黄年盛综述彭建强审校
(1.广东医学院附属福田人民医院,广东深圳518033;2.中山大学附属第八医院,广东深圳518033)
低氧对间充质干细胞迁移及成骨分化的影响
黄年盛1综述彭建强2审校
(1.广东医学院附属福田人民医院,广东深圳518033;2.中山大学附属第八医院,广东深圳518033)
间充质干细胞(MSCs)由于具有来源广泛、自我更新及多向分化能力,是骨组织工程上的重要种子细胞。MSCs在体内的生理环境及植入后都是一个低氧状态,低氧是影响MSCs迁移、成骨分化的一个重要因素。大部分研究认为低氧通过调控相关趋化因子及细胞因子等促进MSCs向低氧处迁移,涉及的相关因子包括整合素家族、基质金属蛋白酶、Rho-GTPase家族、SDF-1α/CXCR4信号、OPN/CD44信号等。低氧诱导因子-1α(HIF-1α)信号可促进骨形成、骨修复,然而,低氧对MSCs成骨分化的影响尚存在较大争议,低氧环境下BMP-Smads、WNT/ β-catenin、Notch、Hedgehog等成骨相关通路的变化是影响MSCs成骨分化的因素之一。本文就低氧对MSCs迁移及成骨分化的影响及机制做一综述。
低氧;低氧诱导因子-1α;间充质干细胞;迁移;成骨分化;成骨相关通路
间充质干细胞(mesenchymal stem cells,MSCs)具有分化为骨细胞、脂肪细胞及软骨细胞的能力,并且在一定条件下可分化为内胚层及外胚层组织。由于MSCs的分化潜能、易于扩增及可获得性,MSCs在组织工程及再生医学方面具有广阔应用前景[1]。严重创伤、肿瘤切除后、先天性畸形等均可造成骨缺损,由于自体骨移植存在供区疼痛、感染等并发症,限制了其在骨缺损中的应用[2]。因此,将MSCs种植在骨修复材料上被视为一种修复骨缺损的理想方法[3-4]。在骨修复过程中,除了种植的MSCs外,机体损伤周围MSCs迁移至骨缺损处是至关重要的一步[5],是MSCs成骨分化及修复骨组织的前提。在骨修复材料植入后初期,由于材料上不均匀氧气供应及缺乏新生血管长入,骨修复材料处将会是一个低氧微环境[6];此外,机体生理环境及骨折后局部也是一个低氧状态[7],其中机体组织氧张力范围大致在1%~12%,骨髓中氧张力为4%~7%,甚至低至1%~2%[8]。在软骨内骨化过程中,低氧可诱导血管侵入无血管软骨区,在骨骼发育中发挥重要作用[9]。因此,探讨低氧环境对MSCs迁移及成骨分化的影响及机制,可为MSCs在骨组织工程中的应用提供理论依据。
损伤组织通过释放趋化因子及细胞因子等诱导MSCs向损伤处迁移[10],以达到修复组织的目的,可见MSCs迁移至局部损伤组织处是MSCs再生修复的前提。因此,研究低氧下MSCs迁移的相关机制,必将涉及到相关趋化因子、细胞因子等的变化。
目前低氧下MSCs迁移的相关分子机制主要包括:①通过整合素家族及基质金属蛋白酶(matrix metalloproteinases,MMPs)调控MSCs迁移,研究表明,低氧及低氧诱导因子-1α(HIF-1α)通过调节MMPs的活性调控着MSCs的迁移[11-12];而整合素超家族是由α和β两个亚单位组成的异二聚体,在细胞粘附、细胞外基质形成、细胞分化及细胞迁移等进程中发挥重要作用[13]。Choi等[14]研究发现低氧组整合素α4(integrin alpha4,ITGA4)表达下调,整合素下游因子磷酸化局部粘附激酶(p-FAK)及Rho-GTPase家族分子Rho A、ROCK1等表达上调,最终通过激活MMP-2表达促进PDMSCs迁移;同样,当干扰ITGA4表达时,其下游因子表达上调,通过激活MMP-2促进MSCs迁移,进一步研究发现,当干扰ROCK1表达时,MMP-2表达下调,PDMSCs迁移被抑制,该研究表明低氧下调ITGA4表达,从而使其下游因子Rho-GTPase家族表达上调,最终通过MMP-2促进MSCs迁移。另一项研究发现在常氧或低氧下抑制HIF 1α表达,结果ITGA4表达上调,其下游因子ROCK1、Rac1/2/3表达下调,最终抑制MSCs迁移;当抑制ITGA4表达时,ROCK1、Rac1/2/3及HIF-1α表达上调,促进MSCs迁移,表明HIF-1α与ITGA4相互作用,通过调控Rho-GTPase家族参与MSCs迁移[15]。Saller等[16]同样发现低氧通过调节整合素活性表达,较常氧促进MSCs迁移。②基质细胞衍生因子1(stromal cell-derived factor-1,SDF-1)及其受体CXCR4在MSCs迁移具有重要作用。