王 阳,王朝元,李保明
蛋鸡舍冬季CO2浓度控制标准与最小通风量确定
王 阳1,2,王朝元1,3,李保明1,3※
(1. 中国农业大学农业部设施农业工程重点实验室,北京 100083;2. 中国农业大学水利与土木工程学院,北京 100083;3. 北京市畜禽健康养殖环境工程技术研究中心,北京 100083)
中国现行的蛋鸡舍内CO2浓度控制的农业行业标准为1 500 mg/m3,主要适用于传统的刮板式清粪鸡舍。目前新建、改建鸡舍都采用传送带清粪方式,鸡舍内的相对湿度和氨气等有害气体浓度均明显减少,其冬季最小通风量和舍内CO2浓度参数标准均有待重新研究。该文通过总结分析国内外相关学者对不同清粪方式蛋鸡舍内NH3、CO2浓度的测试数据,提出传送带清粪蛋鸡舍内CO2浓度取值建议,并根据CO2浓度平衡原理,提出该类蛋鸡舍冬季最小通风量的取值建议。结果表明:传送带清粪蛋鸡舍内CO2浓度参数控制标准建议可取5 000 mg/m3;蛋鸡舍冬季连续通风最小通风量为0.40~0.50 m3/(h·kg)。该研究为中国新建、改建传送带清粪模式蛋鸡舍CO2浓度参数标准的取值以及调控蛋鸡舍冬季通风与保温矛盾等问题提供了参考依据。
设施;环境控制;二氧化碳浓度;蛋鸡舍;清粪方式;最小通风量
冬季蛋鸡舍通风量影响舍内温度稳定性和空气质量,进而影响蛋鸡的健康和生产性能[1-3]。冬季低温气候蛋鸡舍通风换气所需要的通风量,主要为排除蛋鸡舍内的污浊空气,供给蛋鸡足够的氧气。蛋鸡舍冬季最小通风量以CO2平衡原理设计计算,CO2的取值大小决定了鸡舍的最小通风量和鸡舍的通风耗热量。依据最小通风量和舍内最低气温要求来设计鸡舍围护结构的保温性能,才能协调好保温与通风矛盾问题[3]。国外学者对用CO2浓度指标确定畜禽舍冬季最小通风量进行了大量的研究[4-6],Pedersen等[6]分析了热、湿和CO2浓度平衡3种通风量计算方法,表明CO2平衡确定的通风量与湿度平衡计算值之间的相关系数为0.95。中国蛋鸡舍用CO2浓度平衡确定冬季通风量的研究报道甚少,主要是测试分析了蛋鸡舍内CO2浓度的分布规律[7]。
中国传统蛋鸡舍主要是刮板式清粪系统,清粪周期较长,且存在饮水器漏水、清粪不彻底等问题,易造成鸡粪发酵,导致舍内湿度、CO2、NH3浓度较高,蛋鸡舍内CO2浓度与NH3浓度显著正相关[8],为保证舍内NH3浓度不超标(<15 mg/m3),不影响蛋鸡的健康和生产性能,中国畜禽场环境质量标准[9](NY/T 388-1999)规定蛋鸡舍内CO2质量浓度环境卫生指标上限为1 500 mg/m3。近年来蛋鸡养殖设备及环境调控技术发展迅速,蛋鸡舍普遍采用传送带清粪且乳头式饮水器质量提高,舍内清粪及时、通风效率高,鸡舍清粪不彻底、鸡粪发酵等一般不发生,舍内湿度和NH3浓度明显减小[10],中国适用于刮板清粪方式的蛋鸡舍内CO2浓度控制标准为保证舍内NH3浓度不超标,但对传送带清粪蛋鸡舍内NH3浓度较低环境条件下CO2浓度现行标准已明显偏低。本文通过总结国内外不同清粪方式蛋鸡舍内NH3、CO2浓度测试数据结合不同国家蛋鸡舍内CO2浓度的控制标准,提出传送带清粪蛋鸡舍内CO2浓度参数调整建议,并根据CO2浓度平衡原理,确定蛋鸡舍冬季最小通风量,为解决北方寒冷地区蛋鸡舍保温与通风的矛盾提供依据。
