李鹏涛,杨晓楠,张 辉
(1.河北北方学院研究生部,河北 张家口 075000;2.河北北方学院基础医学院,河北 张家口 075000)
骨髓间充质干细胞移植治疗阿尔茨海默病研究进展
李鹏涛1,杨晓楠1,张 辉2
(1.河北北方学院研究生部,河北 张家口 075000;2.河北北方学院基础医学院,河北 张家口 075000)
阿尔茨海默病(Alzheimer’s disease,AD)是一种胆碱能和多巴胺能神经元退行性疾病。目前主要通过药物治疗,但是药物对晚期AD治疗效果不佳。随着细胞治疗技术的逐渐发展,细胞移植研究成为热点。骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)是一种存在于骨髓中的非造血干细胞,具有多向分化的潜能。将BMSCs应用于AD的治疗为治疗神经退行性疾病提供了新的思路和方法。目前国内外对BMSCs移植治疗AD的研究已有很多,研究成果丰硕,但真正将这项技术运用到临床还有许多困难。综述了AD和BMSCs的研究进展,及BMSCs移植治疗AD的研究现状。
阿尔茨海默症;骨髓间充质干细胞;细胞移植
阿尔茨海默病(Alzheimer’s disease,AD)是一种胆碱和多巴胺能神经元退行性疾病,最初由德国巴伐利亚精神病学家Alois Alzheimer 提出,也称为老年失能[1]。阿尔茨海默病起病隐匿,与年龄相关,是一种以进行性认知功能障碍和记忆损害为特征的原发性中枢神经系统退行性疾病[2]。据统计,阿尔茨海默病在英国65岁以上人群死亡原因中排第六位,在美国排第五位[3]。阿尔茨海默病严重影响老年人的日常生活,主要表现为记忆和认知功能障碍、行为及人格异常改变。目前,临床上通过提高和保持神经元的活性治疗AD,主要以药物治疗为主,但药物治疗对晚期的AD效果并不理想[4-6]。干细胞治疗阿尔茨海默病逐渐被认可,其中骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)是一种存在于骨髓中的非造血干细胞,具有多向分化的潜能,比起胚胎干细胞和神经干细胞等有着独特的优势,为治疗AD提供了丰富的细胞资源,为临床的自体细胞移植奠定了实验基础[7],因其来源广泛,操作简单,免疫排斥反应弱,成为研究者们的新宠[8]。现就阿尔茨海默症的发病机制和治疗,以及骨髓间充质干细胞移植治疗AD的研究现状作一综述。
1.1 AD发病机制
AD的发病机制复杂多样,由多种因素共同作用引起,之前的研究显示AD的两个特征性病理改变为β淀粉样蛋白沉积形成的老年斑(senile plaques,SPs)和Tau蛋白过度磷酸化形成的神经细胞内神经元纤维缠结(neurofibrillary tangles,NFTs),并伴有颗粒空泡变性、平野小体和脑血管的改变[9]。最近研究表明,氧化应激与AD发病密切相关。神经元内β淀粉样蛋白(amyloid β-protein,Aβ)的沉积一定程度上由氧化应激引起,另一方面,Aβ沉积对神经元也会产生一定损伤作用,并且引发进一步氧化应激,但具体机制尚不清楚[10-11]。有研究表明,Aβ具有极强的神经毒性作用,能导致神经元膜上不饱和脂肪酸被氧化,产生大量氧自由基,引起神经元细胞膜通透性增加,大量Ca2+内流,依次激活钙依赖性激酶、蛋白酶、脂肪酶,从而导致细胞损伤乃至死亡[12]。Aβ寡聚物可以减少神经突触的数目,使神经元之间物质的胞质运输发生异常,参与AD早期氧化应激损伤[13]。现已证明,炎症反应在AD发病过程中扮演着重要角色,参与炎症反应的物质主要有小胶质细胞、星形胶质细胞、补体系统和炎性因子等[14]。近期研究表明,局部炎性反应如骨关节炎也可能诱发神经炎性反应,进而促进AD发展[15]。此外,诱导AD发病的机制还包括胰岛素信号传导通路障碍、基因突变、Ca2+代谢紊乱和内分泌失调等。
