桑军军,李颖芳,潘炜华,廖万清
上海长征医院皮肤病与真菌病研究所,上海市医学真菌分子生物学重点实验室,全军真菌与真菌病重点实验室,第二军医大学附属长征医院皮肤科,上海 200003
·特约专稿·
病原性真菌蛋白酶致病机制研究进展
桑军军,李颖芳,潘炜华,廖万清
上海长征医院皮肤病与真菌病研究所,上海市医学真菌分子生物学重点实验室,全军真菌与真菌病重点实验室,第二军医大学附属长征医院皮肤科,上海 200003
蛋白酶在真菌的生存和生长过程中具有重要作用,同时也被认为是病原性真菌的重要毒力因子之一。病原性真菌蛋白酶可能参与真菌对宿主的黏附、定植和播散以及逃避宿主的免疫应答过程。部分蛋白酶还被认为是变应原,可诱发哮喘和过敏性疾病。在不同的病原性真菌中,蛋白酶作用也不同。研究蛋白酶的致病机制,可进一步了解真菌感染机制,为诊断及治疗真菌感染提供线索。
病原性真菌;蛋白酶;致病机制;真菌感染
目前地球上已被描述的真菌有10万多种,其中400多种可导致人类感染。人群普遍易患浅部真菌病,全世界患病率高达20%~25%[1];而系统性真菌感染具有诊断困难、治疗费用高、病死率高等特点。假丝酵母(又称念珠菌)是主要侵袭性真菌,但其他侵袭性真菌如曲霉、隐球菌等在造血干细胞移植及实体器官移植者中的感染率增高[2]。蛋白酶在真菌的生存和生长过程中具有重要作用,同时也被认为是病原性真菌的重要毒力因子之一。研究蛋白酶可能作为治疗真菌病的一个潜在靶点,为治疗真菌感染提供线索。
蛋白酶是指具有分解肽键功能,可将蛋白质分解为肽链或氨基酸的一类酶。蛋白酶按作用模式和活性部位可分为8类:天冬酰胺蛋白酶、天冬氨酸蛋白酶、半胱氨酸蛋白酶、谷氨酸蛋白酶、金属蛋白酶、丝氨酸蛋白酶、苏氨酸蛋白酶及其他未知蛋白酶[3]。Rawlings和Barrett将蛋白酶进一步归为若干个家族,每个酶由包含的肽酶催化型的首个大写字母和特定的编号命名(A:天冬氨酸;C:半胱氨酸;G:谷氨酸;M:金属;N:天冬酰胺;S:丝氨酸;T:苏氨酸;U:Unknown)。每个家族又可细分为亚家族,包含第2个大写字母。不同家族具有相同来源的蛋白酶被归为同一族。蛋白酶的分类和命名及其相关基因、底物和抑制剂可在网站http://merops.sanger.ac.uk查询[4]。蛋白酶又可分为外切蛋白酶和内切蛋白酶,外切蛋白酶只识别并分解多肽N端和C端的肽键,而内切蛋白酶只分解肽链内部的肽键。
真菌蛋白酶包括胞外蛋白酶、膜结合蛋白酶和胞内蛋白酶。胞外蛋白酶一直被认为是病原性真菌的毒力因子之一,很多病原性真菌在体外或感染时会分泌蛋白酶[5];膜结合蛋白酶在真菌感染中的作用也逐渐被认识[6];胞内蛋白酶在维持真菌正常生理功能方面起重要作用,在感染过程中也发挥一定作用。不同真菌的蛋白酶在感染中的作用并不相同。
2.1 念珠菌蛋白酶致病机制
念珠菌可引起局部皮肤黏膜感染,还可导致系统性感染。天冬氨酸蛋白酶在念珠菌中研究得最清楚[7]。天冬氨酸蛋白酶家族可能影响念珠菌黏附、定植、营养和播散,外分泌的蛋白酶还可通过激活和刺激白细胞介素(interleukin,IL)及其他细胞因子表达而介导宿主的炎症免疫应答[8]。有研究表明,不具有感染性的念珠菌种类含有较少的SAP基因,具有抗药性的菌株Sap分泌量高于敏感株[9]。Kantarcioglu等检测临床分离的95株念珠菌,发现95%具有蛋白酶活性,而部分近平滑念珠菌和热带念珠菌未发现拥有蛋白酶活性[10]。