蛋鸡舍通风换气是调节舍内空气环境的最主要方式,舍内空气质量影响蛋鸡的健康及生产性能[10-11],蛋鸡舍内CO2浓度代表舍内空气的污浊程度,而鸡舍的有害气体产生主要来源于鸡粪,近年来传送带清粪技术的发展,实现了“粪不落地”即可每天及时传送到舍外,显著改善了舍内的空气质量。通过总结国内外学者对不同清粪方式蛋鸡舍内NH3、CO2浓度等进行的大量试验研究(见表1)[12-22]可知:蛋鸡舍内CO2浓度与NH3浓度显著相关,传送带清粪蛋鸡舍内NH3浓度比刮板清粪鸡舍明显降低,合理组织通风下舍内CO2质量浓度低于5 000 mg/m3时,舍内NH3质量浓度低于15 mg/m3。Liang等[13]通过对高床、传送带清粪蛋鸡舍内NH3浓度试验研究,舍内NH3浓度随舍外温度降低、通风量的减小而升高,且传送带清粪周期影响舍内NH3浓度含量;为研究蛋鸡舍内有害气体浓度相互关系以及对蛋鸡健康、生产性能的影响,Kocaman等[8]对288只24周龄的蛋鸡,连续2个月试验研究,结果表明蛋鸡舍内CO2浓度与NH3浓度显著正相关(<0.01,=0.86)。
表1 蛋鸡舍内NH3、CO2浓度部分数据总结表
Ni等[14]进行连续两年试验研究2种不同清粪蛋鸡舍内NH3、CO2等有害气体浓度之间的变化规律,发现传统高床清粪、传送带清粪蛋鸡舍内NH3、CO2浓度变化趋势一致,与蛋鸡通风量显著负相关,舍内NH3、CO2浓度同升同减,且舍内CO2质量浓度低于5 000 mg/m3时,舍内NH3质量浓度低于15 mg/m3,试验结果显示传送带清粪两栋蛋鸡舍内平均CO2质量浓度分别为4 508.04、4 488.39 mg/m3,NH3质量浓度分别为10.09、9.79 mg/m3;Chai等[21]对蛋鸡舍内不同测点研究表明NH3质量浓度为8.65、9.11、7.51、7.44 mg/m3,CO2质量浓度5 427.32、5 338.92、5 191.61、5 189.64 mg/m3;Lin等[15]研究高床清粪蛋鸡舍、Alberdi等[16]模拟研究富集笼养传送带清粪蛋鸡舍、Zhao等[17-19]对比研究传统笼养、栖架饲养、富集笼养蛋鸡舍(<0.05),舍内NH3、CO2浓度变化规律验证了Kocaman[8]、Ni[14]等研究结论:蛋鸡舍内CO2浓度与NH3浓度之间显著正相关,传送带清粪蛋鸡舍内NH3浓度较低,且舍内CO2质量浓度低于5 000 mg/m3时,合理组织通风舍内NH3质量浓度低于15 mg/m3。
国外学者Kocaman等[8]对蛋鸡舍内影响蛋鸡生产性能因素的研究分析表明蛋鸡舍内CO2质量浓度小于6 187 mg/m3、NH3质量浓度小于15 mg/m3,蛋鸡生产性能、健康、免疫力不受影响,验证了学者Ellen等[23-24]对舍内CO2浓度、NH3浓度对蛋鸡生产性能、健康等研究结论;国内学者施正香等[25]对华北地区商品蛋鸡舍冬季环境试验研究表明舍内CO2质量浓度小于5 000 mg/m3,对蛋鸡健康及生产性能基本没有影响;吴鹏威等[26]研究表明冬季传送带清粪蛋鸡舍进风口、中间、出风口位置CO2质量浓度分别为5 700、5 798、5 983 mg/m3时,蛋鸡舍进风口、中间、出风口位置蛋鸡产蛋率无显著变化;国内学者研究[27]表明蛋鸡舍内CO2质量浓度为7 548~11 323 mg/m3时,蛋鸡产蛋率下降、蛋壳变薄、蛋质量变小;据试验报道[28]:蛋鸡舍内CO2质量浓度为10 312~11 963 mg/m3时,雏鸡出现轻微痛苦状。
不同国家蛋鸡舍内允许的CO2浓度标准不同,CIGR[30](international commission of agricultural engineering)、OSHA[17](occupational safety and health administration)规定的蛋鸡舍CO2质量浓度分别为5 000、8 000 mg/m3,其他国家传送带清粪蛋鸡舍内CO2浓度标准见下表2。中国1999年制定的蛋鸡舍内CO2浓度标准[9],适用于NH3浓度较高的传统刮板清粪蛋鸡舍,随着环境调控技术与设备的改进,蛋鸡舍内有害气体浓度及通风效率也发生了相应的改变。根据国内外NH3浓度、CO2浓度研究数据、行业标准以及对蛋鸡健康、生产性能的研究[19-29]可知,中国传送带清粪蛋鸡舍内CO2质量浓度参数标准提高到5000 mg/m3左右,合理的通风组织下蛋鸡舍内NH3质量浓度基本不会超过15 mg/m3,对蛋鸡健康以及生产性能基本没有影响。