Yu等[17]在体内实验中发现静脉注入的MSCs可以迁移至缺血缺氧脑损伤处,HIF-1α、SDF-1α在缺血缺氧处较对照组表达上调;体外实验中,1%低氧浓度处理6h或SDF-1α因子处理都可诱导MSCs细胞CXCR4表达,并促进MSCs迁移,CXCR4抑制剂可逆转这一作用,表明低氧激活SDF-1α/CXCR4表达促进MSCs迁移至缺血缺氧处。然而,Kadivar等[18]发现1%低氧浓度培养4 h抑制CXCR4表达,这与上述结果不同,两者细胞来源、低氧时间不同可能导致这种差异。Liu等[19]发现生活在10%低氧环境下大鼠外周血MSCs在2~14 d相比常氧组逐渐增多,进一步研究认为低氧在体内外通过激活HIF-1α、SDF-1α表达促进MSCs迁移。Ceradini等[20]通过体内外研究认为HIF-1α可诱导SDF-1表达,使表达CXCR4受体的祖细胞迁移至缺血处。③除上述相关机制外,研究显示1%低氧下骨细胞OPN表达上调,可诱导MSCs细胞CD44受体表达,并促进MSCs迁移,当分别使用OPN及CD44的中和抗体时,却抑制了迁移活动,表明低氧下骨细胞表达OPN分子可作用于MSCs的CD44受体,并促进其迁移[21]。
与大部分研究结果不同的是,研究发现1%低氧环境培养MSCs细胞24~48 h,MSCs迁移能力相比常氧组被抑制,HIF-1α表达上调的同时RhoA活性下降,在低氧下激活RhoA活性可恢复细胞迁移能力,相反,当激活HIF-1α表达时则抑制细胞迁移,表明低氧通过激活HIF-1α及下调RhoA表达抑制MSCs迁移[22]。该项研究使用的是无血清培养基,而在无血清培养中细胞活性本就会受影响,1%低氧浓度可能会显著抑制细胞活性,使MSCs迁移受到抑制。
可见,低氧及其HIF-1α是MSCs迁移活动的调控者,大部分研究认为低氧及其HIF-1α通过调控相关趋化因子、细胞因子等表达促进MSCs迁移,这其中包括整合素家族、基质金属蛋白酶、Rho-GTPase家族、SDF-1α/CXCR4信号、OPN/CD44信号等。然而,低氧具体如何调节上述细胞因子及HIF-1α与这些因子的关系尚需进一步明确,同时可利用不同的低氧浓度及处理时间组合研究,以更全面系统理解低氧环境下MSCs的迁移活动及其相关机制,未来结合损伤组织生理环境情况可筛选出最具促迁移的活性因子,以修饰骨修复材料,提高骨修复效率。
2.1 低氧对MSCs成骨分化影响Ciapetti等[23]利用2%氧浓度培养BM-MSCs细胞8 d,结果显示成骨标志基因表达上调;Hung等[24]发现1%O2浓度下,BM-MSCs在28 d后成骨标志基因较常氧表达上调;其他研究同样显示低氧下MSCs有着更强的成骨分化能力[25-26]。与上述结果不同的是,Hsu等[27]通过hMSCs在1%氧浓度分别培养1周、2周及3周,结果相比常氧组抑制了hMSCs成骨分化能力,Wang等[28]利用2%O2浓度培养rBMSCs细胞7 d,发现低氧通过ERK 1/2通路抑制其成骨分化;其他研究也都认为低氧抑制MSCs成骨分化[29-30],并认为这与MSCs在骨髓生理低氧微环境的干性维持相符。上述研究结果表明,低氧下MSCs成骨分化仍存在较大争议,上述研究的细胞来源、低氧浓度及低氧时间等的不同可能导致上述差异。
2.2 低氧诱导的HIF-1α信号对骨形成影响研究表明,HIF-1 α及血管内皮生长因子(vascular endothelial growth factor,VEGF)是机体血管-成骨相耦联的主要调控者[31]。Wang等[32]通过特异性敲除Von Hippel-Lindau(VHL)基因,使小鼠成骨细胞HIF-1α表达上调,结果小鼠显示更强的成骨能力,在敲除HIF-1α的小鼠当中表现相反,这表明HIF-1α对骨发育具有重要作用。其他研究则显示,在骨折模型中,HIF-1α表达上调,并可促进骨折的修复[33]。当在骨折处使用HIF-1α信号激活剂时,同样可加快骨折的修复[34-35]。在骨修复材料的运用中,通过慢病毒转染使MSCs细胞HIF-1α过表达,负载到修复材料中,加快了骨缺损的愈合[36-37]。
低氧对MSCs成骨分化的影响存在较大争议,然而,可以明确地认为低氧下的HIF-1α可促进骨发育及骨修复。