白念珠菌有10个SAP基因[11],分为6个亚群,分别为SAP1~SAP3、SAP4~SAP6、SAP7、SAP8、SAP9、SAP10。Sap1~Sap3在基因水平上有67%的相似性;Sap4~Sap6在基因水平上有89%的相似性;Sap8与Sap1~Sap3和Sap4~Sap6属于同一族;Sap7与其他同工酶只有20%~27%的相似性;而Sap9和Sap10属于细胞膜或壁上的糖基磷脂酰肌醇(glycosylphosphatidylinositol,GPI)锚定蛋白酶。Sap1~Sap3主要在白念珠菌黏附宿主细胞过程中发挥作用,功能主要体现在黏膜感染初级阶段,已在口腔和阴道感染研究中被证实。SAP1~SAP3在酵母阶段时表达。Sap2是白念珠菌在用以蛋白为氮源的培养基培养时大量分泌的蛋白酶,在念珠菌系统性播散感染中起重要作用[12]。Sap4~Sap6可能参与念珠菌对抗吞噬细胞的攻击,主要在系统性念珠菌感染中扮演重要角色,在实质器官感染时非常重要。有研究表明,Sap4~Sap6仅在菌丝阶段产生,而菌丝形成是念珠菌逃避巨噬细胞吞噬的重要手段。Sap4~Sap6可能在Sap2分泌过程中起重要作用,但也有研究表明Sap1~Sap6在体外感染重组上皮细胞时不是必需的[13]。在体外感染重组上皮细胞模型中,SAP1~SAP6基因中只有SAP5被激活。SAP1~SAP3基因缺失株和SAP4~SAP6基因缺失株在体外重组上皮细胞感染模型中并未出现毒力下降。Buu等发现,Sap6在维持白念珠菌细胞表面完整性方面具有重要作用[14]。SAP7基因在小鼠念珠菌阴道感染模型和人口腔感染中表达增高,SAP7缺陷株在静脉感染中表现为毒力下降,而在阴道感染中无此现象。SAP8的表达与温度相关[15],与37 ℃相比,25 ℃时其表达上调。Sap9和Sap10在维持细胞壁完整性和白念珠菌黏附宿主细胞方面有重要作用。Hornbach等发现,Sap9参与激活保护性的先天性免疫,活化中性白细胞[16]。Kozik等研究10种Sap对人激肽释放的影响,发现Sap3和Sap9可能与激肽的释放相关[17]。
光滑念珠菌具有与酿酒酵母GPI锚定天冬氨酸蛋白酶同源的编码蛋白酶基因YPS,在侵袭中起一定作用。基因分析表明,YPS基因对光滑念珠菌维持细胞壁完整及黏附宿主细胞是必需的;通过监测细胞壁黏附素Epa1,发现Yps在细胞壁重构过程中扮演重要角色[18]。对低pH值环境中光滑念珠菌转录水平的分析显示,7个CgYps上调。Bairwa等研究表明,CgYps1在光滑念珠菌调节pH平衡方面起作用[19];酸性环境中光滑念珠菌通过CgYps1依赖性方式降低细胞壁总β葡聚糖水平[19]。此外,有研究者发现一种定位于光滑念珠菌细胞壁的丝氨酸蛋白酶[20],它不仅是细胞壁的结构蛋白之一,在β-1,3-葡聚糖酶的作用下还具有分解明胶的功能。
热带念珠菌有4个编码天冬氨酸蛋白酶的基因SAPT1~SATP4,编码Sapt1p~Sapt4p[21]。其中与白念珠菌Sap2同源的蛋白Sapt1p是热带念珠菌在以牛血清白蛋白(bovine serum albumin,BSA)为氮源的培养基中培养时分泌,而Sapt2p和Sapt3p未在体外被检出。
