李天然
解放军总医院第一附属医院放射科,北京 100037
专题·肝癌、肝硬化
肝细胞癌PET/CT研究进展
李天然
解放军总医院第一附属医院放射科,北京 100037
18F-FDG 正电子发射断层扫描(positron emission tomography,PET)肝细胞癌(hepatocellular carcinoma,HCC)显像阳性率偏低,18F-FDG PET显像浓聚程度与癌细胞分化程度有关,多种因素影响HCC细胞对18F-FDG的摄取。多种示踪剂联合显像及多模式成像有可能提高HCC诊断的阳性率。PET/CT在转移性肝癌的复发、转移方面价值优于传统影像技术。本文就PET/CT在肝癌方面研究的进展作一概述。
PET;18F-FDG;肝细胞癌;CT
肝细胞癌(hepatocellular carcinoma,HCC)是一种常见的恶性肿瘤,PET/CT作为一种新的影像技术,在HCC的诊断中发挥越来越重要的作用。正电子发射断层扫描(positron emission tomography,PET)是基于分子水平的显像技术,利用相对特异性的示踪剂进行定性和定量的显像,计算机断层扫描(X-ray computed tomography,CT)良好的空间和密度分辨力为HCC的定位诊断和定性诊断发挥着重要作用。
目前,PET中最常用的显像剂为氟代脱氧葡萄糖(18F-FDG),利用18F-FDG与葡萄糖的分子结构相似性行代谢显像,如果肿瘤组织葡萄糖代谢活跃,表现为肿瘤组织高摄取。
1.118F-FDGPET对HCC的诊断研究[1-4]指出,HCC PET诊断的敏感性仅有50%左右,并且HCC灶摄取18F-FDG的程度与肿瘤组织细胞分化的程度有关,低分化HCC摄取18F-FDG程度较重,而高分化和中分化摄取18F-FDG程度较轻,且肿瘤18F-FDG摄取程度与肿瘤的倍增时间和肿瘤的大小有关。Khan等[5]利用PET和CT对HCC进行对比研究发现,PET检出病灶的阳性率为55%,阴性率为45%,CT的阳性率为90%,阴性率为10%。显然,CT在检出HCC方面明显优于PET,PET在发现肝外转移方面优于CT,将肝内病变对18F-FDG的摄取分成4种形态,形态的多样性与肿瘤的分化程度有关。Ho等[6]研究表明,18F-FDG PET对HCC的敏感性只有47.3%。Shin等[7]研究HCC PET显像敏感性和特异性分别为65.5% 和33.3%,阳性预测值为90.5%,诊断精确性为62.5%。Trojan等[3]研究也证明,18F-FDG对HCC的诊断价值有限。徐白萱等[8]认为,肝内恶性肿瘤根据其浓聚程度可分为3种类型,A型:其18F-FDG摄取高于周围正常组织,B型:其摄取与周围组织相近,C型:其摄取低于周围组织或无摄取,由于病例数较少,没有给出分型量化标准。对于HCC的肝外转移,18F-FDG PET浓聚较重,反之,18F-FDG PET可以评价肝内病灶的潜在恶性潜能[9]。Nagaoka等[10]横向研究PET/CT、PET、CT及骨扫描对HCC肝外转移的显示表明,其敏感性依次为:98.2%、89.6%、91.2%、68.7%,PET/CT融合图像最高,骨扫描最低。
