杨春艳,李亚军
1. 宁夏医科大学临床医学院,银川 750001; 2. 西安医学院第一附属医院,西安 710077
·综述·
中性粒细胞胞外诱捕网在炎症相关疾病中的研究进展
杨春艳1,李亚军2
1. 宁夏医科大学临床医学院,银川 750001; 2. 西安医学院第一附属医院,西安 710077
中性粒细胞是抵御病原体入侵机体的第一道防线,通过趋化和吞噬作用使病原体失活,从而进行免疫防御,杀灭病原体。研究证实,中性粒细胞通过吞噬病原体、分泌抗微生物蛋白颗粒来杀灭病原微生物。2004年Brinkmann发现了一种中性粒细胞新型抗感染机制,即中性粒细胞经病原体活化刺激后释放中性粒细胞胞外诱捕网(neutrophil extracellular trap,NET)至细胞外。NET是由双链DNA染色质和镶嵌在染色质上的抗菌蛋白构成的纤维网格状结构,通过网罗、捕获而杀灭病原体。诸多研究表明,NET在炎症相关疾病中起重要作用,其生成和降解会影响急慢性炎性疾病的病理过程。本文主要从NET的特征、产生机制、抗菌作用及其在炎性相关疾病中的作用等方面着手,概述其最新研究进展,为炎性疾病的治疗及其药物开发提供新的思路和方向。
中性粒细胞;中性粒细胞胞外诱捕网;病原体;炎性疾病
中性粒细胞在天然免疫和获得性免疫中均具有重要作用,是天然免疫的重要组成部分。病原微生物侵袭机体时,中性粒细胞经病灶部位的白细胞活化刺激后,随血液循环透过血管壁到达感染部位,结合并吞噬病原体,从而使病原体失去活性[1]。已证实中性粒细胞杀灭病原体的途径有两种:①在溶酶体中,中性粒细胞通过蛋白水解酶和活性氧吞噬、杀灭病原体[2];②脱颗粒作用,即中性粒细胞通过释放黏附抗菌蛋白和蛋白水解酶的颗粒分子至细胞间隙,杀灭胞液中的病原体[3]。有研究表明,病原微生物感染组织后,经白细胞介素8(interleukin 8,IL-8)、佛波酯(phorbol 12-myristate 13-acetate,PMA)和脂多糖(lipopolysaccharide,LPS)刺激活化后可释放一种纤维网状结构,即中性粒细胞胞外诱捕网(neutrophil extracellular trap,NET),参与病原体感染的免疫应答[1]。本文从NET的构成、基本特征、产生机制、影响因素及定量检测方法等方面着手,对其在炎症相关疾病中的作用进行概述。
NET是存在于细胞外的纤维网状结构,由中性粒细胞刺激活化后释放到胞外,其包含基因组DNA、组蛋白、髓过氧化物酶(myeloperoxidase,MPO)、中性粒细胞弹性蛋白酶和组织蛋白酶G等抗菌蛋白[4]。NET也称NETosis,是不同于凋亡和坏死的另外一种细胞死亡途径。电镜下其结构主要由直径为15~17 nm的平滑纤维(DNA骨架)和直径为25 nm镶嵌在平滑纤维上的球形区域组成[1]。Brinkmann 等应用DNA染料染色在感染组织中发现了完整的NET结构,用DNase处理后,感染组织中NET的完整性结构被破坏[1];相反,用蛋白裂解酶处理感染组织后,DNA结构仍存在,完整性未被破坏。此研究表明DNA是NET的主要结构。NET捕获、黏附病原体主要依靠其特有的三维网状结构,而杀灭病原体则依靠大量的抗菌蛋白。
