜂疾病控制的关键科学问题。蜜蜂行为研究不仅解释这一王国生存、进化的奥秘,而且为仿生学提供宝贵的模式。蜜蜂原代细胞培养(Goblirschetal., 2013)、转基因技术(Schulteetal., 2014)以及认知理论的应用将为未来蜜蜂研发提供崭新的手段。

References)

Allameh Z, Salamzadeh J. Use of antioxidants in urinary tract infection [J].J.Res.Pharm.Pract., 2016, 5 (2):79-85.

Anguiano BR, Guzman NE, Md Hamiduzzaman M,etal.Varroadestructor(Mesostigmata: Varroidae) parasitism and climate differentially influence the prevalence, levels, and overt Infections of Deformed Wing Virus in honey bees (Hymenoptera: Apidae) [J].J.Insect.Sci., 2016, 16 (1):44.

Bahreini R, Currie RW. The effect of queen pheromone status on Varroa mite removal from honey bee colonies with different grooming ability [J].Exp.Appl.Acarol, 2015, 66:383-397.

Bailey L, Ball BV. Honey Bee Pathology, 2nded. [M]. London: Academic Press, 1991: 1-193.

Bailey L.Melissococcuspluton, the cause of European foulbrood of honey bees (Apisspp.) [J].J.Appl.Bacteriol., 1983, 55: 65-69.

Bailey L. Honey Bee Pathology [M]. London: Academic Press, 1981.

Ben-Shahar Y, Dudek NL, Robinson GE. Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honeybee division of labor [J].J.Exp.Biol., 2004, 207:3281-3288.

Bigio G, Toufailia AL, Ratnieks LW. Honey bee hygienic behaviour does not incur a cost via removal of healthy brood [J].J.Evol.Biol., 2014, 27: 226-230.

Bogdanov S. Beeswax: Quality issues today [J].BeeWorld, 2004, 85 (3): 46-50.

Bogdanov S, Ruoff K, Oddo LP. Physico-chemical methods for the characterisation of unifloral honeys: A review [J].Apidologie, 2004, 35 (Suppl. 1): S4-S17.

Boot WJ, Beetsma J, Calis JNM (1994). Behaviour ofVarroamites invasing honey bee brood cells [J].Exp.Appl.Acarol., 1994, 18 (6): 371-379.

Boutin S, Alburaki M, Mercier PL,etal. Differential gene expression between hygienic and non-hygienic honeybee (ApismelliferaL.) hives [J].BMCGenomics., 2015, 16:500.

Brown MJ, Dicks LV, Paxton RJ,etal. A horizon scan of future threats and opportunities for pollinators and pollination[J].Peer.J., 2016, 4:e2249.

Bruce WA, Chiesa F, Marchetti S,etal. Laboratory feeding ofVarroajacobsoni(Acari: Varroidae) on natural and artificial diets [J].Apidologie, 1988, 19 (2): 209-218.

Brutscher LM, Daughenbaugh KF, Flenniken ML. Antiviral defense mechanisms in honey bees[J].Curr.Opin.InsectSci., 2015, 10: 71-82.

Bull JC, Ryabov EV, Prince G,etal. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees [J].PLoSPathog., 2012, 8 (12): e1003083.

Burdock GA. Review of the biological properties and toxicity of bee propolis (propolis) [J].FoodChem.Toxicol., 1998, 36 (4): 347-363.

Calderone NW. Insect pollinated crops, insect pollinators and US agriculture: Trend analysis of aggregate data for the period 1992-2009 [J].PLoSONE, 7 (5): e37235.

Carrão DB, de Albuquerque NC, Marques LM,etal.Invitrometabolism of artepillin C by rat and human liver microsomes [J].PlantaMed., 2017, in press.

Chejanovsky N, Ophir R, Schwager MS,etal. Characterization of viral siRNA populations in honey bee colony collapse disorder [J].Virology, 2014, 454-455:176-183.

Chen YP, Siede R. Honey bee viruses [J].Adv.Virus.Res., 2007, 70: 33-80.

Cheung KW, Sze DM, Chan WK,etal. Brazilian green propolis and its constituent, Artepillin C inhibits allogeneic activated human CD4 T cells expansion and activation [J].J.Ethnopharmacol., 2011, 138 (2):463-71.

Cho HJ, Kang JH, Park KK,etal. Comparative proteome analysis of tumor necrosis factor alpha-stimulated human vascular smooth muscle cells in response to melittin [J].ProteomeSci., 2013, 11 (1): 1-9.

Choi SS, Cha BY, Iida K,etal. Artepillin C, as a PPARγ ligand, enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells [J].Biochem.Pharmacol., 2011, 81 (7): 925-33.

Consonni R, Cagliani LR, Cogliati C. NMR characterization of saccharides in Italian honeys of different floral sources [J].JournalofAgricultural&FoodChemistry, 2012, 60 (18): 4526-4534.

Cornman RS, Schatz MC, Johnston JS,etal. Genomic survey of the ectoparasitic miteVarroadestructor, a major pest of the honey beeApismellifera[J].BMCGenomics, 2010, 11 (1): 602.

Cox-Foster DL, Conlan S, Holmes EC,etal. A metagenomic survey of microbes in honey bee colony collapse disorder [J].Science, 2007, 18 (5848): 283-287.

Cunha IBS, Sawaya ACHF, Caetano FM,etal. Factors that influence the yield and composition of Brazilian propolis extracts [J].J.Braz.Chem.Soc., 2004, 15: 964-970.