1.2多种示踪剂PET显像对HCC的诊断价值Shin等[7]研究表明,乙酸盐(11C-Acetate)诊断HCC的敏感性为87.3%,相对18F-FDG的47.3%,有了明显的提高,研究还表明,两种示踪剂联合对HCC诊断的敏感性可达100%,且两种示踪剂的摄取与肿瘤的组织病理学有关,11C-Acetate分化良好的HCC效果较好,18F-FDG对分化较差的肿瘤效果较好,11C-Acetate 对HCC具有较高的特异性,对于肝内非HCC病灶11C-Acetate 代谢不表现出异常。然而,有研究[10]指出,这样的结果在一系列研究中可重复性差,即使在研究者所在的亚洲。Li等[11]比较了11C-Acetate和67 Ga对HCC显像的诊断价值,表明11C-Acetate诊断符合率高于67 Ga,假阳性率低于67 Ga。虽然11C-Acetate诊断HCC的效能较高,假阳性病例也有报道,Lhommel等[12]报道1例肝内血管肌脂瘤呈假阳性。Talbot等[13]研究了18F fluorocholine (FCH) 和18F-FDG在HCC中的应用,12例HCC患者FCH显像阳性率为100%,9例FDG和FCH联合显像,FCH均为阳性,而18F-FDG中有5例阳性,同时研究表明,FCH对高分化HCC效果较好,且FCH信噪比较高(1.5±0.38)。陈绍亮等[14]指出,13N-氨动态PET显像在早期获得HCC与肝脏的高反差图像,这是因为该放射性核素在相当早期即可在肝肿瘤内积聚,而在肝内积聚迟缓,13N-氨在肝肿瘤内浓聚的机制尚不明确。18F-FLT是另一种PET示踪剂,FLT在增殖细胞中摄取是由于胸腺嘧啶核苷激酶Ⅰ作用的结果,与细胞处于S期紧密相关,这种酶随DNA合成情况而变化,在增殖细胞和恶性肿瘤细胞,这种酶呈高活性表达,而在休眠细胞则酶活性表达降低或缺乏表达。Francis等[15]研究了5例结肠癌肝转移FLT与18F-FDG显像对比研究,结果显示,18F-FDG在5例中全部呈高摄取;5例中3例FLT呈高摄取,说明处于高增殖状态,相应地Ki-67蛋白高表达。虽然FLT在早期评价化疗疗效及肿瘤的分级具有重要价值,但由于其在肝脏中的高摄取在检测肝脏转移灶方面受到限制。同样,11C-胆碱(choline)也由于在肝脏中的高摄取影响了其在肝脏中的应用。值得一提的是,18-氟乙酸(18-Fluoroacetate)已标记成功,对照研究[16]表明,18F-Aceate可以替代11C-Aceate作为前列腺癌的PET显像示踪剂。18F-Aceate在HCC方面的应用尚未见文献报道。
1.3HCC摄取示踪剂机制的基础研究(1)葡萄糖转运蛋白(Glut)与肝脏肿瘤18F-FDG摄取:肿瘤18F-FDG影像基于肿瘤细胞葡萄糖代谢增加这一原则。与葡萄糖一样,18F-FDG被癌细胞摄取是通过Glut介导的。Glut是一种糖蛋白,在不同的器官至少有12个亚型,正常肝细胞主要表达Glut2、Glut9和Glut10。在许多癌细胞中Glut1、Glut3表达增强[17]。Glut1在许多肿瘤细胞表面高表达,尤其在缺氧、缺血状态下,Glut1表达增强可增加肿瘤对葡萄糖的需求,因此有学者[18]认为,Glut1可作为肿瘤恶性指标之一。在细胞内,葡萄糖和18F-FDG被己糖激酶磷酸化转变成6-磷酸葡萄糖或 6-磷酸FDG。己糖激酶在癌细胞内亲和性、功能活性增强并高表达。己糖激酶Ⅱ主要在癌细胞中表达。在许多癌细胞中葡萄糖-6-磷酸酶表达降低,只有少部分的6-磷酸葡萄糖或 6-磷酸FDG能够去磷酸化,大部分仍留在细胞内,成为极性代谢物(polar-metabolite)。在正常的肝实质内,葡萄糖-6-磷酸酶高表达,能够从肝脏中迅速清除18F-FDG,这可能是正常肝脏呈中度浓聚的原因[7]。对于肝转移性肿瘤,Zimmerman等[19]在研究不同部位原发肿瘤肝脏转移时发现,Glut1在肝脏中呈过表达现象,而Glut3在肝脏转移性肿瘤中表达的情况在文献中未见报道。在HCC中Glut过表达现象很少见,Zimmerman 等[19]和Roh等[20]分别报道了HCC Glut1表达情况,发现在35例中只有2例和在22例中只有1例表达。(2)影响HCC示踪剂摄取程度相关性因素研究:Seo等[21]研究指出,HCC病灶浓聚程度SUV与p-糖蛋白阴性比率呈正相关,18F-FDG PET可以在术前预测肿瘤的分化程度。