王 慧,曾路生,孙永红,张金恒,郭庆增,孙芳莉,宋朝玉,陈建美
重金属铜和锌胁迫下的小麦冠层反射光谱特征
王 慧1,3,曾路生1,孙永红2,张金恒3※,郭庆增3,孙芳莉3,宋朝玉2,陈建美2
(1. 青岛农业大学资源与环境学院,青岛 266109; 2. 青岛市农业科学研究院,青岛266100;3. 青岛科技大学环境与安全工程学院,青岛266042)
目前关于土壤重金属污染对作物的光谱影响仍然处于探索阶段,受植物种类和环境等因素的影响,植物重金属胁迫机理的诊断仍存在不明确的问题,作物不同生长阶段对不同重金属的耐受程度存在差异。为了探究快速监测作物受重金属污染胁迫状况,采用田间小区试验,利用光谱分析方法研究了土壤重金属不同质量分数铜(0、100、300、600、900 mg/kg)和锌(0、250、500、750、1 000 mg/kg)处理下小麦分蘖期、拔节期和抽穗期冠层光谱特征。结果表明,小麦在分蘖期和拔节期冠层光谱在可见光(350~760 nm)波段内反射率总体随着铜、锌污染浓度的增加而升高,而在近红外(760~900 nm)波段内反射率随铜、锌处理浓度的增加而降低;分蘖期不同浓度铜、锌处理下,小麦冠层光谱出现红边蓝移和红谷蓝移现象;分蘖期铜处理在600、900 mg/kg和拔节期铜处理在900 mg/kg下小麦红边归一化指数值(NDVI705)均低于0.2;分蘖期锌处理在750和1 000 mg/kg下小麦红边归一化指数值(NDVI705)均低于0.2;该试验中引起小麦受到胁迫作用冠层光谱响应的铜临界浓度介于300与600 mg/kg之间,而锌临界浓度介于500与700 mg/kg之间。
遥感;光谱分析;波长;小麦;铜;锌;临界浓度
当前,中国受重金属污染耕地面积约0.1亿hm2,每年重金属受污染的粮食约1 200万t,土壤重金属污染已经严重影响到了中国的粮食安全[1]。土壤中过量的重金属一旦被作物吸收,将对作物生长和发育产生影响,并能通过食物链传入人体,在人体内富集,从而危害人体健康[2]。因此,快速监测或鉴别作物重金属胁迫状态,对保障中国粮食安全具有重要意义。目前,随着遥感技术的发展,高光谱遥感技术在土壤重金属污染监测得到应用与发展[3-5]。同时,高光谱遥感技术的发展使准确提取植被的生物物理参数和生物化学参数信息成为可能[6-8]。Mars等[9]研究表明植物受到污染胁迫反射光谱特征有时会发生变化。田国良等[10]研究表明,镉和铜拌土生长的水稻在分蘖期受到的影响无论是在生理上还是在反射光谱方面变化都比较显著,并且提出了3个有效波段范围。李娜等[11]利用光谱技术分析了植被重金属污染的光谱特征,并证明了光谱分析法在重金属污染监测上的可行性。任红艳等[12]利用遥感技术分析了重金属污染水稻的冠层光谱特征,并提出利用遥感技术监测水稻重金属污染的“光谱临界值”这一概念。宫兆宁等[13]研究表明植物叶片叶绿素含量与植物光谱“三边”参数呈极显著相关性。然而,当前关于土壤重金属污染对作物的光谱影响仍然处于探索阶段,受植物种类、环境等因素影响,植物重金属胁迫机理的诊断仍存在不明确的问题[14]。作物不同生长阶段对不同重金属的耐受程度存在差异,因此探究重金属对作物不同生长阶段胁迫的临界浓度具有一定现实意义。
1.1 试验材料与设计