近平滑念珠菌有编码天冬氨酸蛋白酶的基因SAPP1~SAPP3,编码Sapp1~Sapp3。近平滑念珠菌天冬氨酸蛋白酶的分泌可能与口腔念珠菌感染相关[22]。
丝氨酸蛋白酶是最大的一类蛋白酶家族,占已知蛋白酶数量的1/3以上。Portela等研究了从人类免疫缺陷病毒(human immunodeficiency virus,HIV)感染患者体内所分离出的念珠菌(包括5株白念珠菌、1株都柏林念珠菌、1株热带念珠菌)中丝氨酸蛋白酶的功能[23],结果提示丝氨酸蛋白酶可能参与最初念珠菌对宿主的定植。
Rodior等研究了白念珠菌金属蛋白酶在细胞外基质对4种构成蛋白(Ⅰ型胶原蛋白、Ⅳ型胶原蛋白、层粘连蛋白、纤维连接蛋白)的分解能力,发现每种蛋白均可被分解。Ⅰ型胶原蛋白和纤维连接蛋白可被完全分解,而Ⅳ型胶原蛋白和层粘连蛋白可部分被分解,提示金属蛋白酶可能在白念珠菌侵袭中扮演重要角色[24]。
2.2 皮肤癣菌蛋白酶致病机制
皮肤癣菌是重要的致浅部真菌感染的病原性真菌。在感染过程中,皮肤癣菌先黏附于皮肤表面,然后将角质层分解,进而感染[25]。蛋白酶可能在黏附、入侵及在角质组织中生长等方面发挥作用[26]。皮肤癣菌分泌的蛋白酶多数为丝氨酸蛋白酶和金属蛋白酶[5]。有研究表明,皮肤癣菌可分泌亚硝酸盐作为还原剂。在亚硝酸盐存在的情况下,角蛋白的二硫键会直接裂解为半胱氨酸和S-磺基半胱氨酸,并阻止蛋白被外切蛋白酶或内切蛋白酶进一步消化[27]。亚硫酸盐溶解很可能是先于所有蛋白酶消化角化组织的必需步骤。
犬小孢子菌中有2个编码二肽基肽酶的基因,分别编码DppⅣ和DppⅤ[28]。这两个蛋白酶属丝氨酸蛋白酶,可能在犬小孢子菌致病过程中起作用。这两种基因在豚鼠模型及自然感染的猫中均表达,在以蛋白质为唯一氮源和碳源的培养基中也表达,但DppⅣ和DppⅤ不能促进角蛋白分解,可能作用于小的可溶解的肽链。枯草杆菌蛋白酶Sub3可能为犬小孢子菌黏附过程所必需,而在侵袭发病中并不必需[29]。Baldo等的研究也证实Sub3在黏附猫角膜细胞过程中起重要作用[30]。金属蛋白酶已在犬小孢子菌中被鉴定出来,某些被分离和纯化[31]。MEP1、MEP2、MEP3是犬小孢子菌中的金属蛋白酶基因,且Mep3已在毕赤酵母中重组,而豚鼠模型中至少Mep2和Mep3在感染过程中产生[32]。
红癣毛癣菌有7个丝氨酸蛋白酶Sub1~Sub7,其中Sub2与曲霉Sub同源,其他(Sub1、Sub3~Sub7)均为皮肤癣菌特有[33]。Sub3和Sub4可在以大豆蛋白为唯一氮源的培养基上清液中发现,在毕赤酵母中重组酶会被角蛋白激活,提示这两种蛋白酶可能在侵入角蛋白组织中起重要作用。Sub6被认为是迟发超敏反应的主要物质,并调节红癣毛癣菌蛋白酶的分泌[34]。
Staib等研究了苯黑末节皮真菌在角蛋白生长时基因的表达情况,发现23个蛋白酶基因[34],提示蛋白酶可能是其感染毒力因素之一。
2.3 隐球菌蛋白酶致病机制