表2 部分国家传送带清粪蛋鸡舍CO2质量浓度标准[29]
根据舍内CO2浓度平衡原理[20],鸡舍通风量的计算公式(1)为
式中为冬季鸡舍通风量,m3/h;为舍内蛋鸡只数,只;为每只蛋鸡的CO2产量,L/(h·只);1为蛋鸡舍内空气中CO2的浓度标准,L/m3;2为舍外空气中CO2含量,0.3 L/m3。
冬季蛋鸡舍的适宜温度[28]为13~24 ℃,蛋鸡开产后质量变化波动不大,蛋鸡质量约为1.3~1.8 kg,蛋鸡舍CO2主要源自蛋鸡的呼吸代谢以及粪便,Li等[32]研究表明对蛋鸡舍通风量的研究时粪尿产生CO2量可忽略不计,CIGR[31]估算各种畜禽每产热单位(hpu,20 ℃时1 000 W总产热量称为1个产热单位)的平均CO2产量为0.185 m3/h。根据CIGR[31]规定的蛋鸡呼吸产生CO2量、产热量计算式及修正(CIGR中修正公式(23)),当蛋鸡舍内CO2浓度标准为5 000 mg/m3时,得出维持舍内不同温度,传送带清粪蛋鸡舍冬季最小通风量计算式(2),维持蛋鸡舍内温度下限为13 ℃[27-28],传送带清粪蛋鸡舍冬季最小通风量为0.40~0.50 m3/(h·kg)
式中为最小通风量,m3/(h·kg);为产蛋性能,=0.05 kg/d;为每只蛋鸡的质量,kg/只;为冬季舍内计算温度,℃。
国外学者Li等[32-36]都对蛋鸡舍冬季最小通风量进行了研究,研究数据表明:蛋鸡质量为1.5 kg左右,传送带清粪蛋鸡舍内冬季最小通风量约为0.28~0.54 m3/(h·kg);中国[7,25]传送带清粪蛋鸡舍冬季最小通风量约为0.87~1.0 m3/(h·kg)。本研究通过CO2浓度平衡原理确定的蛋鸡舍冬季最小通风量约为0.40~0.50 m3/(h·kg),与国外蛋鸡舍冬季最小通风量基本一致,但明显小于国内蛋鸡冬季最小通风量,完善修订传送带清粪蛋鸡舍内CO2浓度,合理组织蛋鸡舍内通风,才能有效解决鸡舍保温与通风矛盾。
中国蛋鸡舍冬季最小通风量一般采用传统经验值、推荐值等,蛋鸡舍冬季最小通风量较大,冬季一般采用间歇通风解决通风与保温的矛盾,间歇通风造成舍内温差和温度波动大,影响蛋鸡生产性能与健康,蛋鸡舍内CO2浓度平衡确定的传送带清粪蛋鸡舍冬季最小通风量较小可保持蛋鸡舍连续通风,维持蛋鸡舍内温度稳定,舍内CO2浓度、NH3浓度不超标,可以降低蛋鸡舍冬季保温成本,协调蛋鸡舍冬季通风与保温的矛盾。
1)鸡舍的清粪方式是影响蛋鸡舍内空气环境质量的关键因素。传统刮板清粪方式蛋鸡舍内NH3质量浓度普遍较高,对于改建、新建蛋鸡舍建议采用传送带清粪方式,利于减少鸡舍冬季通风换气量、提高舍内温度,解决鸡舍保温与通风矛盾。
2)中国1999年制定的农业行业标准的蛋鸡舍内CO2质量浓度为1 500mg/m3,适用于传统高床定期清粪、刮板清粪蛋鸡舍;对新的传送带清粪蛋鸡舍内CO2质量浓度控制标准建议提高到5 000 mg/m3。
3)蛋鸡舍内CO2质量浓度平衡确定的传送带清粪蛋鸡舍冬季最小通风量为0.40~0.50 m3/(h·kg)。鸡舍围护结构的保温性能设计应维持蛋鸡舍内温度下限为13 ℃,保持鸡舍连续通风,舍内污染物浓度不超标,以满足鸡舍冬季通风与保温的需要。
[1] Al-Saffar A A, Rose S P. Ambient temperature and the egg laying characteristics of laying fowl[J]. World’s Poultry Science Journal, 2002, 58(3): 317-331.