试验于2014年10月至2015年6月在青岛市城阳区青岛农科院试验田进行。试验区总面积为180 m2,土壤类型为砂姜黑土,pH值为6.85,有机物质量分数为22.6 g/kg,碱解氮94.6 mg/kg,有效磷77.5 mg/kg,速效钾113 mg/kg,铜28.1 mg/kg,锌73.0 mg/kg。试验采用田间小区的方式,设置30个小区,每个小区面积为6 m2,试验区周围设置了0.5 m宽的保护行。选择铜、锌2种重金属元素,根据国家土壤质量标准(GB15618-1995)分别设置5个不同浓度梯度处理:铜质量分数分别为 0(CK)、100(Cu L1)、300(Cu L2)、600(Cu L3)、900 mg/kg(Cu L4);锌质量分数分别为0(CK)、250(Zn L1)、500(Zn L2)、750(Zn L3)、1 000 mg/kg(Zn L4)。重金属铜、锌分别以硫酸铜、硫酸锌溶液形式喷洒于每个小区,并翻土混匀加入土壤,每个处理3个重复,随机分布。重金属在土壤中平衡60 d后,于2014年10月8日播种,小麦品种为济麦22号,由青岛农科院提供。每个小区播种量约110 g,小麦采用常规的田间管理。
1.2 光谱数据测定
在小麦分蘖期(2015-01-08)、拔节期(2015-04-30)和抽穗期(2015-05-13)采集光谱数据。光谱仪选用荷兰Aventes公司生产的AvaSpec-ULS2048FT-SPU,该光谱仪的波长范围为350~1 100 nm,光谱分辨率为2.4 nm,探头视场角为25°。测量选在晴天、无风、少云的天气,测量时间为11:00-14:00之间。采样时,光谱仪探头垂直于小麦叶片冠层并且距小麦叶片冠层70 cm,每个小区随机布点采样10次,每次测量时进行白板校正。
1.3 光谱数据处理
将采集到的每个小区10次数据进行平均,取平均值作为每个小区的光谱反射率。对每个小区平均后的光谱数据进行处理分析,计算光谱曲线的一阶微分,找出光谱曲线对应的特征位置参数。其中一阶微分计算公式为[15]
′(λ)=[′(λ﹢1)−′(λ-1)]/2∆(1)
式中为波段位置;λ为每个波段波长;′(λ)为波长λ的一阶微分光谱;∆是波长λ+1到λ的间隔。
红边归一化植被指数NDVI705指数的计算公式为[16]
NDVI705=(750−705)/(750+705) (2)
式中750和705分别代表波长750和705 nm处的光谱反射率。
2.1 铜胁迫小麦冠层光谱特征分析
由图1可知,不同生育期不同浓度Cu处理下小麦冠层光谱反射率的变化趋势大体一致:在550 nm左右形成一个反射峰,即“绿峰”,在650 nm左右形成一个反射谷,即“红谷”,在760~900 nm形成反射率升高,形成“近红外反射平台”[17-18]。分蘖期和拔节期,小麦冠层光谱可见光(350~760 nm)反射率总体随Cu处理浓度的增加而升高:CK
当小麦受Cu胁迫时,其冠层光谱特征中的红谷位置会向短波方向移动,即发生“蓝移”现象,绿峰位置会向长波方向移动,即发生“红移”现象[19]。表1表明,与对照CK比较,分蘖期随Cu处理浓度的增加,小麦红边和红谷位置向短波方向发生了明显的“蓝移”现象,绿峰位置向长波方向发生了明显的“红移”现象,说明分蘖期小麦受到明显的Cu胁迫作用。拔节期,与对照CK比较,随Cu处理浓度的增加,小麦红边位置“蓝移”和绿峰位置“红移”明显减弱,红边的范围由738 nm移动到730 nm,绿峰位置由553 nm移动到580 nm。抽穗期,与对照CK相比,Cu L1、Cu L2和Cu L3处理下小麦的红边、红谷和绿峰位置无明显变化,而Cu L4 处理下小麦的红边和红谷位置发生“蓝移”,绿峰位置发生“红移”。说明随着生育期由营养生长向生殖生长的转变,小麦受Cu胁迫的作用在逐渐减小。同时,结合小麦冠层光谱反射率的变化可知,小麦冠层光谱响应Cu胁迫的临界浓度介于300与600 mg/kg之间。