另一项研究[22]表明,HCC组织中己糖激酶(HK)含量升高,而6-磷酸葡萄糖酶(6-GP)含量降低,导致糖酵解过程增强,同时证明癌组织中两种酶的活性与正常肝组织比较有差异。改变模型肝脏内生物酶(增加己糖激酶降低6-磷酸葡萄糖酶)的活性可以改变HCC组织对18F-FDG的摄取。HCC PET房室模型动态显像研究[23]表明,PET浓聚程度与HCC的分化状态有关,分化良好的HCC,肿瘤/肝组织标准摄取值(SUV)比值≤1.5, k (4) / k (3)与正常肝组织相似,而分化差的肿瘤肿瘤/肝组织SUV比值>1.5, k (4) / k (3)<正常肝组织。Kuang等[24]利用比色测定法测定了土拨鼠HCC模型细胞乙酰辅酶A合成酶(ACAS)的含量和活性与11C-Acetate PET显像摄取之间的关系,发现ACAS在HCC组织内含量和活性高于HCC周围正常组织内的含量。Chen等[25]关于11C-Acetate量化代谢模型的研究认为,由于肝脏双血供的特点,以前被普遍采用的加权非线性最小平方(NLS)算法被认为不实用,且不精确,计算麻烦,故提出采用graphed NLS和双输入线性广义最小平方算法(GDGLLS)两种算法来代表11C-Acetate PET肝脏模型,这两种算法具有可信度高、计算效率高的特点,利用这两个指标可以计算出局部肝脏11C-Acetate的代谢速率常数及门静脉的血流量。最近研究[26]表明,HCC18F-FDG高摄取与肿瘤浸润特性行为相关性因子,如血管内皮生长因子的mRNA水平过表达有关。
1.4PET/CT在HCC诊断中假阴性和假阳性问题(1)假阴性:与CT、MR比较,PET分辨力低,可以引起假阴性,所以PET在诊断亚厘米病变时应谨慎。病灶在PET成像上可能被低估,且低估程度不一,亚厘米病灶有可能完全看不见[27]。PET分辨力受PET物理特性和数学算法影响,PET的物理学原理决定其分辨力不可能较CT、MR高。肝脏高放射性背景也会影响病灶的检出形成假阴性。病灶的特殊位置也可引起PET显像的假阴性,尤其病灶位于膈肌穹窿部时,呼吸运动造成肝脏位置的移动,肝内病灶由于运动而造成模糊,检出困难。正在化疗期间和刚刚结束化疗也可能造成PET显像假阴性,这种假阴性属于暂时性抑制,随着肿瘤的生长和体积的增加,PET显像呈现阳性。(2)假阳性:肝内病灶的假阳性主要是一些炎性病变,如肝脓肿等,有报道[28]认为,肝硬化的再生节结也会呈现假阳性。另一种技术的假阳性是由于CT增强扫描后过高浓度的造影会造成衰减校正的变化而呈现PET影像“高代谢”。
肝脏是转移性肿瘤好发的部位,尤其是消化道肿瘤。18F-FDG PET对肝脏转移瘤具有高敏感性,特别是CT发现不能确定的病灶[29]。Son等[30]关于18F-FDG PET对肝脏占位性病变的研究表明,肝脏转移性肿瘤的SUV最高均>2.0,而原发性HCC只有部分患者的SUV>2.0,良性病变的SUV<2.0。Koyama等[31]研究表明,延时扫描对于诊断肝脏转移性肿瘤效果好,肿瘤组织与本底水平计数之比明显高于早期时段显像。Hustinx等[32]经对比研究表明,PET对转移性肿瘤的敏感性、特异性、准确性均远远大于超声,略高于CT。对于胃肠道肿瘤治疗后CEA升高的患者,PET检查具有重要意义,已经证明PET较CT诊断肝脏转移性肿瘤更为敏感[33]。Yang等[34]比较了PET和MR对肝脏转移瘤的诊断价值,结果显示,敏感性、特异性、阳性预测值和阴性预测值MR为85.7%、100%、100%、89%;PET为71%、93.7%、90.8%、79%,统计学显示两种方法之间差异无统计学意义。一项关于转移性肝癌Meta分析[35]表明,US、CT、MR和PET诊断特异性分析,只有PET诊断特异性超过85%,US为55%,CT为72%,MR为76%,PET为90%。影像模式之间配对比较PET与其他三种影像模式,差异有统计学意义。PET是诊断转移性肿瘤的最佳影像模式。