有研究表明,新生隐球菌可通过分泌蛋白酶在以蛋白质为氮源的培养基中生长[35]。在隐球菌外分泌蛋白的检测中也发现多种蛋白酶[36],已有研究分离并纯化了隐球菌体外分泌蛋白酶[37-39]。Rodrigues等研究显示,隐球菌培养上清液可导致人纤维连接蛋白裂解,此作用可能由丝氨酸蛋白酶介导,因为该过程可被丝氨酸蛋白酶的特异性抑制剂苯甲基磺酰氟(phenylmethane sulfonyl fluoride,PMSF)完全阻断,而不能被金属蛋白酶、天冬氨酸蛋白酶及半胱氨酸蛋白酶抑制剂阻断[40]。某些丝氨酸蛋白酶可分解宿主基底部细胞膜相关蛋白,包括Ⅳ型胶原蛋白、层粘连蛋白、纤维连接蛋白。隐球菌蛋白酶可能在隐球菌从肺泡侵入肺组织过程中起重要作用[41]。体外培养脑血管内皮细胞经丝氨酸蛋白酶或隐球菌培养上清液处理后,通透性增加,该过程可被抑肽酶抑制。经抑肽酶处理的大鼠隐球菌感染模型与单独隐球菌感染相比,血脑屏障的通透性得到改善,从而推测丝氨酸蛋白酶可能在隐球菌通过血脑屏障中发挥作用[42]。此外,隐球菌蛋白酶也可分解补体因子,提示其可能参与干扰宿主免疫[43-44]。另外,还发现一种可能参与隐球菌黑色素合成的丝氨酸蛋白酶(未发表数据)。
Vu等研究表明,一种外分泌金属蛋白酶mpr1缺陷株不能穿过体外血脑屏障模型。在动物感染模型中,mpr1缺陷株毒力明显下降,脑部菌量负荷也明显减轻。将mpr1基因移入啤酒酵母中表达时,原本无法穿过血脑屏障的啤酒酵母可通过体外血脑屏障,从而推测隐球菌Mpr1可能在其通过血脑屏障中起重要作用[45]。去泛素化酶Ubp5也被发现在隐球菌对环境的应激(包括高温、高压、抗真菌药物)中起重要作用[46]。基质金属蛋白酶(matrix metalloproteinase,MMP)可通过诱导肺部趋化因子来调节炎症细胞的浸润[47]。
2.4 曲霉蛋白酶致病机制
曲霉尤其烟曲霉是重要的经空气传播的机会性致病真菌,可导致免疫缺陷患者罹患严重的曲霉感染[48]。多种蛋白酶包括丝氨酸蛋白酶、天冬氨酸蛋白酶、金属蛋白酶等已被分离和纯化[49-53]。丝氨酸蛋白酶Alp1可裂解补体成分C3、C4、C5和C1q及IgG[54];Alp1还可诱导哮喘发生[50,55]。Alp2为烟曲霉孢子形成所必需,提示其可能参与烟曲霉侵袭过程[56]。Monod等从烟曲霉中分离和纯化了金属蛋白酶,并在患者血液中检测出相应抗体[51]。烟曲霉分泌蛋白酶还被认为是诱导气道过敏性反应的原因之一,金属蛋白酶Asp f5和丝氨酸蛋白酶Asp f13(Alp1)可诱导小鼠模型炎症细胞的募集及气道的重塑[57]。
2.5 其他病原性真菌蛋白酶致病机制
组织胞浆菌可导致组织胞浆菌病,主要分布在密西西比河流域[58]。研究组织胞浆菌在不同形态下的蛋白酶分泌,发现蛋白酶活性在酵母形态下高于菌丝形态[59-60]。组织胞浆菌可分泌DppⅣ,DppⅣ可分解具有免疫调节功能的P物质,提示蛋白酶在组织胞浆菌感染时可能影响宿主的免疫功能[61]。巴西副球孢子菌中已分离出丝氨酸蛋白酶[62],并证明其具有分解基底膜的能力[63]。枝孢霉的丝氨酸蛋白酶被认为是主要的变应原[64]。
虽然蛋白酶作为毒力因子在很多真菌中被研究,但对其在感染宿主中所起作用的认识还十分有限,尤其是在其特异性作用底物方面,因此研究蛋白酶特异性是以后的方向之一。通过检测宿主真菌蛋白酶或其相应抗体作为生物标记诊断真菌感染,以及以蛋白酶作为真菌感染潜在药物靶点来研究现有或新的蛋白酶抑制剂,将对真菌感染的诊治具有积极作用。
[1] Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide [J]. Mycoses, 2008, 51(Suppl 4): 2-15.