近年来已证实的细胞死亡方式有两种,即凋亡和坏死。有研究发现,NET形成是一种新型细胞死亡途径,其形成过程是NADPH氧化酶和Raf/丝裂原活化蛋白激酶激酶(mitogen-activated protein kinase kinase,MEK)/细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)通路使细胞核和细胞质内致密颗粒溶解,从而发生自噬,进一步生成活性氧(reactive oxygen species,ROS),导致抗菌蛋白镶嵌在核染色质上。随后,中性粒细胞将这些混合物释放到细胞外,而这种网格状NET结构能捕获细菌,并使抗菌蛋白包裹在病原体周围,从而杀灭病原体。应用NADPH氧化酶抑制剂后NET生成明显减少,但给予过氧化氢刺激后NET表达增加[5]。研究发现,NET还能阻止细胞毒素释放,从而保护机体[4]。Brinkmann 等研究发现,诱导中性粒细胞释放NET的刺激物有很多,包括IL-8、LPS、PMA、激活的血小板和内皮细胞[6]。诱导剂PMA(蛋白激酶C的激动剂)通过活化NADPH氧化酶、激活Raf/MEK/ERK通路上调抗菌蛋白和产生ROS[7]。近年来有研究表明,NET的形成机制需依赖细胞内肽酰基精氨酸脱亚胺酶4(peptidylarginine deiminase 4,PAD4)。PAD4是一种修饰酶,当钙离子达到一定浓度时PAD4被激活,从而催化肽链中的精氨酸瓜氨酸化。PAD家族有5种亚型,每种亚型在人体瓜氨酸化蛋白中的分布及表达不同。其中PAD4存在于单核细胞、粒细胞和巨噬细胞,在瓜氨酸化组蛋白和核仁磷酸蛋白中起重要作用[8]。Wang等[9]也发现 PAD4活化能促进组蛋白转变成瓜氨酸化组蛋白,随后DNA骨架解螺旋,与抗菌蛋白颗粒结合,最后形成疏松的NET网状结构。有研究认为,此过程是NET形成的最主要机制。Gray等研究发现,蛋白激酶C(protein kinase C,PKC)作为NADPH氧化酶的上游信号之一,也是NET形成的重要因素[10]。
中性粒细胞受IL-8、ROS、PMA、LPS等刺激后,胞内中性粒细胞弹性蛋白酶和MPO移行至核内,两者作用于组蛋白,导致核染色质解聚。解聚后的DNA丝状结构连同具有高度水解活性的酶类颗粒和多种抗菌肽,形成网状结构,随着核膜崩解,迅速被释放至胞外,包裹入侵的病原微生物。中性粒细胞的这种杀菌伴自身死亡的过程称为NETosis,不同于凋亡和坏死。中性粒细胞发生NETosis时,核物质膨胀,核染色质解聚,核膜瓦解,然后细胞质融合,质膜破裂,释放NET,核膜破裂[5,11],这与有完整包膜包裹的凋亡小体不同。传统的生物鉴定方法,如PicoGreen、Sytox、免疫印迹和免疫荧光法,并不能特定区分NET的构成与细胞死亡;还有一些研究采用酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)检测中性粒细胞核DNA复合体,如MPO-DNA、NE-DNA复合体[12-13],但只能证实NET存在,不能区分其构成与细胞死亡。有研究发现延时视频显微镜可观察NET的构成[5],采用一种细胞核、细胞质、细胞死亡进程结合物,可鉴别NET构成的不同内容物及细胞死亡,其在某种意义上依赖每一种刺激物及时间进程。近年来Zhao等发现,硬骨鱼类中存在非细胞死亡方式形成NETosis,从而释放NET,其抗菌作用依赖ROS、NO和MPO[14]。
有文献报道,可通过PicoGreen dsDNA Quantitation kit 定量检测血浆、血清中NET水平,其原理是PicoGreen染料能与DNA特异性结合。虽然此法不能排除因其他形式产生的双链DNA(double-strand DNA,dsDNA)的干扰,但由于其他方式产生的dsDNA较NET中dsDNA所占比例低,故可采用此法间接近似定量血浆、血清中的NET dsDNA[15-16]。