3.1 BMP信号通路BMP-Smads信号通路是参与调控MSCs向成骨细胞分化及骨形成的关键信号通路之一。Tseng等[38]发现在0.5%~3%的低氧环境下,6~24 h内BMP-2在成骨细胞样细胞系(MG-63、hFOB)及骨髓基质细胞(M2-10B4)中较常氧表达逐渐上调,分别通过抑制ILK、Akt及mTOR表达,结果低氧诱导的BMP-2、HIF-1α表达下调,并且当阻断HIF-1α表达时,同样可抑制低氧下BMP-2的表达,说明低氧通过HIF-1α及ILK/Akt/mTOR通路较常氧组上调BMP-2表达;然而另一项研究表明缺氧(<0.02%)及低氧(2%)状态下BMP-2相比常氧组表达下调。Salim等[39]发现缺氧状态下12~24 h可抑制MSCs体外钙结节的形成及Runx2的表达,在缺氧组转染BMP-2重组体可恢复Runx2的表达,表明缺氧抑制MSCs细胞BMP-2及Runx2的表达,从而抑制MSCs成骨分化。Genetos等[40]发现1%低氧浓度BMP2的表达相比常氧下并无改变,通过1%氧浓度培养成骨细胞系(UMR 106.01及MLOA5)24 h,BMPs拮抗因子gremlin及noggin表达上调,且抑制BMPs的下游因子Smadl/ 5/8磷酸化。因此,Genetos等[40]认为低氧通过诱导BMPs拮抗因子的表达,进而抑制BMPs通路。从以上结果看来,低氧下BMP通路的变化尚不能明确,这与低氧浓度下MSCs成骨分化结果各异相关,低氧浓度及低氧时间、细胞来源等不同都可造成有差异的结果。
3.2 WNT信号通路WNT/β-catenin信号通路在骨形成过程中具有重要调控作用,可以通过上调Runx2基因表达促进成骨[41]。研究发现在1%氧浓度相比常氧可激活Wnt通路,Genetos等[40]通过1%氧浓度处理成骨细胞系(UMR 106.01)96 h,利用免疫荧光染色发现核内激活状态的β-catenin较常氧增多,并且DFO同样使核内β-catenin积聚,这表明低氧环境下可激活Wnt通路。然而,Chen等[42]发现1%氧浓度抑制Wnt通路,Chen等通过1%氧浓度处理MC3T3-E1细胞48 h,发现Wnt下游因子cyclin D1及c-Myc表达较常氧下调,并且在HIF-1α及β-catenin共转染的荧光素酶报告载体中,抑制了β-catenin激活的信号,表明低氧通过HIF-1α抑制Wnt信号通路。上述结果不尽相同,还需更多的研究才能得出结论,才更有利于分析低氧下Wnt通路的变化。
3.3 Notch信号通路Notch信号通路参与细胞增殖、分化及凋亡等一系列生理活动,特别在成骨细胞成骨分化及骨形成过程中具有重要作用[43-44]。Xu等[45]发现1%氧浓度抑制MSCs成骨分化,Notch1较常氧组表达上调,低氧下利用shRNA沉默Notch1的表达,结果低氧组成骨分化与常氧组无异,并且通过荧光素酶分析检测Notch1直接抑制Runx2转录活性,表明低氧通过上调Notch1表达抑制MSCs成骨分化。低氧下Notch信号通路的研究较少,尚不能得出明确结论,并且研究表明,Notch信号通路在体外具有诱导和抑制成骨细胞分化的双向调节作用[46]。因此,需要更多低氧浓度下Notch信号通路的研究,才有助于理解低氧对MSCs成骨分化影响的相关机制。
3.4 Hedgehog信号通路Brown等[47]利用5%氧浓度培养BMSCs细胞72 h,发现hedgehog的下游信号Smo及Gli2较常氧组表达下调,而其下游信号的激活可促进MSCs成骨分化,表明低氧抑制hedgehog促成骨信号通路。急性低氧状态下hedgehog信号受到抑制,然而在慢性低氧下hedgehog信号的变化尚不清楚,因此,在低氧与hedgehog信号之间的关系还应更深入的研究,尤其是其他下游信号Ptch及Gli1等。
从以上几个低氧下成骨信号通路的变化结果来看,低氧下成骨相关通路的变化参与了低氧环境下MSCs的成骨分化,低氧通过上调Notch1表达抑制MSCs成骨分化,而BMP信号通路则差异较大,与其不同低氧浓度、低氧时间及细胞来源等相关,WNT及Hedgehog信号通路的研究虽然也涉及到其促成骨下游信号分子的改变,但并未研究其成骨现象,尚不能得出结论。
低氧下MSCs成骨分化研究结果各异,低氧的主要关键因子HIF-1α可促进骨形成,这一观点较明确,但这不能解释低氧环境下的MSCs成骨分化,而从几个低氧环境下成骨信号通路分析,也尚不能得出一致结果。因此,要解释并深入理解低氧下MSCs的成骨分化机制,需要不同的低氧浓度与低氧时间相组合进行研究,结合当中成骨标志基因及成骨相关通路变化,并且在HIF-1α与成骨相关通路之间的关系也应深入研究,在未来才有希望系统、全面阐述低氧环境下的MSCs成骨分化结果及其机制。