[2] Nucci M, Marr KA. Emerging fungal diseases [J]. Clin Infect Dis, 2005, 41(4): 521-526.
[3] Yike I. Fungal proteases and their pathophysiological effects [J]. Mycopathologia, 2011, 171(5): 299-323.
[4] Rawlings ND, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors [J]. Nucleic Acids Res, 2012, 40(D1): D343-D350.
[5] Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, Jousson O. Secreted proteases from pathogenic fungi [J]. Int J Med Microbiol, 2002, 292(5-6): 405-419.
[6] Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases [J]. Mol Aspects Med, 2008, 29(5): 258-289.
[7] Hruskova-Heidingsfeldova O. Secreted proteins of Candida albicans [J]. Front Biosci, 2008, 13: 7227-7242.
[8] Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis [J]. Microbiol Mol Biol Rev, 2003, 67(3): 400-428.
[9] Silva NC, Nery JM, Dias AL. Aspartic proteinases of Candida spp.: role in pathogenicity and antifungal resistance [J]. Mycoses, 2014, 57(1): 1-11.
[10] Kantarcioglu AS, Yücel A. Phospholipase and protease activities in clinical Candida isolates with reference to the sources of strains [J]. Mycoses, 2002, 45(5-6): 160-165.
[11] Monod M, Togni G, Hube B, Sanglard D. Multiplicity of genes encoding secreted aspartic proteinases in Candida species [J]. Mol Microbiol, 1994, 13(2): 357-368.
[12] De Bernardis F, Arancia S, Morelli L, Hube B, Sanglard D, Schäfer W, Cassone A. Evidence that members of the secretory aspartyl proteinase gene family, in particular SAP2, are virulence factors for Candida vaginitis [J]. J Infect Dis, 1999, 179(1): 201-208.
[13] Lermann U, Morschhäuser J. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans [J]. Microbiology, 2008, 154(Pt 11): 3281-3295.
[14] Buu LM, Chen YC. Sap6, a secreted aspartyl proteinase, participates in maintenance the cell surface integrity of Candida albicans [J]. J Biomed Sci, 2013, 20: 101. doi: 10.1186/1423-0127-20-101.
[15] Hube B, Naglik J. Candida albicans proteinases: resolving the mystery of a gene family [J]. Microbiology, 2001, 147(Pt 8): 1997-2005.
[16] Hornbach A, Heyken A, Schild L, Hube B, Löffler J, Kurzai O. The glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction of Candida albicans with human neutrophils [J]. Infect Immun, 2009, 77(12): 5216-5224.
[17] Kozik A, Gogol M, Bochenska O, Karkowska-Kuleta J, Wolak N, Kamysz W, Aoki W, Ueda M, Faussner A, Rapala-Kozik M. Kinin release from human kininogen by 10 aspartic proteases produced by pathogenic yeast Candida albicans [J]. BMC Microbiol, 2015, 15: 60. doi: 10.1186/s12866-015-0394-8.
[18] Kaur R, Ma B, Cormack BP. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata [J]. Proc Natl Acad Sci USA, 2007, 104(18): 7628-7633.
[19] Bairwa G, Kaur R. A novel role for a glycosylpho-sphatidylinositol-anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata [J]. Mol Microbiol, 2011, 79(4): 900-913.
[20] Pärnänen P, Meurman JH, Nikula-Ijäs P. A novel Candida glabrata cell wall associated serine protease [J]. Biochem Biophys Res Commun, 2015, 457(4): 676-680.
[21] Zaugg C, Borg-Von Zepelin M, Reichard U, Sanglard D, Monod M. Secreted aspartic proteinase family of Candida tropicalis [J]. Infect Immun, 2001, 69(1): 405-412.