Dai PL, Wang Q, Sun JH,etal. Effects of pesticides on honeybee behaviours [J].ChineseBulletinofEntomology, 2009,46 (6): 855-861. [代平礼, 王强, 孙继虎, 等. 农药对蜜蜂行为的影响[J]. 昆虫知识, 2009,46 (6): 855-861]

Dainat B, Neumann P. Clinical signs of deformed wing virus infection are predictive markers for honey bee colony losses [J].J.Invertebr.Pathol., 2013, 112: 278-280.

Daughenbaugh KF, Martin M, Brutscher LM,etal. Honey bee infecting Lake Sinai Viruses [J].Viruses, 2015, 7 (6): 3285-3309.

de Michelette ER, Soares AEE. Characterization of preimaginal developmental stages in Africanized honey bee workers (ApismelliferaL) [J].Apidologie, 1993, 24 (4):431-440.

de Miranda JR, Dainat B, Locke B,etal. Genetic characterization of slow bee paralysis virus of the honeybee (ApismelliferaL.) [J].J.Gen.Virol., 2010, 91: 2524-2530.

de Miranda JR, Drebot M, Tyler S,etal. Complete nucleotide sequence of Kashmir Bee Virus and Comparison with Acute Bee Paralysis Virus [J].J.Gener.Virol., 2004, 85: 2263-2270.

de Oliveira PF, Lima IM, Monteiro NMA,etal. Evaluation of genotoxicity and antigenotoxicity of Artepillin C in V79 cells by the comet and micronucleus assays [J].Nutr.Cancer., 2013, 65 (7): 1098-103.

de Sousa JP, Leite MF, Jorge RF,etal. Seasonality role on the phenolics from cultivatedBaccharisdracunculifolia[J].Evid-Based.Compl.Alt.Med., 2011, 2011: 464289.

del Campo G, Zuriarrain J, Zuriarrain A,etal. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by (1)H NMR [J].FoodChemistry, 2016, 196: 1031-1039.

Denison R, Raymond-Delpech V. Insights into the molecular basis of social behaviour from studies on the honeybee,Apismellifera[J].Invert.Neurosci., 2008, 8 (1): 1-9.

Desai SD, Eu YJ, Whyard S,etal. Reduction in deformed wing virus infection in larval and adult honey bees (ApismelliferaL.) by double-stranded RNA ingestion [J].InsectMol.Biol., 2012, 21: 446-455.

Di Prisco G, Annoscia D, Margiotta M,etal. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health [J].Proc.Natl.Acad.Sci.USA, 2016, 113 (12): 3203-3208.

Djukic M, Becker D, Poehlein A,etal. Genome sequence ofPaenibacillusalveiDSM 29, a secondary invader during European foulbrood outbreaks [J].J.Bacteriol., 2012, 194 (22): 6365.

Dynes TL, De Roode JC, Lyons JI,etal. Fine scale population genetic structure ofVarroadestructor, an ectoparasitic mite of the honey bee (Apismellifera) [J].Apidologie, 2016, 2016: 1-9.

Ebeling J, Knispel H, Hertlein Getal. Biology ofPaenibacilluslarvae, a deadly pathogen of honey bee larvae [J].Appl.Microbiol.Biotechnol., 2016, 100: 7387-7395.

Erban T, Harant K, Hubalek M,etal. In-depth proteomic analysis ofVarroadestructor: Detection of DWV-complex, ABPV, VdMLV and honeybee proteins in the mite [J].Sci.Rep., 2015, 5: 13907.

Evans JD, Aronstein K, Chen YP,etal. Immune pathways and defence mechanisms in honey beesApismellifera[J].InsectMol.Biol., 2006, 15 (5): 645-656.

Evans JD, Spivak M. Socialized medicine: Individual and communal disease barriers in honey bees [J].J.Invertebr.Pathol., 2010, 103: S62-S72.

Fahrbach SE, Robison GE. Behavioral development in the honey bee: Toward the study of learning under natural conditions [J].LearnMemory, 1995, 2: 199-244.

Forsgren E. European foulbrood in honey bees [J].J.Invertebr.Pathol., 2010, 103: S5-S9.

Fries I, Wei HZ, Shi W,etal. Grooming behavior and damaged mites (Varroajacobsoni) inApisceranaceranaandApismelliferaligustica[J].Apidologie, 1996, 27: 3-11.

Fries I.Nosemaceranaein European honey bees (Apismellifera) [J].J.Invertebr.Pathol., 2010, 103: S73-S79.

Fujiyuki T, Matsuzaka E, Nakaoka T,etal. Distribution of Kakugo Virus and its effects on the gene expression profile in the brain of the worker honeybeeApismelliferaL[J].J.Virology., 2009, 22 (83): 11560-11568.

Fujiyuki T, Takeuchi H, Ono M,etal. Novel insect picorna-like virus identified in the brains of aggressive worker honey bees [J].J.Virol., 2004, 78: 1093-1100.

Gao LJ, Wu J. Advance on the main compositions and the functions of honeybee venom [J].Genom.Appli.Biol., 2013, 32 (2): 246-253. [高丽娇, 吴杰. 蜜蜂蜂毒主要成分与功能研究进展[J]. 基因组学与应用生物学, 2013, 32 (2): 246-253]

Gao W, Wu J, Wei J,etal. Brazilian green propolis improves immune function in aged mice [J].J.Clinical.Biochem.Nutr., 2014, 55 (1): 7-10.