表1 不同生育期不同浓度铜处理下小麦冠层光谱3个特征参数
2.2 锌胁迫小麦冠层光谱特征分析
与Cu处理胁迫相似,分蘖期和拔节期,Zn处理下小麦冠层光谱可见光(350~760 nm)反射率随Zn处理浓度的增加而升高:CK
由表2可知,与对照CK相比,Zn处理下分蘖期、拔节期和抽穗期小麦冠层光谱红谷位置都发生了“蓝移”现象,但是随着小麦的生长,“蓝移”的强度逐渐减小(分蘖期蓝移了31 nm,拔节期蓝移了4 nm,抽穗期蓝移了1 nm);在分蘖期和拔节期,红边位置发生“蓝移”,绿峰位置发生“红移”(分蘖期红边蓝移17 nm,绿峰红移38 nm;拔节期红边蓝移1 nm,绿峰红移1 nm)。抽穗期,红边和绿峰位置则未出现明显移动。
试验表明,小麦处在分蘖期和拔节期这一营养生长阶段时,与对照CK相比,高浓度的锌(Zn L3、Zn L4)对小麦产生了胁迫作用,当小麦进入到生殖生长阶段,与对照CK相比,低浓度锌处理对小麦生长表现出相对的促进作用,其中Zn L2的促进作用最大。同时结合小麦冠层光谱反射率的变化可得知,在本研究中小麦锌胁迫的临界浓度介于500与750 mg/kg之间。
表2 不同生育期不同浓度锌处理下小麦冠层光谱3个特征参数
2.3 红边归一化植被指数(NDVI705)分析
红边归一化植被指数(NDVI705)是用于植被胁迫性探测的植被指数之一,该植被指数值对叶冠层的微小变化非常灵敏,NDVI705值的范围是−1~1,一般绿色植被区的范围是0.2~0.9。当植被指数值低于0.2时,说明植物受到了一定的胁迫作用[16]。由图3可知,小麦分蘖期和拔节期,NDVI705值随着铜处理浓度的升高而降低;抽穗期,NDVI705值随铜处理浓度的升高先升高,当铜的质量分数达600 mg/kg(Cu L3)后,NDVI705值随铜处理浓度的升高而降低。分蘖期铜质量分数为600(Cu L3)、900 mg/kg(Cu L4)和拔节期900 mg/kg(Cu L4)时,NDVI705值低于0.2,说明该浓度铜处理对小麦生长产生了胁迫作用。小麦分蘖期和拔节期,NDVI705值随着锌处理浓度的升高而降低;抽穗期锌各浓度处理下小麦NDVI705值与对照CK相比均有所增加。分蘖期锌的质量分数为750(Zn L3)、1 000 mg/kg(Zn L4)时,NDVI705值低于0.2,说明在小麦生长的分蘖期,高浓度锌对小麦的生长产生了胁迫作用。
由表3可知,土壤重金属铜、锌含量与NDVI705值在小麦分蘖期和拔节期呈现显著负相关性,抽穗期土壤重金属铜、锌与NDVI705值没有显著相关性。可能因为分蘖期和拔节期,小麦属于初期营养生长阶段,器官较幼嫩,对铜、锌处理浓度的承受范围较小,对重金属胁迫更敏感,因而与土壤重金属铜、锌浓度之间存在显著相关性;抽穗期,小麦进入生殖生长阶段,对铜、锌处理浓度的承受范围较大,因而与土壤重金属铜、锌浓度没有显著相关性。分蘖期与拔节期土壤重金属铜、锌含量与NDVI705值的线性拟合模型见图4。
表3 土壤重金属Cu、Zn含量与NDVI705值相关性
注:** 和*分别表示在0.01和0.05水平上显著相关。
Note: **and*indicate significance at the 0.01 and 0.05 levels,respectively.