1.2 AD的治疗
现阶段治疗AD主要以药物为主,最佳药物是乙酰胆碱酯酶抑制剂(acetylcholinesterase inhibitor,AChEI),治疗效果已经得到临床肯定,虽不能治愈AD,但可以延缓病程进展,减轻AD精神症状[16]。AChEI包括他克林(Tacrine)、多奈哌齐(Donepezil)、加兰他敏(Galanthamine)和卡巴拉汀(Rivastigmine),这些药物是FDA批准用于治疗AD 5种药物中的4种,可见AChEI在AD治疗中的重要地位。Minarini A等[17]近期在他克林衍生物中发现,其中一些药物肝毒性较低,且具有抑制胆碱酶活性、抗氧化、钙离子拮抗等作用。研究表明,毒蕈碱胆碱能1(M1)受体激动药对AD模型动物的学习记忆能力有显著改善作用,同时可以减少脑内海马区Aβ沉积,减轻神经元变性和缺失。流行病学研究发现,长期使用NSAIDs并且携带ApoE4等位基因的人群,AD认知障碍可得到一定程度的改善[18]。氧化应激会损害神经元生物大分子及其生物膜,对AD的发生有一定促进作用,但抗氧化应激药物在临床上治疗AD的效果却不尽人意。一些抗氧化物质如维生素C、维生素E及维生素D等摄入不足会导致AD发病率增加,用于治疗却是无效的[19-20]。近期研究表明,新型褪黑激素受体激动剂Neu-P11对AD的认知和记忆功能有改善作用[21]。治疗AD的其他药物包括针对Aβ、Tau、胰岛素、基因突变的药物以及中药。AD发病机制复杂多样,并未完全研究清楚,所以对症治疗成为现在治疗AD的常规治疗。
由于神经元的不可再生性,神经退行性疾病的不可逆性,使得目前临床药物治疗该病遇到了瓶颈[22-24]。近年来,干细胞移植被广泛应用于脊髓损伤性、脑梗死、缺血性脑病等疾病的治疗中,并都取得较好的临床效果[25-27]。
骨髓造血干细胞的临床应用已经相当成熟,其安全性和效果也得到了认可[28-29]。随着细胞技术的飞速发展,其治疗范围已不再局限于造血疾病,细胞移植疗法的日渐崛起为神经退行性疾病的治疗提供了新的路径[30-33]。细胞代替疗法成为治疗AD的最佳选择,已有实验证明,向AD啮齿动物模型移植神经前体细胞或海马神经元等细胞,它们的突触密度和认知功能都有所提高[34-36]。虽然干细胞移植治疗AD的临床试验研究还未见报道,但是基础实验研究已经开展,已有研究人员获得了AD患者多能诱导干细胞,并将其用于AD的发病机制、诊断和治疗的研究[37]。最近有研究报道,将小鼠胚胎干细胞体外分化成熟且功能完善的前脑胆碱能神经元移植至AD小鼠模型基底前脑部位,结果发现,移植后小鼠学习和记忆能力显著提高,这为开发胚胎干细胞来源的胆碱能神经元用于AD治疗打下了良好的临床前基础[38]。
3 骨髓间充质干细胞移植治疗AD的现状
移植骨髓间充质干细胞(BMSCs)已经被认为是一种防治各种神经退行性疾病的极具潜力的方法,包括AD[39]。BMSCs治疗AD小鼠模型的研究已有报道[40]。BMSCs具有自我更新的能力,存在于骨髓间质中,在一些特定情况下可分化为软骨细胞、成骨细胞、脂肪细胞、成纤维细胞、血管内皮细胞、肝卵圆细胞、平滑肌细胞、神经细胞和心肌细胞等[41]。目前细胞治疗技术所用的细胞可分为3类,第一类为成熟及有一定增殖能力的未成熟功能细胞,如神经前体细胞和少突胶质前体细胞等;第二类为基质或间充质类细胞,可来源于血和骨髓[42];第三类为具有多分化潜能的干细胞,但其安全性没有得到证实。