3.1原发性肝癌治疗Zhao等[36]动物实验研究表明,对于肝脏的恶性肿瘤,服药24 h后30%的肿瘤细胞被杀死。Torizuka 等[37]对HCC介入治疗后进行评价发现,介入治疗后的肝脏显像可以分为三种类型:A型肿瘤摄取18F-FDG增加(SUV 比值:1.07~2.66),B型与非肿瘤区摄取相同(SUV 比值:0.77~1.04),C型摄取减少或缺损(SUV 比值:0.13~0.58),A型、B型说明肿瘤细胞还有活性,而C型说明肿瘤细胞已经丧失了活性或已经坏死,PET在评价介入效果方面起到CT不可替代的作用。Anderson等[38]对HCC进行射频消融治疗的结果表明,PET显像明显优于CT和MRI对肿瘤治疗效果的评价。有证据[10]表明,在HCC射频消融治疗后7 d即可观察到病灶的残留情况,早于CT和MR传统影像手段。Zhao等[39]对HCC介入和射频消融治疗后肿瘤残余CT和PET对比分析,结果显示,CT与18F-FDG PET/CT检出率分别为45.4%及90.9%,原发性HCC经TACE联合RFA治疗及手术后,18F-FDG PET/CT对判断肿瘤残留及根据检查结果指导RFA治疗较CT检查具有更大的优势。尽管18F-FDG PET对HCC显示率较低,Danve 等[40]研究指出,18F-FDG PET对于治疗后随访和远处转移的评价仍具有重要价值。李立伟等[41]对HCC介入治疗后病变残留情况利用PET和CT进行对比研究,结果表明,PET可以观察到残留和存活,而CT难以发现,虽然如此,在实际工作中应该结合CT和MR观察病变的情况,避免出现假阴性结果。Hatano等[42]利用18F-FDG PET研究肝切除术前预测预后,结果显示,SUV 比值与病死率高度相关,同时SUV 比值也与肿瘤的数量、大小、分期及血管浸润情况相关,认为18F-FDG PET可以作为预后指标。
3.2转移性HCC治疗后疗效评价Findlay等[43]利用18F-FDG PET评估结肠癌肝脏转移化疗后疗效。证明化疗后4~5周开始,即可观察到肿瘤有效部分18F-FDG摄取比值(tumor/liver)有明显下降。Goerres等[44]研究34例胃肠道肿瘤,其中16例发现有肝脏转移,如果治疗后转移瘤没有摄取较有部分摄取的预后要好。
3.3肝移植与PET评价Yang等[45]研究PET显像与肝移植的关系发现,PET显像阳性与HCC的组织学分型比较,差异无统计学意义,对于2年后复发性肝癌,PET显像阴性与阳性率比较,差异有统计学意义(85.1%vs46.1%),指出PET在肝移植之前具有判断预后的作用,对于PET显像阳性患者应谨慎。
综上所述,尽管PET在HCC诊断方面显示了重要的临床价值,但仍存在以下问题:(1)18F-FDG PET诊断HCC的敏感性偏低;(2)其他示踪剂单独或联合诊断价值尚未定论;(3)横向比较研究不多,PET/CT和MRI从分子影像学角度联合诊断HCC研究较少;(4)多因素影响HCC组织对示踪剂的摄取。
[1] Iwata Y, Shiomi S, Sasaki N, et al. Clinical usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose in the diagnosis of liver tumors [J]. Ann Nucl Med, 2000, 14(2): 121-126.