Brinkmann 在体内外实验中均发现NET可捕获和杀灭大量病原微生物,包括革兰阳性细菌[1]、革兰阴性细菌[17]、真菌[18]和原生动物类[19]。中性粒细胞可能是炎症疾病组织损伤中的一个重要因素。NET内容物在组织感染及急性炎症部位的含量较正常人明显增高[1]。White等发现,牙周炎患者的牙周组织中存在NET结构[20]。NET结构中的MPO、组蛋白等抗菌蛋白捕获致病微生物后,可将其杀灭并降解,防止进一步扩散[5]。诸多研究已证实NET捕获和杀灭病原微生物的机制。近期有研究表明[21],用H2A-H2B-DNA复合物抗体干预NET结构,NET的抗菌活性消失;但组蛋白H3、H4在NET抗菌机制中的作用仍需进一步阐明。某些链球菌,如A群链球菌和肺炎链球菌,具有逃逸NET网状结构捕杀的能力[22],其机制主要是多糖荚膜、细菌核酸内切酶等几种细菌毒力因子的作用,从而为临床抗感染治疗提供了新的方向。此外,一部分耐药菌株可通过产生DNase降解NET,从而逃脱NET的诱捕作用[23]。近年来有研究发现,NET可通过组织蛋白酶G和中性粒细胞弹性蛋白酶激活IL-1和IL-36亚家族细胞因子。因此,NET不仅具有抗菌作用,也是细胞因子激活的场所[24]。
6.1 NET与细菌性感染
NET的抗菌作用主要是诱捕和直接杀灭病原微生物。病原微生物可通过电荷相互作用黏附于NET结构[25]。Wartha 等研究发现,病原体可通过伪装自身或改变其表面电荷,逃逸NET的捕获[26]。Sumby 等研究发现,细菌也可通过将核酸酶附着于其表面,脱离NET网状结构[23]。此外,部分细菌能编码DNase来破坏NET 结构的完整性,从而加重炎症反应。铜绿假单胞菌通过表达某些表面分子抑制中性粒细胞激活并使NET释放减少,A群溶血性链球菌通过表达DNase使NET降解[27]。
少数研究发现,NET在败血症患者中也能加重炎症反应,其dsDNA通过激活免疫应答而导致组织损伤,而评价炎性损伤程度和预后的潜在指标则是循环DNA(circulating free DNA,cfDNA)[15,28]。
6.2 NET与牙周炎
牙周炎是人类常见的慢性炎症疾病,可伴发危重疾病[29]。在牙周炎疾病进展过程中,中性粒细胞产生大量抗菌蛋白,清除侵入牙周组织的病原微生物,从而进行吞噬,生成ROS,脱颗粒(细胞内和细胞外)[30]。Matthews等研究发现,慢性牙周炎患者外周血中性粒细胞释放ROS活跃[31]。White 等研究发现,足够的氧含量和适宜的酸碱环境可使牙周袋释放ROS[20]。Vitkov等发现,慢性牙周炎患者牙周袋脓液中可检测到NET大量存在。然而,NET在牙周炎病理生理机制中的作用仍需进一步阐明。NET网状结构作为一个基本防御措施,能阻止细菌侵润,这可能在牙周炎病理机制中发挥了重要作用。也有研究发现,NET产生过多或清除减少,均对机体有害。
6.3 NET与自身免疫性疾病
在无菌性炎症和化学损伤模型中,组蛋白通过模式识别受体Toll样受体2(Toll-like receptor 2,TLR2)、TLR4途径致细胞损伤[32],由此认为TLR和炎症相关受体能识别内源性损伤相关分子通路,从而引起全身炎症反应[33-34]。研究发现,NET在自身免疫性疾病如系统性红斑狼疮(systemic lupus erythematosus,SLE)、银屑病、痛风性关节炎、小血管炎等发病机制中均扮演重要角色。
Leffler等在SLE患者外周血中发现NET含量增多,DNase-1水平与血中NET含量呈负相关[35],表明DNase-1可能与NET降解有关。Lamkanfi 等研究发现,SLE患者中NET可激活SLE炎性小体,从而调控IL-1β、IL-18活化,激活机体非特异性免疫系统[36]。由于IL-18可影响内皮祖细胞(endothelial progenitor cell,EPC)和循环血管生成细胞(circulating angiogenic cell,CAC)向内皮细胞的分化,损伤血管修复功能,所以异常的炎性小体激活和IL-18生成增多会导致SLE患者发生心血管疾病。