骨髓间充质干细胞具有多向分化的潜能,现已证明其可以体外分化成为神经样细胞,移植入人体也可以诱导分化为神经细胞,并且向损伤部位迁移,为神经损伤疾病的治疗提供了新的契机[43]。但是,骨髓间充质干细胞的研究仍然处于基础研究阶段,临床研究的安全性等问题使其临床应用受到限制。近期有实验将骨髓间充质干细胞立体定位移植入患者的侧脑室区域治疗帕金森病,结果显示,帕金森病评定量表中患者面部表情、步态和冻结发作等主观症状均得到改善,且无严重不良事件发生[44]。在Lee等人的研究中发现,BMSCs可以减弱β淀粉样沉积对记忆的损害,抑制神经细胞的凋亡[45]。最近研究证明,BMSCs有助于大脑损伤的修复,其作用机制是产生乙酰胆碱转移酶的细胞数量和生存表达显著提高,并且选择性地增强seladin-1和巢蛋白基因的表达,组织病理学检查表明,BMSCs可以清除海马β-淀粉样蛋白斑块,在治疗AD中表现出抗凋亡和神经源性免疫调节作用[46]。在Bae等人的研究中发现,向AD模型小鼠的大脑内注射BMSCs可显著降低大脑β-淀粉样蛋白的沉积,脑内dynamin 1和Synapsin 1以及与突触传递有关的突触前体蛋白的表达也会明显降低,并且这种作用在BMSCs治疗后的AD小鼠脑内可持续2个月。实验数据显示,BMSCs会显著降低AD小鼠脑β-淀粉样蛋白的沉积,促进突触传递所需蛋白的提高[47]。小胶质细胞可以通过特异性吞噬作用清除β-淀粉样蛋白的沉积,BMSCs可以通过激活内源性小胶质细胞对AD大鼠产生良好的治疗效果,并且该效果与CCL5的表达有关[48]。ZHANG等对BMSCs侧脑室移植治疗AD的研究证明,移植BMSCs后的大鼠海马区酪氨酸激酶β和脑源性神经生长因子的水平显著提高,从而提高AD模型大鼠的记忆能力[49]。近两年,中药干预BMSCs移植治疗AD的效果实验也在进行,WU的实验证明,人参皂苷Rg1可以加强BMSCs移植后痴呆大鼠的空间学习记忆能力,其机制可能与调控基底前脑的mRNA和神经生长因子的表达有关[50]。高明龙等人的研究发现,将BMSCs移植入AD模型大鼠海马区后,脑组织中超氧化物歧化酶水平升高,戊二醛水平降低,可有效改善氧自由基在大鼠体内的代谢,使AD大鼠的记忆力得到显著改善[51]。张颖等人的研究证实,经BMSCs移植治疗后的AD模型大鼠脑组织细胞变性坏死数量减少,学习和记忆能力有明显提高[52]。王卓等人研究发现,向AD模型大鼠双侧海马区移植BMSCs后,BMSCs在海马区周围分化为神经丝(neurofilament,NF)和胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)阳性细胞,脑内β淀粉样蛋白沉积明显降低,可有效提高AD大鼠的学习记忆能力[53]。随着对BMSCs移植治疗AD实验研究的不断深入,其作用机制正在逐渐被科研人员所了解。
干细胞已被成功应用于治疗血液疾病领域,干细胞治疗AD的前景也相当广阔。随着BMSCs研究的不断进展,其移植治疗AD模型动物的初见成效,为BMSCs移植治疗AD的临床研究打下了基础。然而现阶段干细胞研究主要集中在基础实验阶段,干细胞技术治疗AD的临床实验研究依旧较少,并且从基础动物实验到临床实验研究还存在很多困难,如BMSCs定位移植入脑迁移至海马区的确定时间,在脑内内环境中BMSCs向神经细胞分化的机制及其向肿瘤细胞分化的安全性问题等还有待进一步研究。
[1]GOEDERT M,SPILLANTINI M G.A century of Alzheimer’s disease[J].Science,2006,314(5800):777-781.
[2]SASSI C,GUERREIRO R,GIBBS R,et al.Investigating the role of rare coding variability in Mendelian dementia genes(APP,PSEN1,PSEN2,GRN,MAPT,and PRNP)in late-onset Alzheimer’s disease[J].Neurobiol Aging,2014,35(12):2881-2886.