Garedew A, Schmolz E, Lamprecht I. The energy and nutritional demand of the parasitic life of the miteVarroadestructor[J].Apidologie, 2004, 35: 419-430.

Garrido C, Rosenkranz P. The reproductive program of femaleVarroadestructormites is triggered by its host,Apismellifera[J].Exp.Appl.Acarol., 2003, 31: 269-273.

Gauthier L, Cornman S, Hartmann U,etal. TheApismelliferafilamentous virus genome [J].Viruses, 2015, 7 (7): 3798-3815.

Genersch E, Forsgren E, Pentikäinen J,etal. Reclassification ofPaenibacilluslarvaesubsp.PulvifaciensandPaenibacilluslarvaesubsp. larvae asPaenibacilluslarvaewithout subspecies differentiation [J].Int.J.Syst.Evol.Microbiol., 2006, 56: 501-511.

Ghosh RC, Ball BV, Willcocks MM,etal. The nucleotide sequence of sacbrood virus of the honey bee: An insect picorna-like virus [J].J.Gen.Virol., 1999, 80 (6): 1541-1549.

Giacobino A, Molineri A, Bulacio CN,etal. Key management practices to prevent high infestation levels ofVarroadestructorin honey bee colonies at the beginning of the honey yield season [J].Prev.Vet.Med., 2016, 131: 95-102.

Giacobino A, Pacini A, Molineri A,etal. Environment or beekeeping management: What explains better the prevalence of honey bee colonies with high levels ofVarroadestructor[J]?Res.Vet.Sci., 2017, 112: 1-6.

Gilliam M, Lii ST, Lorenz BJ,etal. Factors affecting development of chalkbrood disease in colonies of honey bees,Apismellifera, fed pollen contaminated withAscosphaeraapis[J].J.Invertebr.Pathol., 1988, 52 (2): 314-325.

Gisder S, Genersch E. Special issue: Honey bee viruses[J].Viruses, 2015, 7: 5603-5608.

Goblirsch MJ, Spivak MS, Kurtti TJ. A cell line resource derived from honey bee (Apismellifera) embryonic tissues [J].PLoSONE, 2013, 8: e69831.

Govan VA, Leat N, Allsopp M,etal. Analysis of the complete genome sequence of acute bee paralysis virus shows that It belongs to the novel group of insect-infecting RNA viruses [J].Virology, 2000, 277: 457-463.

Granberg F, Vicente-Rubiano M, Rubio-Guerri C,etal. Metagenomic detection of viral pathogens in spanish honeybees: Co-infection by aphid lethal paralysis, Israel acute paralysis and Lake Sinai Viruses [J].PLoSONE, 2013, 8: e57459.

Habermann E. Bee and wasp venoms [J].Science, 1972, 177 (4046):314-322.

Han SM, Kim JM, Park KK,etal. Neuroprotective effects of melittin on hydrogen peroxide-induced apoptotic cell death in neuroblastoma SH-SY5Y cells [J].BMCComplAlt.Med., 2014, 14 (1): 286.

Hartmann U, Forsgren E, Chattière JD,etal. Dynamics ofApismelliferaFilamentous Virus (AmFV) infections in honey bees and relationships with other parasites [J].Viruses, 2015, 7 (5): 2654-2667.

Hata T, Tazawa S, Ohta S,etal. Artepillin C, a major ingredient of Brazilian propolis, induces a pungent taste by activating TRPA1 channels [J].PLoSONE, 2012, 7 (11): e48072.

Highfield AC, Nagar AE, Mackinder LC,etal. Deformed wing virus implicated in overwintering honeybee colony losses [J].Appli.Env.Mic., 2009, 75 (22): 7212-7220.

Hong IP, Woo SO, Choi YS,etal. Prevalence ofNosemaand virus in honey bee (ApismelliferaL.) colonies on flowering period of Acacia in Korea [J].Mycobiology, 2011, 39 (4): 317-320.

Hou CS, Li BB, Luo Y,etal. First detection ofApismelliferafilamentous virus inApisceranaceranain China [J].J.Invertebr.Pathol., 2016, 138:112-115.

Hubert J, Bicianova M, Ledvinka O,etal. Changes in the bacteriome of honey bees associated with the parasiteVarroadestructor, and RathogensNosemaandLotmariapassim[J].Microb.Ecol., 2016.

Hunt GJ, Amdam GV, Schlipalius D,etal. Behavioral genomics of honeybee foraging and nest defense [J].Naturwissenschaften, 2007, 94: 247-267.

Hunt GJ, Page RE Jr, Fondrk MK,etal. Major quantitative trait loci affecting honeybee foraging behavior [J].Genetics, 1995, 141 (4): 1537-1545.

Hunter W, Ellis J, van Engelsdorp D,etal. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apismellifera, Hymenoptera: Apidae) [J].PLoS.Pathog., 2010, 6: e1001160.

Invernizzi C, Rivas F, Bettucci L. Resistance to Chalkbrood disease inApismelliferaL. (Hymenoptera: Apidae) colonies with different hygienic behaviour [J].Neotr.Entom., 2010, 40 (1): 28-34.