不同浓度重金属铜、锌处理下,小麦光谱在不同生长期会表现出不同的光谱特征。分蘖期特征最为显著,随着浓度的增加,铜、锌处理下的小麦冠层光谱红边、红谷均发生“蓝移”现象,同时土壤重金属铜、锌含量与NDVI705值存在明显相关性。通过分析可知,本试验中,小麦受到胁迫作用的冠层光谱响应的铜临界浓度介于300与600 mg/kg之间,锌临界浓度介于500与750 mg/kg之间。由于铜和锌都是植物所需的微量元素,并且在化学性质上具有一定的相似性,因此对植物光谱的影响也具有相似性。相关研究表明,红边、红谷位置是反映植物受重金属胁迫程度的重要参数,可见光波段反射率的变化大小以及红边的蓝移程度与植物叶片的重金属含量存在着明显的正相关性[20-22]。植物受重金属铜、锌胁迫时,小麦体内叶绿素形成所需酶的活性会受到抑制,阻碍叶绿素的形成,导致叶黄素增加,叶绿素减少,因而反映在光谱上的特征为红边、红谷发生“蓝移”[23-25]。红边归一化化植被指数(NDVI705)是分析植物受重金属胁迫水平的重要参数之一,研究显示NDVI705值与作物受重金属污染的水平存在显著的相关性,当植物受重金属胁迫时,NDVI705值会随着受胁迫浓度的增加而降低[26-27]。
不同生长时期,土壤重金属铜、锌胁迫对植物生长的影响存在差异,因此在光谱特征上的表现也会有所不同。分蘖期,由于土壤中金属铜、锌有效态含量较高,小麦处于初期营养生长阶段,抵抗重金属胁迫的能力较弱,大量的重金属离子进入小麦体内后,对小麦根系发育、叶绿素形成和细胞超微结构等产生严重伤害,从而表现在光谱上的特征较为明显。拔节期和抽穗期小麦进入生殖生长阶段,表现出较强的抗氧化能力和渗透性调节能力,一定程度上缓解了重金属对小麦造成的氧化损害,因而表现在光谱上的特征差异不明显[28-30]。
1)不同浓度重金属铜、锌处理下,小麦冠层光谱在不同生长时期(分蘖期、拔节期和抽穗期)表现出不同的光谱特征。分蘖期小麦冠层光谱在铜和锌胁迫下均表现为可见光(350~760 nm)波段内反射率随着处理浓度的增加而升高,近红外(760~900 nm)波段内反射率随处理浓度的增加而降低。
2)铜、锌胁迫下,小麦冠层光谱在不同生长时期(分蘖期、拔节期和抽穗期)的红边、红谷和绿峰位置有所不同。分蘖期小麦冠层光谱在铜和锌胁迫下均出现红边和红谷“蓝移”现象、绿峰位置出现“红移”现象。
3)分蘖期600、900 mg/kg铜质量分数和拔节期900 mg/kg 铜质量分数下小麦NDVI705值低于0.2,小麦生长受到了铜胁迫作用;分蘖期750、1 000 mg/kg 锌质量分数下NDVI705值低于0.2,小麦生长受到了锌胁迫作用;分蘖期和拔节期土壤重金属铜、锌含量与NDVI705值存在显著的相关性。
4)本试验中,小麦受到胁迫作用的冠层光谱响应的铜临界浓度介于300与600 mg/kg之间,锌临界浓度介于500与750 mg/kg之间。
[1] 路子显. 粮食重金属污染对粮食安全、人体健康的影响[J]. 粮食科技与经济,2011,36(4):14-17.
Lu Zixian. The influence of heavy metal pollution of grain on food security and human health[J]. Grain Science and Technology and Economy, 2011, 36(4): 14-17. (in Chinese with English abstract)
[2] 周明冬,秦晓辉,候洪,等. 农田土壤重金属的危害及防控措施[J]. 环境与可持续发展,2014,2:57-58.
Zhou Mingdong, Qin Xiaohui, Hou Hong, et al. Prevention and control measures and damage of heavy metals in farmland soil[J]. Environment and Sustainable Development, 2014, 2: 57-58. (in Chinese with English abstract)
[3] 姚云军,秦其明,张自力,等. 高光谱技术在农业遥感中的应用研究进展[J]. 农业工程学报,2008,24(7):301-306.
Yao Yunjun, Qin Qiming, Zhang Zili, et al. Research progress of hyperspectral technology applied in agricultural remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(7): 301-306. (in Chinese with English abstract)
[4] 唐延林,黄敬峰. 农业高光谱遥感研究的现状与发展趋势[J]. 遥感技术与应用,2001,16(4):248-251.
Tang Yanlin, Huang Jingfeng. Study on hyperspectral remote sensing agriculture [J]. Remote Sensing Technology &Application, 2001, 16(4): 248-251. (in Chinese with English abstract)
[5] 姜庆虎,童芳,余明珠. 高光谱技术—生态学领域研究的新方法[J]. 植物科学学报,2015,33(5):633-640.
Jiang Qinghu, Tong Fang, Yu Mingzhu, et al. Hyperspectral technique—an opportunity in ecology[J]. Plant Science Journal, 2015, 33(5): 633-640. (in Chinese with English abstract)
[6] Thenkabail P S, Smith R B, Pauw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics[J]. Remote Sensing of Environment, 2000, 71: 158-182.
[7] 文瑶,李明赞,赵毅,等. 玉米苗期冠层多光谱反射率与叶绿素含量诊断[J]. 农业工程学报,2015,31(增刊2):193-199.