[3]Alzheimer’s Association.2012 Alzheimer’s disease facts and figures[J].Alzheimers Dement,2012,8(2):131-168.
[4]LI X,LI M,LI Y,et al.Cellular and molecular mechanisms underlying the action of ginsenoside Rg1 against Alzheimer’s disease[J].Neural Regen Res,2012,7(36):2860-2866.
[5]SCHWARZ S C,SCHWARZ J.Translation of stem cell therapy for neurological diseases[J].Transl Res,2010,156(3):155-160.
[6]BAHARNOORI M,BRAKE W G,SRIVASTAVA L K.Prenatal immune challenge induces developmental changes in the morphology of pyramidal neurons of the prefrontal cortex and hippocampus in rats[J].Schizophr Res,2009,107(1):99-109.
[7]DEZAWA M,KANNO H,HOSHINO M,et al.Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation[J].J Clin Invest,2004,113(12):1701-1710.
[8]RONSYN M W,DAANS J,SPAEPEN G,et al.Plasmid-based genetic modification of human bone marrow-derived stromal cells:analysis of cell survival and transgene expression after transplantation in rat spinal cord[J].BMC Biotechnol,2007,7(1):90.
[9]FAIVRE E,HOLSCHER C.Neuroprotective effects of D-Ala2GIP on Alzheimer’s disease biomarkers in an APP/PS1 mouse model[J].Alzheimer’s Res The,2013,5(2):20.
[10]CHEN Z C,ZHONG C J.Oxidative stress in Alzheimer’s disease[J].Neurosci Bull,2014,30(2):271-281.
[11]PETERSEN R B,NUNOMURA A,LEE H G,et al.Signal transduction cascades associated with oxidative stress in Alzheimer’s disease[J].J Alzheimers Dis,2007,11(2):143-152.
[12]ANCOLI-ISRAEL S,PALMER B W,COOKE J R,et al.Cognitive effects of treating obstructive sleep apnea in Alzheimer’s disease:a randomized controlled study[J].Am Geriatr Soc,2008,56(11):2076-2081.
[13]TILLEMENT L,LECANU L,PAPADOPOULOS V.Alzheimer’s disease:effects of beta-amyloid on mitochondria[J].Mitochondrion,2011,11(1):13-21.
[14]MICHELUCCI A,HEURTAUX T,GRANDBARBE L,et al.Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions:effects of oligomeric and fibrillary amyloid-β[J].J Neuroimmunol,2009,210(1-2):3-12.
[15]KYRKANIDES S,TALLENTS R H,MILLER J N,et al.Osteoarthritis accelerates and exacerbates Alzheimer’s disease pathology in mice[J].J Neuroinflammation,2011,8:112.
[16]COLOVIC M B,KRSTIC D Z,LAZAREVIC-PASTI T D,et al.Acetylcholinesterase inhibitors:pharmacology and toxicology[J].Curr Neuropharmcol,2013,11(3):315-335.
[17]MINARINI A,MILELLI A,SIMONI E,et al.Multifunctional tacrine derivatives in Alzheimer’s disease[J].Curr Top Med Chem,2013,13(15):1771.
[18]DRYE L T,ZANDI P P.Role of APOE and age at enrollment in the Alzheimer’s disease anti-inflammatory prevention trial(ADAPT)[J].Dement Geriatr Cogn Dis Extra,2012,2(1):304.
[19]DEVORE E E,GRODSTEIN F,VAN R,et al.Dietary antioxidants and long-term risk of dementia[J].Arch Neurol,2010,67(7):819.
[20]LLEWELLYN D J,LANG I A,LANGA K M,et al.Vitamin D and risk of cognitive decline in elderly persons[J].Arch Intern Med,2010,170(13):1135.
[21]HE P,OUYANG X,ZHOU S,et al.A novel melatonin agonist Neu-P11 facilitates memory performance and improves cognitive impairment in a rat model of Alzheimer’disease[J].Horm Behav,2013,64(1):1.
[22]CHAN K Y,WANG W,WU J J,et al.Epidemiology of Alzheimer’s disease and other forms of dementia in China,1990-2010:a systematic review and analysis[J].Lancet,2013,381(9882):2016-2023.