Jin TD, Chen SL, Qian JH,etal. The honeybee disease occurrence tendency and control in our contry [J].ApicultureofChina, 2007, 2 (57): 23-24. [金汤东, 陈盛禄, 钱建华, 等. 我国蜜蜂疾病发生趋势与防治技术[J]. 中国蜂业, 2007, 2 (57): 23-24]

Kamakura M. Royalactin induces queen differentiation in honeybees [J].Nature, 2011, 473 (7348): 478-483.

Kanbar G, Engels W. Ultrastructure and bacterial infection of wounds in honey bee (Apismellifera) pupae punctured byVarroamites [J].Parasitol.Res., 2003, 90: 349-354.

Kim KH, Sung HJ, Lee WR,etal. Effects of melittin treatment in cholangitis and biliary fibrosis in a model of xenobiotic-induced cholestasis in mice [J].Toxins., 2015, 7: 3372-3387.

Kim SJ, Park JH, Kim KH,etal. Melittin inhibits atherosclerosis in LPS/high-fat treated mice through atheroprotective actions [J].J.Atheroscler.Thromb., 2011, 18: 1117-1126.

Klein AM, Vaissière BE, Cane JH,etal. Importance of pollinators in changing landscapes for world crops [J].Proc.R.Soc.B, 2007, 274: 303-313.

Kucharski R, Maleszka J, Foret S,etal. 2008. Nutritional control of reproductive status in honeybees via DNA methylation [J].Science, 319: 1827-1830.

Kumazaki M, Shinohara H, Taniguchi K,etal. Propolis cinnamic acid derivatives induce apoptosis through both extrinsic and intrinsic apoptosis signaling pathways and modulate of miRNA expression [J].Phytomedicine, 2014, 21 (8-9):1070-1077.

Kurze C, Routtua J, Moritza RFA. Parasite resistance and tolerance in honeybees at the individual and social level [J].Zoology, 2016, 119 (4): 290-297.

Lamp B, Url A, Seitz K,etal. Construction and rescue of a molecular clone of Deformed Wing Virus(DWV) [J].PLoSONE, 2016, 11: e0164639.

Lanzi G, de Miranda, Boniotti MB,etal. Molecular and biological characterization of deformed wing virus of honeybees (ApismelliferaL.) [J].J.Virol., 2006, 80 (10): 4998-5009.

Le Conte Y, Alaux C, Martin JF,etal. Social immunity in honeybees (Apismellifera): Transcriptome analysis of varroa-hygienic behaviour [J].InsectMole.Biol., 2011, 20 (3): 399-408.

Leat N, Ball B, Govan V,etal. Analysis of the complete genome sequence of black queen-cell virus, a picorna-like virus of honey bees [J].J.Gen.Virol., 2000, 81 (Pt 8): 2111-2119.

Lee G, Bae H. Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects [J].Molecules, 2016, 21: 616-625.

Lee SH, Choi SM, Yang EJ. Melittin ameliorates the inflammation of organs in an amyotrophic lateral sclerosis animal model [J].Exp.Neurobiol., 2014, 23: 86-92.

Lee WR, Kim KH, An HJ,etal. Protective effect of melittin against inflammation and apoptosis onPropionibacteriumacnes-induced human THP-1 monocytic cell [J].Eur.J.Pharmacol., 2014, 740: 218-226.

Lee WR, Kim KH, An HJ,etal. The protective effects of melittin on Propioni bacterium acnes-induced inflammatory responsesinvitroandinvivo[J].J.Investig.Dermatol., 2014, 134: 1922-1930.

Levin S, Sela N, Chejanovsky N. Two novel viruses associated with theApismelliferapathogenic miteVarroadestructor[J]. 2016, 24, 6: 37710.

Li BB, Hou CS, Deng S,etal. First complete genome sequence of chronic bee paralysis virus isolated from honey bees (Apismellifera) in China [J].GenomeAnnounc., 2016, 4 (4): e00618-16.

Li BB, Zhang HQ, Zhou J,etal. Immune system of honeybee [J].ApicultChina, 2015,6 (66): 58-59. [李贝贝, 张洪庆, 周军等. 蜜蜂的免疫系统[J], 中国蜂业, 2015, 6 (66): 58-59]

Li J, Qin H, Wu J,etal. The prevalence of parasites and pathogens in Asian honeybeesApisceranain China [J].PLoSONE, 2012, 7 (11): e47955.

Li WF, Zhong BX, Su SK. Mechanisms of caste differentiation in honey bees [J].ActaEntomologicaSinica, 2014, 57 (2): 248-256. [李文峰, 钟伯雄, 苏松坤. 蜜蜂级型分化机理[J]. 昆虫学报, 2014, 57 (2): 248-256]

Liu PF, Wu J, Li HY,etal. Economic values of bee pollination to China’s agriculture [J].ScientiaAgriculturaSinica, 2011,44 (24): 5117-5123. [刘朋飞, 吴杰, 李海燕, 等. 中国农业蜜蜂授粉的经济价值评估[J]. 中国农业科学, 2011,44 (24): 5117-5123]

Liu XJ, Zhang Y, Yan X,etal. Prevention of Chinese sacbrood virus infection inApisceranausing RNA interference [J].Curr.Microbiol., 2010, 61: 422-428.

Loftus JC, Smith ML, Seeley TD. How honey bee colonies survive in the wild: Testing the importance of small nests and frequent swarming [J].PLoSONE, 2016, 11 (3): e0150362.