机体组织、骨折损伤周围及骨修复材料植入处等都是低氧状态,因此,MSCs在骨组织工程上的应用必然涉及到低氧微环境。大部分研究认为,低氧及HIF-1α信号调控相关趋化因子及细胞因子等促进MSCs向低氧处迁移。而在成骨方面,尽管低氧诱导的HIF-1α信号可促进骨发育、骨修复,但低氧环境对MSCs成骨分化影响尚存在较大争议,在低氧对成骨相关通路影响方面,低氧可能通过调控BMP-Smads、WNT/β-catenin、Notch、Hedgehog等成骨相关信号通路影响MSCs成骨分化,但缺乏足够、有效、一致的研究。因此,未来采用不同低氧浓度梯度及低氧时间相组合研究,并结合其成骨相关通路变化,才有希望全面系统的阐述低氧环境下的成骨分化结果及机制,才能深刻揭示低氧与MSCs成骨分化的具体关系。深入理解低氧下MSCs迁移及成骨分化中的分子机制,可为生物活性骨修复材料的设计提供理论依据,从而制备更具成骨活性的骨修复材料,有望临床上更有效的修复骨缺损、骨不连等疾患。
[1]Kobolak J,Dinnyes A,Memic A,et al.Mesenchymal stem cells:Identification,phenotypic characterization,biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche[J].Methods,2016,99:62-68.
[2]Schaaf H,Lendeckel S,Howaldt HP,et al.Donor site morbidity after bone harvesting from the anterior iliac crest[J].Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2010,109(1):52-58.
[3]Gamie Z,Tran GT,Vyzas G,et al.Stem cells combined with bone graft substitutes in skeletal tissue engineering[J].Expert Opin Biol Ther,2012,12(6):713-729.
[4]Chimutengwende-Gordon M,Khan WS.Advances in the use of stem cells and tissue engineering applications in bone repair[J].Curr Stem Cell Res Ther,2012,7(2):122-126.
[5]Phipps MC,Xu Y,Bellis SL.Delivery of platelet-derived growth factor as a chemotactic factor for mesenchymal stem cells by bone-mimetic electrospun scaffolds[J].PLoS One,2012,7(7):e40831.
[6]Stiers PJ,van Gastel N,Carmeliet G.Targeting the hypoxic response in bone tissue engineering:A balance between supply and consumption to improve bone regeneration[J].Mol Cell Endocrinol,2016, 432:96-105.
[7]Lu C,Rollins M,Hou H,et al.Tibial fracture decreases oxygen levels at the site of injury[J].Iowa Orthop J,2008,28:14-21.
[8]Das R,Jahr H,van Osch GJ,et al.The role of hypoxia in bone marrow-derived mesenchymal stem cells:considerations for regenerative medicine approaches[J].Tissue Eng Part B Rev,2010,16(2):159-168.