还有研究发现,NET和NET相关LL-37均可激活炎性小体,巨噬细胞接触NET或LL-37后,可激活天冬氨酸特异性半胱氨酸蛋白酶1(cysteinyl aspartate specific protease 1,caspase-1),并产生大量IL-1β、IL-18[37]。SLE患者巨噬细胞中NET和LL-37介导的炎性小体活化作用明显强于对照组,而IL-1β、IL-18均可诱导NET形成[38],加快SLE疾病进程。
Nakazawa等[39]应用丙硫氧嘧啶使动物体内释放NET增多,降解减少,构建MPO-抗中性粒细胞胞质抗体(anti-neutrophil cytoplasmic antibody,ANCA)相关血管炎动物模型。在ANCA相关血管炎中,溶酶体相关膜蛋白2(lysosome-associated membrane protein 2,LAMP-2)抗体诱导激活的中性粒细胞释放NET到胞外,形成NET网格状结构,并使LAMP-2、MPO、蛋白酶3等自身抗体暴露,从而加重血管炎损伤,形成恶性循环[40]。在痛风急性期患者外周血中发现NET含量增加,其形成可能与激活IL-1或释放自噬信号通路有关。
6.4 NET与神经系统疾病
目前,NET在神经系统疾病中的作用鲜有报道。近年来有研究表明,在阿尔茨海默病小鼠模型中,Aβ2肽促进中性粒细胞与白细胞功能相关抗原1(leukocyte function associated molecule 1,LFA-1)配体快速结合,引起中性粒细胞外渗而进入中枢神经系统并向脑实质内迁移,释放NET、IL-17,从而加重小鼠神经元损伤、认知障碍及神经炎性改变。通过阻断LFA-1的整合作用,使中性粒细胞减少或抑制其渗出,可促进阿尔茨海默病小鼠病理学恢复,同时改善其认知功能[41]。Pietronigro等也发现,阿尔茨海默病小鼠中,中性粒细胞可释放NET至血管内和脑实质,从而破坏血脑屏障,损伤神经元。此外,激光共聚焦显微镜也证实NET存在于阿尔茨海默病小鼠的皮质血管和脑实质中[42]。因此,靶向治疗NET也许能延缓阿尔茨海默病的发病过程,为其治疗提供了新的方向。
NET在子痫前期[43]、疟疾[44]及囊性纤维化患者[45]中均存在。Fuchs 等发现NET通过黏附血小板形成血栓[46]。Cools-Lartigue等发现,肿瘤可诱导中性粒细胞释放NET,癌细胞黏附于NET网状结构后可引起肿瘤的全身转移[47]。Carestia 等研究发现,NET可作为2型糖尿病的生物标记,但升高的NET与血糖控制和血栓形成无关,与促炎性细胞因子作用有关[48]。Aldabbous 等研究发现,NET在血管再生中起重要作用,体内外实验均发现NET与炎症性血管生成有密切关系[49]。研究已证实人类诸多疾病中存在cfDNA[50]。多发伤患者中血浆NET含量增高可预测多器官功能衰竭和败血症的发生[15]。
自2004年发现至今,NET已被证实具有强大的抗菌作用。国内外学者对其进行大量研究,但其抗感染分子机制和信号通路仍不十分明确。目前,NET在某些肺部感染和自身免疫性疾病中的作用研究较成熟,但在神经系统炎性疾病中的作用鲜有报道,因此可从这方面着手开展相关动物实验,进一步完善和明确其作用机制,为某些神经系统炎性疾病的治疗及其药物开发提供新的思路和方向。
[1] Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracelluar trap kill bacteria [J]. Science, 2004, 303(5663): 1532-1535.