[2] Schr der O, Trojan J, Zeuzem S, et al. Limited value of fluorine-18-fluorodeoxyglucose PET for the differential diagnosis of focal liver lesions in patients with chronic hepatitis C virus infection [J]. Nuklearmedizin, 1998, 37(8): 279-285.
[3] Trojan J, Schroeder O, Raedle J, et al. Fluorine-18 FDG positron emission tomography for imaging of hepatocellular carcinoma [J]. Am J Gastroenterol, 1999, 94(11): 3314-3319.
[4] Okazumi S, Isono K, Enomoto K, et al. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment [J]. J Nucl Med, 1992, 33(3): 333-339.
[5] Khan MA, Combs CS, Brunt EM, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma [J]. J Hepatol, 2000, 32(5): 792-797.
[6] Ho CL, Yu SC, Yeung DW.11C-Acetate PET imaging in hepatocellular carcinoma and other liver masses [J]. J Nucl Med, 2003, 44(2): 213-221.
[7] Shin JA, Park JW, An M, et al. Diagnostic accuracy of18F-FDG positron emission tomography for evaluation of hepatocellular carcinoma [J]. Korean J Hepatol, 2006, 12(4): 546-552.
[8] 徐白萱, 田嘉禾, 何义杰, 等. FDG PET在肝脏恶性肿瘤诊断中的应用[J]. 中华核医学杂志, 2002, 22(3): 139-140.
Xu BX, Tian JH, He YJ, et al. Evaluation of liver tumors with 18 F-FDG PET [J]. Chin J Nucl Med, 2002, 22(3): 139-140.
[9] Khandani AH, Wahl RL. Applications of PET in liver imaging [J]. Radiol Clin North Am, 2005, 43(5): 849-860.
[10] Nagaoka S, Itano S, Ishibashi M, et al. Value of fusing PET plus CT images in hepatocellular carcinoma and combined hepatocellular and cholangiocarcinoma patients with extrahepatic metastases: preliminary findings [J]. Liver Int, 2006, 26(7): 781-788.
[11] Li S, Beheshti M, Peck-Radosavljevic M, et al. Comparison of (11)C-acetate positron emission tomography and (67)Gallium citrate scintigraphy in patients with hepatocellular carcinoma [J]. Liver Int, 2006, 26(8): 920-927.
[12] Lhommel R, Annet L, Bol A, et al. PET scan with11C-Acetate for the imaging of liver masses: report of a false positive case [J]. Eur J Nucl Med Mol Imaging, 2005, 32(5): 629.
[13] Talbot JN, Gutman F, Fartoux L, et al. PET/CT in patients with hepatocellular carcinoma using [(18)F]fluorocholine: preliminary comparison with [(18)F]FDG PET/CT [J]. Eur J Nucl Med Mol Imaging, 2006, 33(11): 1285-1289.
[14] 陈绍亮, 潘中允. 肝脏少见肿瘤的核医学影像诊断[J]. 中国临床医学影像杂志, 1998, 9(2): 87-89.
Chen SL, Pan ZY. The Diagnosis of radionuclides imaging of rareness liver cancers [J]. Journal of China Clinic Medical Imaging, 1998, 9(2): 87-89.
[15] Francis DL, Visvikis D, Costa DC, et al. Potential impact of [18F]3'-deoxy-3'-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer [J]. Eur J Nucl Med Mol Imaging, 2003, 30(7): 988-994.
[16] Sykes TR, Ruth TJ, Adam MJ, et al. Synthesis and murine tissue uptake of sodium [18F]fluoroacetate [J]. Int J Rad Appl Instrum B, 13(5): 497-500.
[17] Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequencecharacteristics, and potential function of its novel members (review) [J]. Mol Membr Biol, 2001, 18(4): 247-56.