[9]Wang Y,Wan C,Gilbert SR,et al.Oxygen sensing and osteogenesis [J].Ann N YAcad Sci,2007,1117:1-11.
[10]Haider HKh,Jiang S,Idris NM,et al.IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair[J].Circ Res,2008,103(11):1300-1308.
[11]Xing F,Okuda H,Watabe M,et al.Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells[J].Oncogene,2011,30(39):4075-4086.
[12]Lu X,Kang Y.Hypoxia and hypoxia-inducible factors:master regulators of metastasis[J].Clin Cancer Res,2010,16(24):5928-5935.
[13]Chua GL,Tang XY,Patra AT,et al.Structure and binding interface of the cytosolic tails of alphaXbeta2 integrin[J].PLoS One,2012,7(7):e41924.
[14]Choi JH,Lim SM,Yoo YI,et al.Microenvironmental interaction between hypoxia and endothelial cells controls the migration ability of placenta-derived mesenchymal stem cells via alpha4 Integrin and Rho signaling[J].J Cell Biochem,2016,117(5):1145-1157.
[15]Choi JH,Lee YB,Jung J,et al.Hypoxia inducible factor-1alpha regulates the migration of bone marrow mesenchymal stem cells via Integrin alpha 4[J].Stem Cells Int,2016,2016:7932185.
[16]Saller MM,Prall WC,Docheva D,et al.Increased stemness and migration of human mesenchymal stem cells in hypoxia is associated with altered integrin expression[J].Biochem Biophys Res Commun, 2012,423(2):379-385.
[17]Yu Q,Liu L,Lin J,et al.SDF-1alpha/CXCR4 axis mediates the migration of mesenchymal stem cells to the hypoxic-ischemic brain lesion in a rat model[J].Cell J,2015,16(4):440-447.
[18]Kadivar M,Alijani N,Farahmandfar M,et al.Effect of acute hypoxia on CXCR4 gene expression in C57BL/6 mouse bone marrow-derived mesenchymal stem cells[J].Adv Biomed Res,2014,3:222.
[19]Liu L,Yu Q,Lin J,et al.Hypoxia-inducible factor-1alpha is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood[J].Stem Cells Dev,2011,20(11):1961-1971.
[20]Ceradini DJ,Kulkarni AR,Callaghan MJ,et al.Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J].Nat Med,2004,10(8):858-864.
[21]Raheja LF,Genetos DC,Yellowley CE.Hypoxic osteocytes recruit human MSCs through an OPN/CD44-mediated pathway[J].Biochem Biophys Res Commun,2008,366(4):1061-1066.
[22]Raheja LF,Genetos DC,Wong A,et al.Hypoxic regulation of mesenchymal stem cell migration:the role of RhoA and HIF-1alpha[J]. Cell Biol Int,2011,35(10):981-989.
[23]Ciapetti G,Granchi D,Fotia C,et al.Effects of hypoxia on osteogenic differentiation of mesenchymal stromal cells used as a cell therapy for avascular necrosis of the femoral head[J].Cytotherapy,2016,18 (9):1087-1099.
[24]Hung SP,Ho JH,Shih YR,et al.Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells[J].J Orthop Res,2012,30(2):260-266.
[25]Zhang QB,Zhang ZQ,Fang SL,et al.Effects of hypoxia on proliferation and osteogenic differentiation of periodontal ligament stem cells:an in vitro and in vivo study[J].Genet Mol Res,2014,13(4):10204-10214.
[26]Grayson WL,Zhao F,Izadpanah R,et al.Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs[J].J Cell Physiol,2006,207(2):331-339.
[27]Hsu SH,Chen CT,Wei YH.Inhibitory effects of hypoxia on metabolic switch and osteogenic differentiation of human mesenchymal stem cells[J].Stem Cells,2013,31(12):2779-2788.
[28]Wang Y,Li J,Wang Y,et al.Effects of hypoxia on osteogenic differentiation of rat bone marrow mesenchymal stem cells[J].Mol Cell Biochem,2012,362(1-2):25-33.
[29]D'Ippolito G,Diabira S,Howard GA,et al.Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells[J].Bone,2006,39(3):513-522.
[30]Malladi P,Xu Y,Chiou M,et al.Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells[J].Am J Physiol Cell Physiol,2006,290(4):C1139-C1146.
[31]Riddle RC,Khatri R,Schipani E,et al.Role of hypoxia-inducible factor-1alpha in angiogenic-osteogenic coupling[J].J Mol Med(Berl), 2009,87(6):583-590.