[2] Ermert D, Zychlinsky A, Urban C. Fungal and bacterial killing by neutrophils [J]. Methods Mol Biol, 2009, 470: 293-312.
[3] Borregaard N. Neutrophils, from marrow to microbes [J]. Immunity, 2010, 33(5): 657-670.
[4] Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons [J]. Trends Immunol, 2009, 30(11): 513-521.
[5] Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps [J]. J Cell Biol, 2007, 176(2): 231-241.
[6] Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs [J]. Nat Rev Microbiol, 2007, 5 (8): 577-582.
[7] Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, Waldmann H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation [J]. Nat Chem Biol, 2011, 7(2): 75-77.
[8] Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease [J]. Bioessays, 2003, 25(11): 1106-1118.
[9] Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Ha H, Grigoryev SA, Allis CD, Coonrod SA. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation [J]. J Cell Biol, 2009, 184(2): 205-213.
[10] Gray RD, Lucas CD, MacKellar A, Li F, Hiersemenzel K, Haslett C, Davidson DJ, Rossi AG. Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps [J]. J Inflamm (Lond), 2013, 10 (1): 12. doi: 10.1186/1476-9255-10-12.
[11] Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis [J]. Cell Rep, 2014, 8(3): 883-896.
[12] Nakazawa D, Shida H, Tomaru U, Yoshida M, Nishio S, Atsumi T, Ishizu A. Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCA-associated microscopic polyangiitis [J]. J Am Soc Nephrol, 2014, 25(5): 990-997.
[13] Sayah DM, Mallavia B, Liu F, Ortiz-Muoz G, Caudrillier A, DerHovanessian A, Ross DJ, Lynch JP 3rd, Saggar R, Ardehali A; Lung Transplant Outcomes Group Investigators; Ware LB, Christie JD, Belperio JA, Looney MR. Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation [J]. Am J Respir Crit Care Med, 2015, 191(4): 455-463.
[14] Zhao ML, Chi H, Sun L. Neutrophil extracellular traps of cynoglossus semilaevis: production characteristics and antibacterial effect [J]. Front Immunol, 2017, 8: 290. doi: 10.3389/fimmu.2017.00290.
[15] Margraf S, Lögters T, Reipen J, Altrichter J, Scholz M, Windolf J. Neutrophil-derived circulating free DNA (cf-DNA/NETs): a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis [J]. Shock, 2008, 30(4): 352-358.
[16] Brinkmann V, Goosmann C, Kühn LI, Zychlinsky A. Automatic quantification of in vitro NET formation [J]. Front Immunol, 2013, 3: 413. doi: 10.3389/fimmu.2012.00413.
[17] Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood [J]. Nat Med, 2007, 13(4): 463-469.
[18] McCormick A, Heesemann L, Wagener J, Marcos V, Hartl D, Loeffler J, Heesemann J, Ebel F. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus [J]. Microbes Infect, 2010, 12(12-13): 928-936.
[19] Urban C, Zychlinsky A. Netting bacteria in sepsis [J]. Nat Med, 2007, 13(4): 403-404.
[20] White PC, Chicca IJ, Cooper PR, Milward MR, Chapple IL. Neutrophil extracellular traps in periodontitis: a web of intrigue [J]. J Dent Res, 2016, 95(1): 26-34.
[21] Kawasaki H, Iwamuro S. Potential roles of histones in host defense as antimicrobial agents [J]. Infect Disord Drug Targets, 2008, 8(3): 195-205.
[22] 周坚,张亚衡,周剑涛. 抗中性粒细胞胞外诱捕网的细菌毒力因子 [J]. 分子诊断与治疗杂志, 2011, 3(2): 130-133.