Wen Yao, Li Mingzan, Zhao Yi, et al. Multispectral reflectance inversion and chlorophyll content diagnosis of maize at seeding stage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 193-199. (in Chinese with English abstract )
[8] 杨宝华,陈建林,陈林海,等. 基于敏感波段的小麦冠层氮含量估测模型[J]. 农业工程学报,2015,31(22):176-182.
Yang Baohua, Chen Jianlin, Chen Linhai, et al. Estimation model of wheat canopy nitrogen content based on sensitive bands[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 176-182. (in Chinese with English abstract)
[9] Mars J C, Crowley J K. Mapping mine wastes and analyzing areas affected by selenium rich water run off southeast Idaho using AVIRIS imagery and digital elevation data[J]. Remote Sensing of Environment, 2003, 84 : 422-436.
[10] 田国良,包佩丽,李建军等. 土壤中镉、铜伤害对水稻光谱特性的影响[J]. 环境遥感,1990,5(2):140-149.
Tian Guoliang, Bao Peili, Li Jianjun, et al. Effects of cadmium and copper in soil on spectral reflectance of Rice[J]. Environmental Remote Sensing, 1990, 5(2): 140-149. (in Chinese with English abstract)
[11] 李娜,吕建升,Altermann W. 光谱分析在植被重金属污染监测中的应用[J]. 光谱学与光谱分析,2010,30(9):2508-2511.
Li Na, Lv Jiansheng, Altermann W. Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution[J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2508-2511. (in Chinese with English abstract)
[12] 任红艳,庄大方,潘剑君,等. 铅污染水稻的冠层高光谱特征研究[J]. 地球信息科学,2008,10(3):314-319.
Ren Hongyan, Zhuang Dafang, Pan Jianjun, et al. Study on canopy spectral characteristics of paddy polluted by heavy metals[J]. Geo-Information Science, 2008, 10(3): 314-319. (in Chinese with English abstract)
[13] 宫兆宁,赵雅莉,赵文吉,等. 基于光谱指数的植物叶片叶绿素含量的估算模型[J]. 生态学报,2014,34(20):5736-5745.
Gong Zhaoning, ZhaoYali, Zhao Wenji, et al. Estimation model for plant leaf chlorophyll content based on the spectral index content[J]. Acta Ecologica Sinica, 2014, 34(20): 5736-5745. (in Chinese with English abstract)
[14] 唐鹏,刘光,徐俊锋. 植物重金属胁迫的高光谱遥感研究进展[J]. 杭州师范大学学报:自然科学版,2014,13(6):634-640.
Tang Peng, Liu Guang, Xu Junfeng. The progress of hyperspectrum remote sensing under heavy metal stress in plants[J]. Journal of Hangzhou Normal University: Natural Science Edition, 2014, 13(6): 634-640. (in Chinese with English abstract)
[15] 浦瑞良,宫鹏. 高光谱遥感及其应用[M]. 北京:高等教育出版社,2000:53-58.
[16] 邓书斌,陈秋锦,杜会建,等. ENVI 遥感图像处理方法(第二版)[M]. 北京:高等教育出版社,2014:381-383.
[17] 薛忠财,高远辉,彭涛,等. 光谱分析在植物生理生态中的运用[J]. 植物生理学报,2011,47(4):313-320.
Xue Zhongcai, Gao Huiyuan, Peng Tao, et al. Application of spectral reflectance on research of plant eco-physiology[J]. Plant Physiology Journal, 2011, 47(4): 313-320. (in Chinese with English abstract)
[18] 杨璐,高永光,胡振琪. 铜胁迫下植被光谱变化规律研究[J]. 矿业研究与开发,2008,28(4):74-76.
Yang Lu, Gao Yongguang, Hu Zhenqi. Study on Spectral Change of Vegetation under Cu Stress[J]. Mining Research and Development, 2008, 28(4): 74-76. (in Chinese with English abstract)
[19] 梁守真,施平,马万栋,等. 植被叶片光谱及红边特征与叶片生化组分关系的分析[J]. 中国生态农业学报,2010,18(4):804-809.
Liang Shouzhen, Shi Ping, Ma Wandong, et al. Relational analysis of spectra and red-edge characteristics of plant leaf and leaf biochemical constituent[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 804-809. (in Chinese with English abstract)
[20] 迟光宇,刘新会,刘素红,等. Cu污染与小麦特征光谱相关关系研究[J]. 光谱学与光谱分析,2006,26(7):1272-1276.