[2] Zhao Yang, Xin Hongwei, Shepherd Timothy A, et al. Modelling ventilation rate, balance temperature and supplemental heat need in alternative vs. conventional laying-hen housing systems[J]. Biosystems Engineering, 2013, 115(3): 311-323.
[3] 汪靖,江晓明,李辉. 不同季节种鸡舍通风系统的调控[J]. 中国家禽,2016(1):71-72.
[4] Van Ouverkerk E N J, Pedersen Søren. Application of the carbon dioxide mass balance method to evaluate ventilation rates in livestock buildings[J]. Proc Xii Cigr'94, Italy, 1994.
[5] Koerkamp P W G G, Metz J H M, Uenk G H, et al. Concentrations and emissions of ammonia in livestock buildings in Northern Europe[J]. Journal of Agricultural Engineering Research, 1998, 70: 79-95.
[6] Pedersen Søren, Takai Hisamitsu, Johnsen Jan Ove, et al. A comparison of three balance methods for calculating ventilation rates in livestock buildings[J]. Journal of Agricultural Engineering Research, 1998, 70(1): 25-37.
[7] 俞宏军,李保明,施正香,等. 北京密闭式商品蛋鸡舍冬季环境研究(初报)[J]. 农业工程学报,1997,13(5):68-72.
Yu Hongjun, Li Baoming, Shi Zhengxiang, et al. Winter environment analysising on enclosed commercial layer housing in Beiing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1997, 13(5): 68-72. (in Chinese with English abstract)
[8] Kocaman Bahar, Esenbuga Nurinisa, Yildiz Ahmet, et al. Effect of environmental conditions in poultry houses on the performance of laying hens[J]. International Journal of Poultry Science, 2006, 5(1): 26-30.
[9] 畜禽场环境质量标准:NY/ T388-1999[S]. 1999.
[10] 程龙梅,吴银宝,王燕,等. 清粪方式对蛋鸡舍内空气环境质量及粪便理化性质的影响[J]. 中国家禽,2015(18):22-27.
[11] Green Angela R, Wesley Irene, Trampel Darrell W, et al. Air
quality and hen health status in three types of commercial laying hen houses:[C]//American Society of Agricultural and Biological Engineers: 2007 ASAE Annual Meeting, 2007.
[12] McQuitty J B, Feddes J J R, Leonard J J. Air quality in commercial laying barns[J]. Canadian Agricultural Engineering, 1985, 27(2): 13-19.
[13] Liang Yi, Xin Hongwei, Wheeler E F, et al. Ammonia emissions from US laying hen houses in Iowa and Pennsylvania[J]. Transactions of the ASAE, 2005, 48(5): 1927-1941.
[14] Ni Ji-Qin, Chai Lilong, Chen Lide, et al. Characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter concentrations in high-rise and manure-belt layer hen houses[J]. Atmospheric Environment, 2012, 57: 165-174.
[15] Lin X J, Cortus E L, Zhang R, et al. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses[J]. Atmospheric Environment, 2012, 46: 81-91.
[16] Alberdi Oier, Arriaga Haritz, Calvet Salvador, et al. Ammonia and greenhouse gas emissions from an enriched cage laying hen facility[J]. Biosystems Engineering, 2016, 144: 1-12.
[17] Zhao Yang, Shepherd Timothy A, Li Hong, et al. Environmental assessment of three egg production systems-Part I: Monitoring system and indoor air quality[J]. Poultry Science, 2015, 94(3): 518-533.
[18] Shepherd Timothy A, Zhao Yang, Li Hong, et al. Environmental assessment of three egg production systems: Part II. Ammonia, greenhouse gas, and particulate matter emissions[J]. Poultry science, 2015, 94(3): 534-543.