Luo QH, Zhou T, Wang Q,etal. Advances in research on classification and major species of bee mites [J].ScientiaAgriculturaSinica, 2010, 43 (3): 585-593. [罗其花, 周婷, 王强, 等. 蜂螨的种类及蜜蜂主要害螨研究进展[J]. 中国农业科学, 2010, 43 (3): 585-593]

Ma Y, Zhang JX, Liu YN,etal. Caffeic acid phenethyl ester alleviates asthma by regulating the airway microenvironment via the ROS-responsive MAPK/Akt pathway [J].FreeRadicBiolMed, 2016, 101: 163-175.

Maori E, Paldi N, Shafir S,etal. IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion [J].InsectMol.Biol., 2009, 18: 55-60.

Martin SJ, Highfield AC, Brettell L,etal. Global honey bee viral landscape altered by a parasitic mite [J].Science, 2012, 336 (6086): 1304-1306.

McMenamin AJ, Brutscher LM, Glenny W,etal. Abiotic and biotic factors affecting the replication and pathogenicity of bee viruses [J].Curr.Opin.InsectSci., 2016, 16: 14-21.

Menzel R, Leboulle G, Eisenhard D. Small brains, bright minds [J].Cell, 2006, 124: 237-239.

Mesaik MA, Dastagir N, Uddin N,etal. Characterization of immunomodulatory activities of honey glycoproteins and glycopeptides [J].J.Agricult.FoodChem., 2014, 63 (1): 177-184.

Milani N, Chiesa F. Artificial rearing ofVarroamites. In: Proceedings of a Meeting of the EC-experts’ Group: Present Status of Varroatosis in Europe and Progress in the Varroa Mite Control [C]. Udine, Italy, 1989: 229-236.

Miranda JRD, Comman RS, Evans JD,etal. Genome characterization, prevalence and distribution of a Macula-like virus fromApismelliferaandVarroadestructor[J].Viruses, 2015, 7 (7): 3586-3602.

Mondet F, Kim SH, de Miranda JR,etal. Specific cues associated with honey bee social defence againstVarroadestructorinfested brood [J].Sci.Rep., 2016, 6: 25444.

Moon DO, Park SY, Lee KJ,etal. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia [J].Int.Immunopharmacol., 2007, 7, 1092-1101.

Moore J, Jironkin A, Chandler D,etal. Recombinants between deformed wing virus andVarroadestructorvirus-1 may prevail inVarroadestructor-infested honeybee colonies [J].J.Gen.Virol., 2011, 92: 156-161.

Morales V, Corzo N, Sanz ML. HPAEC-PAD oligosaccharide analysis to detect adulterations of honey with sugar syrups [J].FoodChemistry, 2008, 107 (2): 922-928.

Mordecai GJ, Brettell LE, Martin SJ,etal. Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies [J].ISME.J., 2016, 10: 1182-1191.

Mordecai GJ, Brettell LE, Pachori P,etal. Moku virus, a new Iflavirus found in wasps, honey bees andVarroa[J].Sci.Rep., 2016, 6: 34983.

Moretto G, Guerra JC Jr, Bittencourt CV. Uncapping activity ofApismelliferaL. (Hymenoptera: Apidae) towards worker brood cells infested with the miteVarroadestructorAnderson & Treuman (Mesostigmata: Varroidae) [J].Neotrop.Entomol., 2006, 35 (3): 299-301.

Morse RA, Flottum K. Honey Bee Pests Predators and Diseases[M]. Medina :A.I. Root Co., 1997.

Nan Y, Guo G, Zheng LX,etal. Advances in studies on chemical constituents of propolis [J].WorldSci.Tech./Mod.Trad.ChineseMed.Mat.Med., 2006, 8 (1): 61-71. [南垚, 郭伽, 郑莲香, 等. 蜂胶化学成分研究进展[J]. 世界科学技术—中医药现代化, 2006, 8 (1): 61-71]

Nazzi F,Le Conte Y. Ecology ofVarroadestructor, The major ectoparasite of the western honey bee,Apismellifera[J].Annu.Rev.Entomol., 2016, 61: 417-32.

Nazzi F, Milani N. A technique for reproduction ofVarroajacobosoniOud under laboratory conditions [J].Apidologie, 1994, 25: 579-584.

Nelson CM, Ihle KE, Fondrk MK,etal. The gene vitellogenin has multiple coordinating effects on social organization [J].PLoSBiol., 2007, 5: 673-677.

Nishikawa S, Aoyama H, Kamiya M,etal. Artepillin C, a typical Brazilian propolis-derived component, induces brown-like adipocyte formation in C3H10T1/2 cells, primary inguinal white adipose tissue-derived adipocytes, and mice [J].J.Diet.Suppl., 2016, 13 (3): 245-68.

Olga E, María FG, Carmen SM. Differentiation of blossom honey and honeydew honey from Northwest Spain [J].Agriculture, 2012, 2: 25-37.

Oliviera V, Blancharda P, Chaoucha S,etal. Molecular characterisation and phylogenetic analysis of Chronic Bee Paralysis Virus, a honey bee virus [J].VirusRes., 2008, 132 (1-2): 59-68.

Page Jr RE, Scheiner R, Erber J,etal. The development and evolution of division of labor and foraging specialization in a social insect (ApismelliferaL.) [J].Curr.Top.Dev.Biol., 2006, 74: 253-286.

Page P, Lin Z, Buawangpong N,etal. Social apoptosis in honey bee superorganisms [J].Sci.Rep., 2016, 6: 27210.