Chi Guangyu, Liu Xinhui, Liu Suhong, et al. Studies of relationships between Cu pollution and spectral characteristics of TritiZnm Aestivum L[J]. Spectroscopy and Spectral Analysis, 2006, 26(7): 1272-1276. (in Chinese with English abstract)
[21] 朱叶青,屈永华,刘素红. 重金属铜污染植被光谱响应特征研究[J]. 遥感学报,2014,18(2):344-352.
Zhu Yeqing, Qu Yonghua, Liu Suhong, et al. Spectral response of wheat and lettuce to copper pollution[J]. Journal of Remote Sensing, 2014, 18(2): 344-352. (in Chinese with English abstract)
[22] 陈思宁,刘新会,侯娟,等. 重金属锌胁迫的白菜叶片光谱响应研究[J]. 光谱学与光谱分析,2007,27(9):1797-1801.
Chen Sining, Liu Xinhui, Hou Juan, et al. Study on the spectrum response of brassica campestris leaf to the zinc pollution[J]. Spectroscopy and Spectral Analysis, 2007, 27(9): 1797-1801. (in Chinese with English abstract)
[23] 刘新会,迟光宇,刘素红,等. Zn2+污染与小麦特征光谱相关关系研究[J]. 生态与农村环境学报,2006,2(1):62-66.
Liu Xinhui, Chi Guangyu, Liu Suhong, et al. Relationships between Zn2+Pollution and Spectral Characteristics of Wheat[J]. Journal of Ecology and Rural Environment, 2006, 2(1):62-66. (in Chinese with English abstract)
[24] 龚红梅,李卫国. 锌对植物的毒害及机理研究进展[J]. 安徽农业科学,2009,37(29):14009-14015.
Gong Hongmei, Li Weiguo. Research progress on the toxicity of zinc to plants and it’s mechanism[J]. Journal of Anhui Agri Sci, 2009, 37(29): 14009-14015. (in Chinese with English abstract)
[25] 王维,沈润平,吉曹翔. 基于高光谱的土壤重金属铜的反演研究[J]. 遥感技术与应用,2011,26(3):348-354.
Wang Wei, Shen Runping, Ji Caoxiang. Study on heavy metal Cu based on hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 2011, 26(3): 348-354. (in Chinese with English abstract)
[26] 杨可明,史钢强,魏华锋,等. 重金属铜胁迫玉米叶片的光谱响应特征[J]. 贵州农业科学,2015,43(6):22-26.
Yang Keming, Shi Gangqiang, Wei Huafeng, et al. Spectral response characteristics of corn leaves under copper stress[J]. Guizhou Agricultural Sciences, 2015, 43(6): 22-26. (in Chinese with English abstract)
[27] 郭云开,曹小燕,石自桂. 水稻冠层光谱变化特征的土壤重金属全量反演研究[J]. 遥感信息,2015,30(3):116-123.
Guo Yunkai, Cao Xiaoyan, Shi Zigui. Inversion model of total amount of soil heavy metal based on spectral characteristics of rice canopy[J]. Remote Sensing Information, 2015, 30(3): 116-123. (in Chinese with English abstract)
[28] 谭万能,李志安,邹碧. 植物对重金属耐性的分子生态机理[J]. 植物生态学报,2006,30(4):703-712.
Tan Wanneng, Li Zhian, Zou Bi, et al. Molecular mechanisms of plant tolerance to heavy metals[J]. Chinese Journal of Plant Ecology, 2006, 30(4): 703-712. (in Chinese with English abstract)
[29] 全先庆,张小茜,单雷等. 植物耐受重金属胁迫细胞机制研究进展[J]. 安徽农业科学,2006,34(5):850-852.
Quan Xianqing, Zhang Xiaoqian, Shan Lei, et al. Research advance in cellular mechanisms of plant tolerance to heavy metal[J]. Journal of Anhui Agri Sci, 2006, 34(5):850-852. (in Chinese with English abstract)
[30] 李洋,于丽杰,金晓霞. 植物重金属胁迫耐受机制[J]. 中国生物工程杂志,2015,35(9):94-104.