[19] Zhao Yang, Shepherd Timothy A, Xin Hongwei, et al. Concentrations of ammonia, greenhouse gases and particulate matters in conventional cage, aviary, and enriched colony laying-hen houses[C]//American Society of Agricultural and Biological Engineers: 2014 Montreal, Quebec Canada July 13-July 16, 2014, 2014
[20] Xin H, Gates R S, Green A R, et al. Environmental impacts and sustainability of egg production systems[J]. Poultry Science, 2011, 90(1): 263-277.
[21] Chai Li-Long, Ni Ji-Qin, Chen Yan, et al. Assessment of long-term gas sampling design at two commercial manure-belt layer barns[J]. Journal of the Air & Waste Management Association, 2010, 60(6): 702-710.
[22] Green Angela R, Xin Hongwei. Effects of stocking density and group size on heat and moisture production of laying hens under thermoneutral and heat-challenging conditions[J]. Transactions of the ASABE, 2009, 52(6): 2027.
[23] Ellen H H, Bottcher R W, Von Wachenfelt E, et al. Dust levels and control methods in poultry houses[J]. Journal of Agricultural Safety and Health, 2000, 6(4): 275.
[24] Kocaman Bahar, Yaganoglu A Vahap, Yanar Mete. Combination of fan ventilation system and spraying of oil-water mixture on the levels of dust and gases in caged layer facilities in Eastern Turkey[J]. Journal of Applied Animal Research, 2005, 27(2): 109-111.
[25] 施正香,俞宏军,李保明,等. 华北地区商品蛋鸡舍冬季环境管理[J]. 中国农业大学学报,1997,2(6):71-75.
Shi Zhengxiang, Wen Shuxiang. Environmental management on commercial layer housing during winter in North China[J]. Journal of China Agricultural University, 1997, 2(6): 71-75. (in Chinese with English abstract)
[26] 吴鹏威. 半开放式鸡舍不同季节环境参数变化规律及其对蛋鸡生产性能影响的研究[D]. 保定:河北农业大学,2013.
Wu Pengwei. Research About Variation of Semi-open Sheds in Different Seasons on Environmental Parameters and its Effect the Performance of Laying Hens[D]. Baoding: Hebei Agricultural University, 2013. (in Chinese with English abstract)
[27] 马承伟,苗香雯. 农业生物环境工程[M]. 中国农业出版社,2005.
[28] 董红敏,陶秀萍.畜禽养殖环境控制与通风降温[M]. 北京:中国农业出版社,2007.
[29] Pedersen Søren, Blanes-Vidal Victoria, Joergensen H, et al. Carbon dioxide production in animal houses: A literature review[J]. Agricultural Engineering International: CIGR Journal, 2008.
[30] Pedersen S, Sällvik K. Heat and moisture production at animal and house levels. 4th Report of, Working Group on Climatization of Animal Houses[J]. CIGR Horsens, 2002.
[31] Pedersen S, Sällvik K. Climatization of Animal Houses-Heat and Moisture production at animal and house level 4 th report of CIGR working group[J]. Research Centre Bygholm, Danish Insitute of Agricultural Sciences, Horsens, Demark, 2002.
[32] Li Hong, Xin Hongwei, Liang Yi, et al. Comparison of direct vs. indirect ventilation rate determinations in layer barns using manure belts[J]. Transactions of the ASAE, 2005, 48(1): 367-372.
[33] Li H, Liang Y, Xin H. Determination of ventilation rates for a manure-belt laying hen house using CO2balance[J]. Journal Agricultural & Food Chemistry, 2005, 95(1): 378-385.
[34] Chai L L, Ni J Q, Diehl C A, et al. Ventilation rates in large commercial layer hen houses with two-year continuous monitoring[J]. British Poultry Science, 2012, 53(1): 19-31.
[35] Feddes J J R, DeShazer J A. Feed consumption as a parameter for establishing minimum ventilation rates[J]. Transactions of the ASAE, 1991, 31(2): 571-575.
[36] Lim T T, Heber A J, Ni J Q. Air quality measurement at a laying hen house[C]//Ventilation Airflow Measurement: ASAE Meeting Paper, 2003.