[22] Silva S, Henriques M, Oliveira R, Azeredo J, Malic S, Hooper SJ, Williams DW. Characterization of Candida parapsilosis infection of an in vitro reconstituted human oral epithelium [J]. Eur J Oral Sci, 2009, 117(6): 669-675.
[23] Portela MB, Souza IP, Abreu CM, Bertolini M, Holandino C, Alviano CS, Santos AL, Soares RM. Effect of serine-type protease of Candida spp. isolated from linear gingival erythema of HIV-positive children: critical factors in the colonization [J]. J Oral Pathol Med, 2010, 39(10): 753-760.
[24] Rodier MH, el Moudni B, Kauffmann-Lacroix C, Daniault G, Jacquemin JL. A Candida albicans metallopeptidase degrades constitutive proteins of extracellular matrix [J]. FEMS Microbiol Lett, 1999, 177(2): 205-210.
[25] Baldo A, Monod M, Mathy A, Cambier L, Bagut ET, Defaweux V, Symoens F, Antoine N, Mignon B. Mechanisms of skin adherence and invasion by dermatophytes [J]. Mycoses, 2012, 55(3): 218-223.
[26] Vermout S, Tabart J, Baldo A, Mathy A, Mignon B. Pathogenesis of dermatophytosis [J]. Mycopathologia, 2008, 166(5-6): 267-275.
[27] Léchenne B, Reichard U, Zaugg C, Fratti M, Kunert J, Boulat O, Monod M. Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes [J]. Microbiology, 2007, 153(Pt 3): 905-913.
[28] Vermout S, Baldo A, Tabart J, Losson B, Mignon B. Secreted dipeptidyl peptidases as potential virulence factors for Microsporum canis [J]. FEMS Immunol Med Microbiol, 2008, 54(3): 299-308.
[29] Baldo A, Mathy A, Tabart J, Camponova P, Vermout S, Massart L, Maréchal F, Galleni M, Mignon B. Secreted subtilisin Sub3 from Microsporum canis is required for adherence to but not for invasion of the epidermis [J]. Br J Dermatol, 2010, 162(5): 990-997.
[30] Baldo A, Tabart J, Vermout S, Mathy A, Collard A, Losson B, Mignon B. Secreted subtilisins of Microsporum canis are involved in adherence of arthroconidia to feline corneocytes [J]. J Med Microbiol, 2008, 57(Pt 9): 1152-1156.
[31] Brouta F, Descamps F, Fett T, Losson B, Gerday C, Mignon B. Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis [J]. Med Mycol, 2001, 39(3): 269-275.
[32] Brouta F, Descamps F, Monod M, Vermout S, Losson B, Mignon B. Secreted metalloprotease gene family of Microsporum canis [J]. Infect Immun, 2002, 70(10): 5676-5683.
[33] Jousson O, Léchenne B, Bontems O, Mignon B, Reichard U, Barblan J, Quadroni M, Monod M. Secreted subtilisin gene family in Trichophyton rubrum [J]. Gene, 2004, 339: 79-88.
[34] Staib P, Zaugg C, Mignon B, Weber J, Grumbt M, Pradervand S, Harshman K, Monod M. Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection [J]. Microbiology, 2010, 156(Pt3): 884-895.
[35] Aoki S, Ito-Kuwa S, Nakamura K, Kato J, Ninomiya K, Vidotto V. Extracellular proteolytic activity of Cryptococcus neoformans [J]. Mycopathologia, 1994, 128(3): 143-150.
[36] Campbell LT, Simonin AR, Chen C, Ferdous J, Padula MP, Harry E, Hofer M, Campbell IL, Carter DA. Cryptococcus strains with different pathogenic potentials have diverse protein secretomes [J]. Eukaryot Cell, 2015, 14(6): 554-563.
[37] Yoo JI, Lee YS, Song CY, Kim BS. Purification and characterization of a 43-kilodalton extracellular serine proteinase from Cryptococcus neoformans [J]. J Clin Microbiol, 2004, 42(2): 722-726.