[23] Sumby P, Barbian KD, Gardner DJ, Whitney AR, Welty DM, Long RD, Bailey JR, Parnell MJ, Hoe NP, Adams GG, Deleo FR, Musser JM. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response [J]. Proc Natl Acad Sci USA, 2005, 102(5): 1679-1684.
[24] Clancy DM, Henry CM, Sullivan GP, Martin SJ. Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines [J]. FEBS J, 2017. doi: 10.1111/febs.14075.
[25] Bartneck M, Keul HA, Zwadlo-Klarwasser G, Groll J. Phagocytosis independent extracellular nanoparticle clearance by human immune cells [J]. Nano Lett, 2010, 10(1): 59-63.
[26] Wartha F, Beiter K, Albiger B, Fernebro J, Zychlinsky A, Normark S, Henriques-Normark B. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps [J]. Cell Microbiol, 2007, 9(5): 1162-1171.
[27] Khatua B, Bhattacharya K, Mandal C. Sialoglycoproteins adsorbed by Pseudomonas aeruginosa facilitate their survival by impeding neutrophil extracellular trap through siglec-9 [J]. J Leukoc Biol, 2012, 91(4): 641-655.
[28] 尹晓雪,王琪,高飞,金美丽,刘彦虹. 中性粒细胞胞外诱捕网在非感染性炎性疾病中的作用 [J]. 免疫学杂志, 2015, 31(6): 537-540.
[29] Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression [J]. J Dent Res, 2014, 93(11): 1045-1053.
[30] Jaillon S, Galdiero MR, Del Prete D, Cassatella MA, Garlanda C, Mantovani A. Neutrophils in innate and adaptive immunity [J]. Semin Immunopathol, 2013, 35(4): 377-394.
[31] Matthews JB, Wright HJ, Roberts A, Ling-Mountford N, Cooper PR, Chapple IL. Neutrophil hyper-responsiveness in periodontitis [J]. J Dent Res, 2007, 86(8): 718-722.
[32] Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury [J]. J Immunol, 2011, 187(5): 2626-2631.
[33] Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, Rubin CJ, Zhao W, Olsen SH, Klinker M, Shealy D, Denny MF, Plumas J, Chaperot L, Kretzler M, Bruce AT, Kaplan MJ. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus [J]. J Immunol, 2011, 187(1): 538-552.
[34] Mitroulis I, Kambas K, Chrysanthopoulou A, Skendros P, Apostolidou E, Kourtzelis I, Drosos GI, Boumpas DT, Ritis K. Neutrophil extracellular trap formation is associated with IL-1 beta and autophagy-related signaling in gout [J]. PLoS One, 2011, 6(12): e29318.
[35] Leffler J, Martin M, Gullstrand B, Tydén H, Lood C, Truedsson L, Bengtsson AA, Blom AM. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease [J]. J Immunol, 2012, 188(7): 3522-3531.
[36] Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease [J]. Annu Rev Cell Dev Biol, 2012, 28: 137-161.
[37] Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages [J]. J Immunol, 2013, 190(3): 1217-1226.
[38] Mitroulis I, Kambas K, Chrysanthopoulou A, Skendros P, Apostolidou E, Kourtzelis I, Drosos GI, Boumpas DT, Ritis K. Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout [J]. PLoS One, 2011, 6(12): e29318.
[39] Nakazawa D, Tomaru U, Suzuki A, Masuda S, Hasegawa R, Kobayashi T, Nishio S, Kasahara M, Ishizu A. Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis [J]. Arthritis Rheum, 2012, 64(11): 3779-3787.
[40] 黄鑫,高雪静,王渊,张莹,唐莎,邹丽云,王莉,张静波. 分子伴侣性自噬参与LAMP-2 抗体诱导中性粒细胞胞外捕网形成 [J]. 免疫学杂志, 2015, 31(3): 185-189.
[41] Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, Turano E, Rossi B, Angiari S, Dusi S, Montresor A, Carlucci T, Nanì S, Tosadori G, Calciano L, Catalucci D, Berton G, Bonetti B, Constantin G. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin [J]. Nat Med, 2015, 21(8): 880-886.