Palacio MA, Flores JM, Figini E,etal. Evaluation of the time of uncapping and removing dead brood from cells by hygienic and non-hygienic honey bees [J].Gen.Mol.Res., 2005, 4 (1): 105-114.

Paradkar MM, Irudayaraj J. Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy [J].FoodChemistry, 2001, 76 (2): 231-239.

Park HJ, Lee HJ, Choi MS,etal. JNK pathway is involved in the inhibition of inflammatory target gene expression and NF-kappaB activation by melittin [J].J.Inflamm., 2008, 5.

Park HJ, Lee SH, Son DJ,etal. Antiarthritic effect of bee venom: Inhibition of inflammation mediator generation by suppression of NF-kappaB through interaction with the p50 subunit [J].Arthritis.Rheum., 2004, 50: 3504-3515.

Park HJ, Son DJ, Lee CW,etal. Melittin inhibits inflammatory target gene expression and mediator generation via interaction with IkappaB kinase [J].Biochem.Pharmacol., 2007, 73: 237-247.

Park JH, Kim KH, Lee WR,etal. Protective effect of melittin on inflammation and apoptosis in acute liver failure [J].Apoptosis, 2012, 17: 61-69.

Park JH, Kum YS, Lee TI,etal. Melittin attenuates liver injury in thioacetamide-treated mice through modulating inflammation and fibrogenesis [J].Exp.Biol.Med., 2011, 236: 1306-1313.

Park JH, Lee WR, Kim HS,etal. Protective effects of melittin on tumor necrosis factor-alpha induced hepatic damage through suppression of apoptotic pathway and nuclear factor-kappa B activation [J].Exp.Biol.Med., 2014, 239: 1705-1714.Parmentier L, Smagghe G, de Graaf DC,etal.VarroadestructorMacula-like Virus, Lake Sinai Virus and other new RNA viruses in wild bumblebee hosts (Bombuspascuorum,BombuslapidariesandBombuspratorum) [J].J.Inverteb.Pathol., 2016, 134: 6-11.

Patel S. Emerging adjuvant therapy for cancer: Propolis and its constituents [J].J.Clin.Biochem.Nutr., 2014, 55 (1): 7-10.

Pazin WM, Olivier DD, Vilanova N,etal. Interaction of Artepillin C with model membranes [J].Eur.Biophys.J., 2016,1-11.

Peng YS. Fang,Y, Xu S,etal. Response of foster Asian honeybee (ApisceranaFabr.) colonies to the brood of European honeybee (ApismelliferaL.) infested with parasitic mite,VarroajacobsoniOudemans [J].J.Invertebr.Pathol., 987a, 49: 259-264.

Peng YS. Fang,Y, Xu S,etal. The resistance mechanism of the Asian honey beeApisceranaFabr., to an ectoparasitic mite,VarroajacobsoniOudemans [J].J.Invertebr.Pathol., 987b, 49: 54-60.

Potts SG, Biesmeijer JC, Kremen C,etal. Global pollinator declines: Trends,impacts and drivers [J].TendsEcol.Evol., 2010, 25 (5): 345-353.

Puscas A, Hosu A, Cimpoiu C. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration [J].J.Chromatogr.A, 2013, 1272: 132-135.

Qin X, Evans JD, Aronstein KA,etal. Genome sequences of the honey bee pathogensPaenibacilluslarvaeandAscosphaeraapis[J].InsectMol.Biol., 2006, 15: 715-718.

Rath W. Co-adaptation ofApiscerananFabr. andVarroajacobsoniOud. [J].Apidologie, 1999, 30: 97-110.

Rath W. Laboratory culture of the mitesVarroajacobosoniandTropilaelapsclareae[J].Exp.Appl.Acar., 1991, 10: 289-293.

Ravoet J, de Smet L, Meeus I,etal. Widespread occurrence of honey bee pathogens in solitary bees [J].J.Invertebr.Pathol., 2014, 122: 55-58.

Ravoet J, de Smet L, Wenseleers T,etal. Genome sequence heterogeneity of Lake Sinai Virus found in honey bees and Orf1/RdRP-based polymorphisms in a single host [J].VirusRes., 2015, 201: 67-72.

Ravoet J, Maharramov J, Meeus I,etal. Comprehensive bee pathogen screening in Belgium bevealsCrithidiamellificaeas a new contributory factor to winter mortality [J].PLoSONE, 2013, 8: e72443.

Rodrigues CR, Plentz LC, Flores MD,etal. Assessment of genotoxic and antigenotoxic activities of Artepillin C in somatic cells ofDrosophilamelanogaster[J].FoodChem.Toxicol., 2017, 101: 48-54.

Rosenkranz P, Aumeier P, Ziegelmann B. Biology and control ofVarroadestructor[J].J.Invertebr.Pathol., 2010, 103 (Suppl.1): S96-119.

Ruiz-Matute AI, Rodríguez-Snchez S, Sanz ML,etal. Detection of adulterations of honey with high fructose syrups from inulin by GC analysis [J].J.Food.Comp.Analy., 2010, 23 (3): 273-276.

Runckel C, Flenniken ML, Engel JC,etal. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses,Nosema, andCrithidia[J].PLoSONE, 2011, 6 (6): e20656.

Ruoff K, Iglesias MT,etal. Quantitative analysis of physical and chemical measurands in honey by mid-infrared spectrometry [J].EuropeanFoodRes.Tech., 2005, 223 (1): 22-29.