[38] Rao S, Mizutani O, Hirano T, Masaki K, Iefuji H. Purification and characterization of a novel aspartic protease from basidiomycetous yeast Cryptococcus sp. S-2 [J]. J Biosci Bioeng, 2011, 112(5): 441-446.
[39] Pinti M, Orsi CF, Gibellini L, Esposito R, Cossarizza A, Blasi E, Peppoloni S, Mussini C. Identification and characterization of an aspartyl protease from Cryptococcus neoformans [J]. FEBS Lett, 2007, 581(20): 3882-3886.
[40] Rodrigues ML, dos Reis FC, Puccia R, Travassos LR, Alviano CS. Cleavage of human fibronectin and other basement membrane-associated proteins by a Cryptococcus neoformans serine proteinase [J]. Microb Pathog, 2003, 34(2): 65-71.
[41] Goldman D, Lee SC, Casadevall A. Pathogenesis of pulmonary Cryptococcus neoformans infection in the rat [J]. Infect Immun, 1994, 62(11): 4755-4761.
[42] Xu CY, Zhu HM, Wu JH, Wen H, Liu CJ. Increased permeability of blood-brain barrier is mediated by serine protease during Cryptococcus meningitis [J]. J Int Med Res, 2014, 42(1): 85-92.
[43] Eigenheer RA, Jin LY, Blumwald E, Phinney BS, Gelli A. Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans [J]. FEMS Yeast Res, 2007, 7(4): 499-510.
[44] Carruthers VB, Blackman MJ. A new release on life: emerging concepts in proteolysis and parasite invasion [J]. Mol Microbiol, 2005, 55(6): 1617-1630.
[45] Vu K, Tham R, Uhrig JP, Thompson GR 3rd, Na Pombejra S,Jamklang M, Bautos JM, Gelli A. Invasion of the central nervous system by Cryptococcus neoformans requires a secreted fungal metalloprotease [J]. MBio, 2014, 5(3): e01101-14. doi: 10.1128/mBio.01101-14.
[46] Meng Y, Zhang C, Yi J, Zhou Z, Fa Z, Zhao J, Yang Y, Fang W, Wang Y, Liao WQ. Deubiquitinase Ubp5 is required for the growth and pathogenicity of Cryptococcus gattii [J]. PLoS One, 2016, 11(4): e0153219.
[47] Supasorn O, Sringkarin N, Srimanote P, Angkasekwinai P. Matrix metalloproteinases contribute to the regulation of chemokine expression and pulmonary inflammation in Cryptococcus infection [J]. Clin Exp Immunol, 2016, 183(3): 431-440.
[48] Denning DW. Invasive aspergillosis [J]. Clin Infect Dis, 1998, 26(4): 781-803.
[49] Reichard U, Cole GT, Rüchel R, Monod M. Molecular cloning and targeted deletion of PEP2 which encodes a novel aspartic proteinase from Aspergillus fumigatus [J]. Int J Med Microbiol, 2000, 290(1): 85-96.
[50] Reichard U, Büttner S, Eiffert H, Staib F, Rüchel R. Purification and characterisation of an extracellular serine proteinase from Aspergillus fumigatus and its detection in tissue [J]. J Med Microbiol, 1990, 33(4): 243-251.
[51] Monod M, Paris S, Sanglard D, Jaton-Ogay K, Bille J, Latgé JP. Isolation and characterization of a secreted metalloprotease of Aspergillus fumigatus [J]. Infect Immun, 1993, 61(10): 4099-4104.
[52] Markaryan A, Morozova I, Yu H, Kolattukudy PE. Purification and characterization of an elastinolytic metalloprotease from Aspergillus fumigatus and immunoelectron microscopic evidence of secretion of this enzyme by the fungus invading the murine lung [J]. Infect Immun, 1994, 62(6): 2149-2157.
[53] Kolattukudy PE, Lee JD, Rogers LM, Zimmerman P, Ceselski S, Fox B, Stein B, Copelan EA. Evidence for possible involvement of an elastolytic serine protease in aspergillosis [J]. Infect Immun, 1993, 61(6): 2357-2368.