[32]Wang Y,Wan C,Deng L,et al.The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development[J].J Clin Invest,2007,117(6):1616-1626.
[33]Wan C,Gilbert SR,Wang Y,et al.Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration[J].Proc NatlAcad Sci USA,2008,105(2):686-691.
[34]Donneys A,Deshpande SS,Tchanque-Fossuo CN,et al.Deferoxamine expedites consolidation during mandibular distraction osteogenesis[J].Bone,2013,55(2):384-390.
[35]Huang J,Liu L,Feng M,et al.Effect of CoCl(2)on fracture repair in a rat model of bone fracture[J].Mol Med Rep,2015,12(4):5951-5956.
[36]Zou D,Zhang Z,He J,et al.Repairing critical-sized calvarial defects with BMSCs modified by a constitutively active form of hypoxia-inducible factor-1alpha and a phosphate cement scaffold[J].Biomaterials,2011,32(36):9707-9718.
[37]Zhang Y,Huang J,Wang C,et al.Application of HIF-1alpha by gene therapy enhances angiogenesis and osteogenesis in alveolar bone defect regeneration[J].J Gene Med,2016,18(4-6):57-64.
[38]Tseng WP,Yang SN,Lai CH,et al.Hypoxia induces BMP-2 expression via ILK,Akt,mTOR,and HIF-1 pathways in osteoblasts[J].J Cell Physiol,2010,223(3):810-818.
[39]Salim A,Nacamuli RP,Morgan EF,et al.Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expressionin osteoblasts[J].J Biol Chem,2004,279(38):40007-40016.
[40]Genetos DC,Toupadakis CA,Raheja LF,et al.Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts[J].J Cell Biochem,2010,110(2):457-467.
[41]Gaur T,Lengner CJ,Hovhannisyan H,et al.Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression[J].J Biol Chem,2005,280(39):33132-33140.
[42]Chen D,Li Y,Zhou Z,et al.Synergistic inhibition of Wnt pathway by HIF-1alpha and osteoblast-specific transcription factor osterix (Osx)in osteoblasts[J].PLoS One,2012,7(12):e52948.
[43]Lai EC.Notch signaling:control of cell communication and cell fate [J].Development,2004,131(5):965-973.
[44]Regan J,Long F.Notch signaling and bone remodeling[J].Curr Osteoporos Rep,2013,11(2):126-129.
[45]Xu N,Liu H,Qu F,et al.Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling [J].Exp Mol Pathol,2013,94(1):33-39.
[46]Ugarte F,Ryser M,Thieme S,et al.Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells[J].Exp Hematol,2009,37(7):867-875.
[47]Brown JA,Santra T,Owens P,et al.Primary cilium-associated genes mediate bone marrow stromal cell response to hypoxia[J].Stem Cell Res,2014,13(2):284-299.
Effects of hypoxia on migration and osteogenic differentiation of mesenchymal stem cells.
HUANG Nian-sheng1, PENG Jian-qiang2,1.Futian People's Hospital Affiliated to Guangdong Medical University,Shenzhen 518033, Guangdong,CHINA;2.Department of Spinal Surgery,the Eighth Affiliated Hospital,Sun Yat-sen University,Shenzhen 518033,Guangdong,CHINA
Due to the extensive sources,self-renewal and ability of multi-directional differentiation,mesenchymal stem cells(MSCs)are essential seed cells for bone tissue engineering.The environment after transplantation and physiological environment in vivo where MSCs live are a hypoxic state.Hypoxia is an important factor affecting MSCs migration and osteogenic differentiation.Most research suggests that hypoxia promotes the migration of MSCs by regulating the related chemotactic factors and cytokines.The relevant factors include integrin family,matrix metalloproteinases,Rho-GTPase family,SDF-1α/CXCR4 signal,OPN/CD44 signal.However,the effect of hypoxia on the osteogenic differentiation of MSCs remains controversial.The variations of signaling pathways of BMP-Smads,WNT/β-catenin, Notch,Hedgehog in hypoxia may be one of the factors that influence the osteogenic differentiation of MSCs.In this paper,the effects of hypoxia on the migration and osteogenic differentiation of MSCs and its mechanism will be discussed.
Hypoxia;HIF-1α;Mesenchymal stem cells;Migration;Osteogenic differentiation;Signaling pathway
R329.2+7
A
1003—6350(2017)14—2333—05
10.3969/j.issn.1003-6350.2017.14.030
2016-11-15)
彭建强。E-mail:13688806786@139.com