Li Yang, Yu Lijie, Jin Xiaoxia. Mechanism of heavy metal tolerance stress of plants[J].China Biotechnology, 2015, 35(9): 94-104. (in Chinese with English abstract)
Wheat canopy spectral reflectance feature response to heavy metal copper and zinc stress
Wang Hui1,3, Zeng Lusheng1, Sun Yonghong2,Zhang Jinheng3※, Guo Qingzeng3, Sun Fangli3, Song Chaoyu2, Chen Jianmei2
(1.,,266109,; 2.,266100,; 3.,,266042,)
With the rapid development of economy and modern industrial and agriculture, more and more heavy metals such as cadmium, copper and zinc come into environment. Heavy metals are not only polluting soil, water and air, but also affecting crops growth and the yield, and affecting food security and human health by food chain. It was reported that heavy metal contamination of arable land in China has reached 20 million hm2, accounting for the country's total cultivated area of 1/6. Therefore, many researchers pay more attention to the heavy metal pollution problems increasingly. At present, researchers usually use chemical and biological methods to test the pollution extent of different heavy metals. Those methods are time consuming and even cause the second environmental pollution. Using spectral analysis to monitor the heavy metals stress on crops is an innovative approach. However, the effect of heavy metal pollution on crops spectrum is still in the exploration stage. Because of the effect of different factors such as plants and environment, the diagnosis of heavy metal stress mechanism on plant is still unclear. The crop tolerance at different growth stages are different from heavy metals, therefor, to explore the critical concentration of different heavy metals stress on crops at the different growth stages has certain practical significance.
In order to monitor the crop stress of heavy metal pollution rapidly, under open field plot conditions and using canopy spectral analysis, the canopy spectral features of wheat at different stages of tillering, jointing and heading were studied at the different treatments of Cu (0, 100, 300, 600 and 900 mg/kg) and Zn (0, 250, 500, 750 and 1 000 mg/kg), according to the national soil quality standard (GB15618-1995) of China. The experiment was conducted in the experimental field of Qingdao Academy of Agricultural Sciences in Chengyang District of Qingdao City, in October 2014 to June 2015. The total area of the test plot was 180 m2, and the test soil type is Shajiang black soil, with the pH value of 6.85, the organic matter content of 22.6 g/kg, nitrogen content of 94.6 mg/kg, available phosphorus content of 77.5 mg/kg, the available potassium content of 113 mg/kg, copper content of 28.1 mg/kg and zinc content of 73 mg/kg. The experiment was conducted by traditional management. The results indicated that at different concentration treatments of copper (Cu) and zinc (Zn), the canopy spectral reflectance in the visible band (350-760 nm) increased obviously with the concentration treatments increasing of Cu and Zn at the tillering and jointing stages of wheat, however, the canopy spectral reflectance of near infrared band (760-900nm) reduced with the increasing concentration of Cu and Zn treatment levels. Wheat canopy spectral reflectance appeared red edge position and red valley position shifting toward short wavelength called “blue shift” at tillering stage of wheat under the different concentration treatments of Cu and Zn. At the tillering stage of wheat, copper treatments of 600 and 900 mg/kg and at the jointing stage copper treatment of 900 mg/kg, the red edge normalized index value (NDVI705) were less than 0.2. At the tillering stage, zinc treatments of 750 and 1 000 mg/kg, the red edge normalized index value (NDVI705) was less than 0.2. This research also indicated that the wheat canopy spectral features response obviously to the threshold values concentration treatment level of Cu were between 300 and 600 mg/kg, and Zn were between 500 g and 750 mg/kg.
remote sensing; spectrum analysis; wavelength; wheat; Cu; Zn; concentration threshold value
10.11975/j.issn.1002-6819.2017.02.023
S127
A
1002-6819(2017)-02-0171-06
2016-05-26
2016-11-17
国家自然科学基金项目(41471279)
王 慧,女,主要从事土壤重金属污染研究,青岛 青岛农业大学,266109。Email:wanghui_whity@163.com
张金恒,男,青岛科技大学生态环境与农业信息化研究所所长,教授,主要从事农业遥感与信息技术,青岛 青岛科技大学环境与安全工程学院,266042。Email:zjh-nhl@163.com
王 慧,曾路生,孙永红,张金恒,郭庆增,孙芳莉,宋朝玉,陈建美. 重金属铜和锌胁迫下的小麦冠层反射光谱特征[J]. 农业工程学报,2017,33(2):171-176. doi:10.11975/j.issn.1002-6819.2017.02.023 http://www.tcsae.org
Wang Hui, Zeng Lusheng, Sun Yonghong, Zhang Jinheng, Guo Qingzeng, Sun Fangli, Song Chaoyu, Chen Jianmei. Wheat canopy spectral reflectance feature response to heavy metal copper and zinc stress[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 171-176. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.023 http://www.tcsae.org