[54] Behnsen J, Lessing F, Schindler S, Wartenberg D, Jacobsen ID, Thoen M, Zipfel PF, Brakhage AA. Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5 [J]. Infect Immun, 2010, 78(8): 3585-3594.
[55] Balenga NA, Klichinsky M, Xie Z, Chan EC, Zhao M, Jude J, Laviolette M, Panettieri RA Jr, Druey KM. A fungal protease allergen provokes airway hyper-responsiveness in asthma [J]. Nat Commun, 2015, 6: 6763. doi: 10.1038/ncomms7763.
[56] Reichard U, Cole GT, Hill TW, Rüchel R, Monod M. Molecular characterization and influence on fungal development of ALP2, a novel serine proteinase from Aspergillus fumigatus [J]. Int J Med Microbiol, 2000, 290(6): 549-558.
[57] Namvar S, Warn P, Farnell E, Bromley M, Fraczek M, Bowyer P, Herrick S. Aspergillus fumigatus proteases, Asp f 5 and Asp f 13, are essential for airway inflammation and remodelling in a murine inhalation model [J]. Clin Exp Allergy, 2015, 45(5): 982-993.
[58] Kauffman CA. Histoplasmosis: a clinical and laboratory update [J]. Clin Microbiol Rev, 2007, 20(1): 115-132.
[59] Okeke CN, Müller J. In vitro production of extracellular elastolytic proteinase by Histoplasma capsulatum var. duboisii and Histoplasma capsulatum var. capsulatum in the yeast phase [J]. Mycoses, 1991, 34(11-12): 461-467.
[60] Muotoe-Okafor FA, Gugnani HC, Obidoa OO. Extracellular proteolytic enzyme activity of Histoplasma capsulatum var. duboisii [J]. Mycopathologia, 1996, 133(3): 129-133.
[61] Cooper KG, Zarnowski R, Woods JP. Histoplasma capsulatum encodes a dipeptidyl peptidase active against the mammalian immunoregulatory peptide, substance P [J]. PLoS One, 2009, 4(4): e5281.
[62] Carmona AK, Puccia R, Oliveira MC, Rodrigues EG, Juliano L, Travassos LR. Characterization of an exocellular serine-thiol proteinase activity in Paracoccidioides brasiliensis [J]. Biochem J, 1995, 309 (Pt 1): 209-214.
[63] Puccia R, Carmona AK, Gesztesi JL, Juliano L, Travassos LR. Exocellular proteolytic activity of Paracoccidioides brasiliensis: cleavage of components associated with the basement membrane [J]. Med Mycol, 1998, 36(5): 345-348.
[64] Chou H, Tam MF, Lee LH, Chiang CH, Tai HY, Panzani RC, Shen HD. Vacuolar serine protease is a major allergen of Cladosporium cladosporioides [J]. Int Arch Allergy Immunol, 2008, 146(4): 277-286.
. LIAO Wanqing, E-mail: liaowanqing@sohu.com
The pathogenetic mechanism of proteases from pathogenic fungi
SANG Junjun, LI Yingfang, PAN Weihua, LIAO Wanqing
InstituteofDermatologyandMycoses,ShanghaiKeyLaboratoryofMedicalMolecularMycology,KeyLaboratoryofFungalDiseases,DepartmentofDermatology,ChangzhengHospital,TheSecondMilitaryMedicalUniversity,Shanghai200003,China
Proteases play an important role in fungal physiology and growth and in infection of pathogenic fungi as well. Fungal proteases may be involved in adhesion, colonization, spreading and escaping from the host immune response. Some proteases are considered as allergens, which can induce asthma and allergic diseases. Knowledge of the pathogenesis of the proteases will increase our understanding about the action of each fungal protease and will help to provide clues for the diagnosis and treatment of fungal infection.
Pathogenic fungus;Protease;Pathogenetic mechanism;Fungal infection
国家重点基础研究发展计划(2013CB531601),上海市医学真菌分子生物学实验室基金(14DZ2272900)
廖万清
2016-11-10)