[18] 蔡昱, 邵淑丽. GLUT1研究进展[J]. 国外医学·肿瘤学分册, 2004, 31(S1): 50-52.
[19] Zimmerman RL, Burke M, Young NA, et al. Diagnostic utility of Glut-1 and CA 15-3 in discriminating adenocarcinoma from hepatocellular carcinoma in liver tumors biopsied by fine-needle aspiration [J]. Cancer, 2002, 96(1): 53-57.
[20] Roh MS, Jeong JS, Kim YH, et al. Diagnostic utility of GLUT1 in the differential diagnosis of liver carcinomas [J]. Hepatogastroenterology, 2004, 51(59): 1315-1318.
[21] Seo S, Hatano E, Higashi T, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma [J]. Clin Cancer Res, 2007, 13(2 Pt 1):427-433.
[22] Kuang Y, Schomisch SJ, Chandramouli V, et al. Hexokinase and glucose-6-phosphatase activity in woodchuck model of hepatitis virus-induced hepatocellular carcinoma [J]. Comp Biochem Physiol C Toxicol Pharmacol, 2006, 143(2): 225-231.
[23] Salem N, Maclennan GT, Kuang Y, et al. Quantitative evaluation of 2-deoxy-2[F-18]fluoro-D-glucose-positron emission tomography imaging on the woodchuck model of hepatocellular carcinoma with histological correlation [J]. Mol Imaging Biol, 2007, 9(3): 135-143.
[24] Kuang Y, Salem N, Wang F, et al. A colorimetric assay method to measure acetyl-CoA synthetase activity: application to woodchuck model of hepatitis virus-induced hepatocellular carcinoma [J]. J Biochem Biophys Methods, 2007, 70(4): 649-655.
[25] Chen S, Feng D. Novel parameter estimation methods for11C-Acetate dual-input liver model with dynamic PET [J]. IEEE Trans Biomed Eng, 2006, 53(5): 967-973.
[26] Lee JD, Yun M, Lee JM, et al. Analysis of gene expression profiles of hepatocellular carcinomas with regard to18F-fluorodeoxyglucose uptake pattern on positron emission tomography [J]. Eur J Nucl Med Mol Imaging, 2004, 31(12): 1621-1630.
[27] Ghesani M, Depuey EG, Rozanski A. Role of F-18 FDG positron emission tomography (PET) in the assessment of myocardial viability [J]. Echocardiography, 2005, 22(2): 165-177.
[28] Arulampalam TH, Francis DL, Visvikis D, et al. FDG-PET for the pre-operative evaluation of colorectal liver metastases [J]. Eur J Surg Oncol, 2004, 30(3): 286-291.
[29] Bohm B, Voth M, Geoghegan J, et al. Impact of positron emission tomography on strategy in liver resection for primary and secondary liver tumors [J]. J Cancer Res Clin Oncol, 2004, 130(5): 266-272.
[30] Son HB, Han CJ, Kim BI, et al. Evaluation of various hepatic lesions with positron emission tomography [J]. Taehan Kan Hakhoe Chi, 2002, 8(4): 472-480.
[31] Koyama K, Okamura T, Kawabe J, et al. The usefulness of18F-FDG PET images obtained 2 hours after intravenous injection in livertumor [J]. Ann Nucl Med, 2002, 16(3): 169-176.
[32] Hustinx R, Paulus P, Jacquet N, et al. Clinical evaluation of whole-body18F-fluorodeoxyglucose positron emission tomography in the detection of liver metastases [J]. Ann Oncol, 1998, 9(4): 397-401.
[33] Flanagan FL, Dehdashti F, Ogunbiyi OA, et al. Utility of FDG-PET for investigating unexplained plasma CEA elevation in patients with colorectal cancer [J]. Ann Surg, 1998, 227(3): 319-323.
[34] Yang M, Martin DR, Karabulut N, et al. Comparison of MR and PET imaging for the evaluation of liver metastases [J]. J Magn Reson Imaging, 2003, 17(3): 343-349.