[42] Pietronigro EC, Della Bianca V, Zenaro E, Constantin G. NETosis in Alzheimer’s disease [J]. Front Immunol, 2017, 8: 211. doi: 10.3389/fimmu.2017.00211.
[43] Gupta A, Hasler P, Gebhardt S, Holzgreve W, Hahn S. Occurrence of neutrophil extracellular DNA traps (NETs) in pre-eclampsia: a link with elevated levels of cell-free DNA? [J]. Ann NY Acad Sci, 2006, 1075: 118-122.
[44] Baker VS, Imade GE, Molta NB, Tawde P, Pam SD, Obadofin MO, Sagay SA, Egah DZ, Iya D, Afolabi BB, Baker M, Ford K, Ford R, Roux KH, Keller TC 3rd. Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age [J]. Malar J, 2008, 7: 41. doi: 10.1186/1475-2875-7-41.
[45] Marcos V, Zhou Z, Yildirim AO, Bohla A, Hector A, Vitkov L, Wiedenbauer EM, Krautgartner WD, Stoiber W, Belohradsky BH, Rieber N, Kormann M, Koller B, Roscher A, Roos D, Griese M, Eickelberg O, Döring G, Mall MA, Hartl D. CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation [J]. Nat Med, 2010, 16(9): 1018-1023.
[46] Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD. Extracellular DNA traps promote thrombosis [J]. Proc Natl Acad Sci USA, 2010, 107(36): 15880-15885.
[47] Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P, Ferri L. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis [J]. J Clin Invest, 2013, 123(8): 3446-3458.
[48] Carestia A, Frechtel G, Cerrone G, Linari MA, Gonzalez CD, Casais P, Schattner M. NETosis before and after hyperglycemic control in type 2 diabetes mellitus patients [J]. PLoS One, 2016, 11(12): e0168647.
[49] Aldabbous L, Abdul-Salam V, McKinnon T, Duluc L, Pepke-Zaba J, Southwood M, Ainscough AJ, Hadinnapola C, Wilkins MR, Toshner M, Wojciak-Stothard B. Neutrophil extracellular traps promote angiogenesis: evidence from vascular pathology in pulmonary hypertension [J]. Arterioscler Thromb Vasc Biol, 2016, 36(10): 2078-2087.
[50] Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases [J]. FEBS Lett, 2007, 581(5): 795-799.
. LI Yajun, E-mail: liyajun9@hotmail.com
Research progress on neutrophil extracellular traps in inflammation-related diseases
YANG Chunyan1, LI Yajun2
1.ClinicalMedicalSchool,NingxiaMedicalUniversity,Yinchuan750001,China; 2.TheFirstAffiliatedHospitalofXi’anMedicalUniversity,Xi’an710077,China
Neutrophils are the first line of defense against invading pathogens. Neutrophils kill pathogens through chemotaxis and phagocytosis. It has been confirmed that neutrophils kill pathogenic microorganisms by engulfing pathogens and secreting antimicrobial protein particles. In 2004, Brinkmann found a new anti-infection mechanism of neutrophils, that is the release of neutrophil extracellular traps (NETs) after activation. NETs are a kind of structure similar to fiber network, which are composed of double-stranded DNA and antibacterial proteins laying on chromatin structure. The role of NETs in the process of anti-infection is capturing and killing pathogenic microorganisms. In recent years, increased evidence has shown that NETs play an important role in inflammatory diseases, and the pathological process in acute and chronic inflammatory diseases would be affected by NET generation and degradation. This article mainly summarizes the latest research progress on NETs in the characteristics, generation mechanism, antibacterial activity, and the effect in inflammatory diseases; provides new ideas and directions for the treatment and drug development for inflammatory diseases.
Neutrophil; Neutrophil extracellular trap; Pathogen; Inflammatory disease
陕西省科技厅资助(2014SF2-17)
李亚军
2017-01-22)