Ruoff K, Luginbuhl W, Kunzli R,etal. Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy [J].J.Agricult.FoodChem., 2006, 54 (18): 6858-6866.

Ryabov EV, Wood GR, Fannon JM,etal. A virulent strain of deformed wing virus (DWV) of honeybees (Apismellifera) prevails afterVarroadestructor-mediated, orinvitro, transmission [J].PLoSPathog., 2014, 10 (6): e1004230.

Saleh M, Soliman H, Sørum H,etal. A novel gold nanoparticles-based assay for rapid detection ofMelissococcusplutonius, the causative agent of European foulbrood [J].Vet.Rec., 2012, 171 (16): 400.

Sammataro D. Honey bee colony health: Challenges and sustainable solutions [J],FloridaEntomologist, 2011, 1: 242-243.

Saxena S, Gautam S, Sharma A. Physical, biochemical and antioxidant properties of some Indian honeys [J].FoodChemistry, 2010, 118: 391-397.

Schulte C, Theilenberg E, Müller-Borg M,etal. Highly efficient integration and expression of piggy Bac-derived cassettes in the honeybee(Apismellifera) [J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2014, 24 (111): 9003-9008.

Sforcin JM, Bankova V. Propolis: Is there a potential for the development of new drugs? [J].J.Ethnopharm., 2011, 133: 253-260.

Shi YY, Huang ZY, Zeng ZJ,etal. Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apismellifera, Apidae) [J].PLoSONE, 6 (4) : e18808.

Shuel RW, Dixon SE. The early establishment of dimorphism in the female honeybee,ApismelliferaL. [J].InsectSox., 1960, 7 (3): 265-282.

Siddiqui AJ, Musharraf SG, Choudhary MI,etal. Application of analytical methods in authentication and adulteration of honey[J].FoodChemistry, 2017, 217: 687-698.

Simova S, Atanassov A, Shishiniova M,etal. A rapid differentiation between oak honeydew honey and nectar and other honeydew honeys by NMR spectroscopy [J].FoodChemistry, 2012, 134 (3): 1706-1710.

Son DJ, Ha SJ, Song HS,etal. Melittin inhibits vascular smooth muscle cell proliferation through induction of apoptosis via suppression of nuclear factor-kappaB and Akt activation and enhancement of apoptotic protein expression [J].J.Pharmacol.Exp.Ther., 2006, 317: 627-634.

Son DJ, Kang J, Kim TJ,etal. Melittin, a major bioactive component of bee venom toxin, inhibits PDGF receptor beta-tyrosine phosphorylation and downstream intracellular signal transduction in rat aortic vascular smooth muscle cells [J].J.Toxicol.Environ.HealthA, 2007, 70: 1350-1355.

Spiteri M, Dubin E, Cotton J,etal. Data fusion between high resolution1H-NMR and mass spectrometry: A synergetic approach to honey botanical origin characterization [J].Anal.Bioanal.Chem., 2016, 408 (16): 4389-4401.

Spivak M, Gilliam M. Hygienic behaviour of honey bees and its application for control of brood diseases and Varroa Part I. Hygienic behaviour and resistance to American foulbrood [J].BeeWorld, 1998a, 79: 124-134.

Sprague R, Boyer S, Stevenson GM,etal. Assessing pollinators’ use of floral resource subsidies in agri-environment schemes: An illustration using Phacelia tanacetifolia and honeybees [J].Peer.J., 2016, 4:e2677.

Su SK, Chen SL. The apiculture and ecological agriculture [J].JournalofBee, 2009,1: 8-10. [苏松坤, 陈盛禄. 养蜂业与生态农业[J], 蜜蜂杂志. 2009,29 (1): 8-10]

Sun T, Qu CH, Zeng ZJ. Progress of honeybee labor division. In: Papers of the Bee Products Market Information Exchange-Feeding And Management[C]. 2008: 60-61. [孙婷, 屈长会, 曾志将. 蜜蜂劳动分工的研究进展.见:全国蜂产品市场信息交流会论文集-蜜蜂饲养管理[C]. 2008: 60-61]

Swanson JAI, Torto B, Kells SA,etal. Odorants that induce hygienic behavior in honeybees: Identification of volatile compounds in Chalkbrood-infected honeybee larvae[J].J.Chem.Ecol., 2009, 35:1108-1116.

Szliszka E, Mertas A, Czuba ZP,etal. Inhibition of inflammatory response by Artepillin C in activated RAW264.7 macrophages [J].Evid-Based.Compl.Alt.Med., 2013, 2013 (2013):735176.

Szliszka E, Zydowicz G, Mizgala E,etal. Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis [J].Int.J.Oncol., 2012, 41 (3):818-828.

Tabart J, Colin ME, Carayon JL,etal. Artificial feeding ofVarroadestructorthrough a chitosan membrane: A tool for studying the host-microparasite relationship [J].Exp.Appl.Acarol., 2013, 61 (1): 107-118.

Veiga RS, Mendonça S, Mendes PB,etal. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis andBaccharisdracunculifoliaDC [J].J.Appl.Microbiol., 2017.

Wagh VD. Propolis: A wonder bees product and its pharmacological potentials [J].Adv.Pharmacol.Sci.,2013: 308249.