[35] Kinkel K, Lu Y, Both M, et al. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis [J]. Radiology, 2002, 224(3): 748-756.
[36] Zhao S, Moore JV, Waller ML, et al. Positron emission tomography ofmurine liver metastses and the effects of treatment by comrbetastatin A-4 [J]. Eur J Nucl Med, 1999, 26(3): 231-238.
[37] Torizuka T, Tamaki N, Inokuma T, et al. Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy [J]. Nucl Med, 1994, 35(12): 1965-1969.
[38] Anderson GS, Brinkmann F, Soulen MC, et al. FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation [J]. Clin Nucl Med, 2003, 28(3): 192-197.
[39] 赵明, 吴沛宏, 曾益新, 等.18FDG-PET/CT对评价TACE联合RFA治疗原发性肝癌的效果的价值[J].癌症,2005,24(9):1118-1123.
Zhao M, Wu PH, Zeng YX, et al. Evaluating efficacy of transcatheter arterial chemo-embolization combined with radiofrequency ablation on patients with hepatocellular carcinoma by18FDG-PET/CT [J]. Chinese Journal of Cancer, 2005, 24(9): 1118-1123.
[40] Danve A, O'Dell J. The role of 18F Fluorodeoxyglucose positron emission tomography scanning in the diagnosis and management of systemic vasculitis [J]. Int J Rheum Dis, 2015, 18(7): 714-724.
[41] 李立伟, 金泉, 马璐娜, 等. 肝癌经动脉栓塞化疗后FDG PET显像的临床价值——附10例FDG PET和CT结果对照[J]. 中国医学影像技术, 2001, 17(11): 1074-1075.
Li LW, Jin Q, Ma LN, et al. Clinical value of FDG PET imaging in monitoring hepatocellular carcinoma after chemoembolization-compared FDG PET with CT in 10 cases [J]. China JMIT, 2001, 17(11): 1074-1075.
[42] Hatano E, Ikai I, Higashi T, et al. Preoperative positron emission tomography with fluorine-18-fluorodeoxyglucose is predictive of prognosis in patients with hepatocellular carcinoma after resection [J]. World J Surg, 2006, 30(9): 1736-1741.
[43] Findlay M, Young H, Cunningham D, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emissiontomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil [J]. J Clin Oncol, 1996, 14(3): 700-708.
[44] Goerres GW, Stupp R, Barghouth G, et al. The value of PET, CT and in-line PET/CT in patients with gastrointestinal stromal tumours: long-term outcome of treatment with imatinib mesylate [J]. Eur J Nucl Med Mol Imaging, 2005, 32(2): 153-162.
[45] Yang SH, Suh KS, Lee HW, et al. The role of (18)F-FDG-PET imaging for the selection of liver transplantation candidates among hepatocellular carcinoma patients [J]. Liver Transpl, 2006, 12(11): 1655-1660.
(责任编辑:王全楚)
ProgressofPET/CTimaginginhepatocellularcarcinoma
LI Tianran
Department of Radiology, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100037, China
The positive rate of18F-FDG positron emission tomography (PET) imaging in hepatocellular carcinoma (HCC) is low. The studies indicated that intensity degree of18F-FDG related to the degree of cancer cell differentiation. Many factors affect the18F-FDG uptake by HCC. Tracers and multiple modalities imaging may improve the positive rate of HCC detection. The value of PET/CT in metastatic liver cancer and prediction of recurrence and metastasis is better than traditional imaging techniques. Progress of PET/CT imaging in HCC was reviewed in this article.
PET;18F-FDG; Hepatocellular carcinoma; CT
国家自然科学基金资助项目(81271607);中国博士后基金(2015M572810);解放军总医院临床科研扶持基金(2017FC-304Z-GLCX-01)
李天然,博士,副主任医师,研究方向:肝癌分子影像学。E-mail:lizhaoruixin@sina.com
10.3969/j.issn.1006-5709.2017.11.001
R735.7
A
1006-5709(2017)11-1201-05
2017-07-16