[23]REIMAN E M.Alzheimer’s disease and other dementias: advances in 2013[J].Lancet Neurol,2014,13(1):3-5.
[24]ROSENBLUM W I.Why Alzheimer trials fail:Removing soluble oligomeric beta amyloid is essential,inconsistent,and difficult[J].Neurobiol Aging,2014,35(5):969-974.
[25]HWANG D H,SHIN H Y,KIM B G.Fortuitous benefits of activity-based rehabilitation in stem cell-based therapy for spinal cord repair:enhancing graft survival[J].Neural Regen Res,2015,10(10):1589-1590.
[26]YIN Y,ZHOU X,GUAN X,et al.In vivo tracking of human adipose-derived stem cell labeled with ferumoxytol in rats with middle cerebral artery occlusion by magnetic resonance imaging[J].Neural Regen Res,2015,10(6):909-915.
[27]YU H B,CHEN P D,YANG Z X,et al.Electro-acupuncture at Conception and Governor vessels and transplantation of umbilical cord blood-derived messenchymal stem cells for treating cerebral ischemia/reperfusion injury[J].Neural Regen Res,2014,9(1):84-91.
[28]MIURA Y,YOSHIOKA S,YAO H,et al.Chimerism of bone marrow mesenchymal stem/stromal cells in allogeneic hematopoietic cell transplantation:is it clinically relevant[J].Chimerism,2013,4(3):78-83.
[29]RAMKUMAR C,GERSTEIN R M,ZHANG H.Serial transplantation of bone marrow to test self-renewal capacity of hematopoietic stem cells in vivo[J].Methods Mol Biol,2013,976:17-24.
[30]OH K W,MOON C,KIM H Y,et al.Phase Ⅰ trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis[J].Stem Cells Transl Med,2015,4(6):590-597.
[31]LEE H J,KIM K S,AHN J,et al.Human motor neurons generated from neural stem cells delay clinical onset and prolong life in ALS mouse model[J].PLoS One,2014,9(5):e97518.
[32]FELDMAN E L,BOULIS N M,HUR J,et al.Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis:phase 1 trial outcomes[J].Ann Neurol,2014,75(3):363-373.
[33]LAMPRON A,PIMENTEL COELHO P M,RIVEST S.Migration of bone marrow-derived cells into the central nervous system in models of neurodegeneration[J].J Comp Neurol,2013,521(17):3863-3876.
[34]WANG Z,PENG W,ZHANG C,et al.Effects of stem cell transplantatiom on cognitive decline in animal models of Alzheimer’s disease:a systematic review and meta-analysis[J].Sci Rep,2015,5:12134.
[35]TONG L M,FONG H,HUANG Y.Stem cell therapy for Alzheimer’s disease and related disorders:current status and future perspectives[J].Exp Mol Med,2015,47:e151.
[36]ZHANG W,GU G J,SHEN X,et al.Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease-like pathology[J].Neurobiol Aging,2015,36(3):1282-1292.
[37]AGER R R,DAVIS J L,AGAZARYAN A,et al.Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss[J].Hippocampus,2015,25(7):813-826.
[38]YUE W,LI Y,ZHANG T,et al.ESC-derived basal forebrain cholinergic neurons ameliorate the cognitive symptoms associated with Alzheimer’s disease in mouse models[J].Stem Cell Reports,2015,5:776-790.
[39]LEE J K,JIN H K,ENDO S,et al.Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses[J].Stem Cells,2010,28(2):329-343.
[40]LIU Z L,WANG C,WANG X,et al.Therapeutic effects of transplantation of as-MiR-937-expressing mesenchymal stem cells in murine model of Alzheimer’s disease[J].Cell Physiol Biochem,2015,37(1):321-330.
[41]SCHWARTZ R E,REYES M,KOODIE L,et al.Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-likecells[J].J Clin Invest,2002,109(10):1291-1302.
[42]YEH D C,CHAN T M,HARN H J,et al.Adipose tissue-derived stem cells in neural regenerative medicine[J].Cell Transplant,2015,24(3):487-492.