Wang K, Zhang JL, Hu FL. Research progress in anti-inflammatory activity of propolis and its molecular mechanism [J].ChineseTradit.Herb.Drugs, 2013, 44 (16):2321-2329. [王凯, 张江临, 胡福良. 蜂胶抗炎活性及其分子机制研究进展[J]. 中草药, 2013, 44 (16):2321-2329]

Weinstock GM, Robinson GE, Gibbs RA,etal., Insights into social insects from the genome of the honeybeeApismellifera[J].Nature, 2006, 443 (7114): 931-949.

Wilfert L, Long G, Leggett HC,etal. Deformed wing virus is a recent global epidemic in honeybees driven byVarroamites [J].Science, 2016,351 (6273): 594-599.

Williams GR, Alaux C, Costa C,etal. Standard methods for maintaining adultApismelliferain cages underinvitrolaboratory conditions [J].J.Apicult.Res., 2013, 52 (1): 79-88. Winston ML. A social insect[J].Science, 1987, 238 (4833): 1591-1592.

Xu X, Zhang HC, Dong J. Reesearch developments of functional components of propolis [J].Sci.Tech.FoodIndus., 2008, 29 (9): 286-288. [徐响, 张红城, 董捷. 蜂胶功效成分研究进展[J]. 食品工业科技, 2008, 29 (9): 286-288]

Xue X, Wang Q, Li Y,etal. 2-Acetylfuran-3-glucopyranoside as a novel marker for the detection of honey adulterated with rice syrup [J].J.Agricult.FoodChemistry, 2013, 61 (31): 7488-7493.

Yaghoobi N, AlWaili N, GhayourMobarhan M,etal. Natural honey and cardiovascular risk factors; Effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose[J].Scientif.WorldJ., 2008, 8 (1): 463.

Yang EJ, Kim SH, Yang SC,etal. Melittin restores proteasome function in an animal model of ALS [J].J.Neuroinflamm., 2011, 8.

Yue D, Nordhoff M, Wieler LH,etal. Fluorescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae andPaenibacilluslarvae, the causative agent of American foulbrood of honeybees (Apismellifera) [J].Environ.Microbiol., 2008, 10: 1612-1620.

Zhang X, Chen YP, He SY. A review of bee virology progress [J].ChineseJournalofAppliedEntomology, 2012, 49 (5): 1095-1116. [张炫, 陈彦平, 和绍禹. 蜜蜂病毒学研究进展[J]. 应用昆虫学报, 2012, 49(5): 1095-1116]

Zhang Y, Han RC. Progress in research of honey bee miteVarroadestructor[J].JournalofEnvironmentalEntomology, 2012, 34 (3): 346-354. [张祎, 韩日畴. 蜜蜂寄生螨—狄斯瓦螨的研究进展[J]. 环境昆虫学报, 2012, 34 (3): 346-354]

Zheng HQ, Hu FL. Honeybee: A newly emerged model organism [J].ActaEntomologicaSinca, 2009, 52 (2): 210-215. [郑火青, 胡福良.蜜蜂——新兴的模式生物[J].昆虫学报, 2009, 52 (2): 210-215]

Zheng SA. Cellular and humoral immunity of honeybee [J].ApicultureofChina, 2016.4 (67): 31-33. [郑树安. 蜜蜂的细胞及体液免疫[J],中国蜂业, 2016,4 (67): 31-33]

Zioni N, Soroker V, Chejanovsky N. Replication ofVarroadestructorvirus 1 (VDV-1) and aVarroadestructorvirus 1-deformed wing virus recombinant (VDV-1-DWV) in the head of the honey bee [J].Virolog., 2011, 417 (1):106-112.

Zong C, Liu F, Yu LS,etal. Analysis of differentially expressed genes associated with the behavioral transition between nurses and foragers inApisceranacerana[J].ChineseJournalofAppliedEntomology, 2014, 51 (2): 440-447. [宗超, 刘芳, 余林生,等. 中华蜜蜂哺育蜂与采集蜂行为转变相关基因的表达差异研究[J]. 应用昆虫学报, 2014, 51 (2): 440-447]

Research overview of honeybee product, disease and labor division

ZHANG Yi, HAN Ri-Chou*

(Guangdong Institute of Applied Biological Resources, Guangdong Key Laboratory of Animal Conservation and Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangzhou 510260, China)

Honeybees are important pollinators to agriculture and producers of honey products, as well as a model social insect for scientific research. The present overview summarizes the progresses on pollination and bee products, diseases and immunity and labor division behavior.

Honeybees; bee products; disease and immunity; behavior

特邀稿件InvitedReview

广州市珠江新星项目(201610010003);国家自然科学基金(31301924);广东省科技计划项目(2013B040200045)

张祎,女,1983年生,江西人,副研究员,从事蜜蜂病虫害分子生物学与防治研究,E-mail: zy3001@163.com

*通讯作者Author for correspondence,E-mail:hanrc@giabr.gd.cn

Received:2017-01-05;接收日期Accepted:2017-01-10

Q968;S89

A

1674-0858(2017)01-0019-20

张祎,韩日畴.蜂产品及蜜蜂疾病与劳动分工行为研究概况[J].环境昆虫学报,2017,39(1):19-38.

猜你喜欢
蜂蜜幼虫蜜蜂
爱是一捧浓浓的蜂蜜
蜂蜜,你真的了解吗
“蜂蜜”CP
蜂蜜哪里去了
蜜蜂
飞舞吧,凤蝶
柿树夏季咋防柿蒂虫
蜜蜂
蜜蜂
蜜蜂谷