Determination of carbon dioxide concentration standards and minimum ventilation rates of layer house in winter
Wang Yang1,2, Wang Chaoyuan1,3, Li Baoming1,3※
(1.,,100083,; 2.100083,;3.100083,)
The CO2concentration is required to be below 1500 mg/m3(Environmental Quality Standards for the Livestock and Poultry Farm of China, published in 1999) in layer hen houses where the manure is disposed by powered scraper, the litters generally need to remind and the drinking device has water leak. Consequently, moisture and NH3levels in such barns are much high. Also, air temperature is much lower in winter, because the minimum ventilation rate is large in winter. However, the manure is cleaned daily in new poultry house with manure convey belt. Meanwhile, the aerial pollutants (CO2and NH3) are reduced and the relative humidity is decreased. Indoor air quality in this kind of poultry house is dramatically improved. A new standard of CO2concentration and the minimum ventilation rate of layer house with manure convey belt should be reconsidered. Determining the CO2concentration standards for the manure convey belt in layer hen houses is needed. The objectives of this work were to draw a conclusion about the CO2concentration levels and use it as a reference to calculate the minimum ventilation rate in winter. This review summarized the recent measurements of the emission rates of aerial NH3and the CO2concentrations in poultry houses in which the laying hens were kept in cages. The relationship between CO2and NH3was also described based on the data got in the poultry houses with different manure removing way from the domestic and foreign study. In addition, the minimum ventilation rate is important for ensuring the ideal air quality in poultry house in winter. The optimum ventilation is one of the factors affecting poultry production and energy consumption. Considering the mass conservation under steady-state conditions in the layer hen building, there are 2 main sources of CO2in poultry house, and most of the CO2is produced by respiration processes of layer hens, if neglecting the amount of CO2emitted from manure. The minimum temperature value for layer houses was 13 ℃ in this study. The following conclusions were drawn in this study: 1) There was a positive and significant correlation between CO2and NH3concentration in layer houses based on analyzing the data of previous researches. The standards of CO2concentration and NH3concentration were suggested to be 5000 mg/m3and less than 15 mg/m3respectively in the layer hen houses with manure convey belt. This condition would not reduce the hen’s performance and defenses. Primary CO2concentration standards persisted when the feces were scraped by powered scraper to a cross conveyor at the end of the barn; 2) Average NH3concentrations in the layer house with manure convey belt was largely less than the traditional house with the scraper. Therefore, rebuilding new layer hen’s building equipped with the manure convey belt is crucial not only for indoor environment, but also for ventilation system; 3) Ventilation rate was calculated using the rate of laying hen in winter based on CO2mass balances from the literature. The constantly minimum ventilation rates were 0.40-0.50 m3/(h·kg) for the layer houses with manure convey belt. The new standards of CO2concentration and ventilation rate were beneficial for improving indoor environment control and ventilation energy efficiency, and saving constructional costs. Furthermore, the results of this paper provide the reference for solving the contradiction between ventilation and insulation system in layer house. Also, it can improve the versatility of poultry environment and provide the support for emission studies using the new standard of the CO2to evaluate the poultry building environment.
facilities; environmental control; carbon dioxide; layer house; manure belt; minimum ventilation rates
10.11975/j.issn.1002-6819.2017.02.033
S831.9; X512
A
1002-6819(2017)-02-0240-05
2016-04-22
2016-11-10
国家863课题任务(2013AA10230602);国家蛋鸡产业技术体系(CARS-41);中央高校基本科研业务费专项资金资助(2015SYL001)。
王阳,女,博士生,山东潍坊人,研究方向为畜禽健康环境及其控制技术。北京中国农业大学水利与土木工程学院 100083。 Email:wangyang512@cau.edu.cn
李保明,男,教授,浙江缙云人,博士生导师,主要从事畜禽设施养殖工艺与环境研究。北京中国农业大学水利与土木工程学院 100083。Email:libm@cau.edu.cn
王 阳,王朝元,李保明. 蛋鸡舍冬季CO2浓度控制标准与最小通风量确定[J]. 农业工程学报,2017,33(2):240-244. doi:10.11975/j.issn.1002-6819.2017.02.033 http://www.tcsae.org
Wang Yang, Wang Chaoyuan, Li Baoming. Determination of carbon dioxide concentration standards and minimum ventilation rates of layer house in winter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 240-244. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.033 http://www.tcsae.org