[43]CHO J S,PARK H W,PARK S K,et al.Transplantation of mesenchymal stem cells enhances axonal outgrowth and cell survival in an organotypic spinal cord slice culture[J].Neurosci Lett,2009,454(1):43-48.
[44]VENKATARAMANA N K,KUMAR S K,BALARAJU S,et al.Open-labeled study of unilateral autologous bone marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease[J].Transl Res,2010,155(2):62-70.
[45]LEE J K,JIN H K,BAE J S.Bone marrow-derived mesenchymal stem cells attenuate amyloid β-induced memory impairment and apoptosis by inhibiting neuronal cell death[J].Curr Alzheimer Res,2010,7(6):540-548.
[46]SALEM A M,AHMED H H,ATTA H M,et al.Potential of bone marrow mesenchymal stem cells in management of Alzheimer’s disease in female rats[J].Cell Biol Int,2014,38(12):1367-1383.
[47]BAE J S,JIN H K,LEE J K,et al.Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-β deposits and the improvement of synaptic transmission in a mouse model of pre-dementia Alzheimer’s disease[J].Curr Alzheimer Res,2013,10(5):524-531.
[48]LEE J K,SCHUCHMAN E H,JIN H K,et al.Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activation by amyloid β ameliorates Alzheimer’s disease in mice by recruiting bone marrow-induced microglia immune responses[J].Stem Cells,2012,30(7):1544-1555.
[49]ZHANG P,ZHAO G,KANG X,et al.Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer’s disease[J].Neural Regen Res,2012,7(4):245-250.
[50]WU W,YANG J Q,HE Z Y.Effect of ginsenoside Rg1 on the spatial learning-memory ability in dementia rats after transplanted with bone marrow mesenchymal stem cells[J].Zhongguo Zhong Xi Yi Jie He Za Zhi,2011,31(6):799-802.
[51]高明龙,孙丽,赵小川,等.骨髓间充质干细胞移植对老年痴呆行为学的影响[J].中国组织工程研究,2016,32(20):4798-4804.
[52]张颖,郭建华,闫洪娟,等.骨髓间充质干细胞移植治疗老年痴呆模型大鼠的行为学检测[J].中国组织工程研究,2016,36(20):5371-5377.
[53]王卓,任向前,未东兴.向海马区移植骨髓间充质干细胞改善阿尔茨海默病大鼠记忆能力[J].中国组织工程研究,2014,50(18):8130-8134.
[责任编辑:李蓟龙 英文编辑:刘彦哲]
Research Progresses of Bone Marrow Mesenchymal Stem Cell Transplantation for Treatment of Alzheimer’s Disease
LI Peng-tao1,YANG Xiao-nan1,ZHANG Hui2
(1.Graduate Faculty,Hebei North University,Zhangjiakou,Hebei 075000,China; 2.School of Basic Medicine,Hebei North University,Zhangjiakou,Hebei 075000,China)
Alzheimer’s diseases(AD)is a kind of disease that cholinergic and dopaminergic neurons are degenerative.AD is mainly treated by medication at present,but the therapeutic effect is unsatisfactory in advanced stage of AD.With the gradual development of cell therapy technology,the research of cell transplantation becomes a hot spot.Bone marrow mesenchymal stem cells(BMSCs)is a kind of non-hematopoietic stem cell,which it is in the bone marrow at present and has the potential of multi-directional differentiation.The BMSCs for the treatment of AD provides a new thought for the treatment of neurodegenerative diseases.There has been a lot of research on BMSCs transplantation for the treatment of AD at home and abroad,and the research achievement is fruitful.But there are amount of difficulties to apply the therapy to clinic treatment.In this paper,the research development of AD and BMSCs as well as BMSCs transplantation that has been used to treat AD were reviewed.
Alzheimer’s diseases;bone marrow mesenchymal stem cell;cell transplantation
河北省高等学校科学技术研究项目(No.ZD2014067)
李鹏涛(1991-),男,汉族,河北邯郸人,河北北方学院2014级硕士研究生。
张辉(1963-),男,汉族,河北三河人,教授,硕士生导师,主要从事神经损伤修复研究。
R 74
C
10.3969/j.issn.1673-1492.2017.08.018
来稿日期:2016-11-29