综合产量和土壤N2O排放的马铃薯施氮量分析

2017-02-17 02:54龙光强
农业工程学报 2017年2期
关键词:施氮土壤温度硝态

周 龙,龙光强,汤 利,郑 毅



综合产量和土壤N2O排放的马铃薯施氮量分析

周 龙,龙光强,汤 利※,郑 毅

(云南农业大学资源与环境学院,昆明 650201)

施氮可提高作物产量,但同时也增加温室气体N2O的土壤排放量。研究施氮量与产量和土壤N2O排放的关系,对保障作物产量并兼顾环境效应的农业生产实践具有重要指导意义。该研究设置N0(0)、N1(67.5 kg/hm2)、N2(125 kg/hm2)、N3(187.5 kg/hm2)4个施氮水平,采用静态箱-气相色谱法对土壤N2O排放进行田间原位测定,研究施氮量对马铃薯产量、土壤N2O排放的影响,分析综合产量与土壤N2O排放的合理施氮量。结果表明:施氮显著增加马铃薯产量和土壤N2O累积排放量,较不施氮(N0)处理,N1、N2和N3处理马铃薯产量增加78.5%、93.1%和95.6%;生育期N1、N2和N3处理马铃薯土壤N2O累积排放量分别是N0处理的2.3、4.4和6.7倍。同时,随施氮量增加,N2O排放系数、硝态氮强度和单产N2O排放量均显著增加。在低氮处理(N0、N1)时,土壤N2O排放通量与土壤温度、湿度显著正相关,而在高氮水平时,土壤N2O排放通量与土壤硝态氮含量显著正相关。施氮67.5 kg/hm2可确保研究区马铃薯产量并有效降低土壤N2O排放。

产量;化肥;排放控制;马铃薯;N2O排放

0 引 言

氮素是作物生长必需的三大营养元素之一,通过增施氮肥提高作物产量被广泛用于农业生产实践。然而,施氮量与作物产量之间并非简单的直线关系,当施氮量达到某一程度后,作物产量不再随施氮量增加而提高,更多的氮投入甚至导致减产[1-2]。从另一个角度看,过量氮肥投入不仅没有起到增产作用,反而导致农田生态系统活性氮排放增加,加剧硝态氮淋洗、温室气体排放,由此带来水体和大气污染等系列环境问题[1,3-5]。因此,作物氮肥用量是既关系作物产量,同时又影响农业生产环境效应的关键农业举措,合理施用氮肥具有保障粮食安全和降低环境负面效应的双重意义。

作为一种含氮的重要温室气体,N2O潜在增温作用是CO2的296~310倍[6],可参与多种光化学反应,破坏大气臭氧层,引起全球气候变暖。N2O是重要温室气体[7-8],农业土壤是N2O重要的排放源,占全球N2O排放总量的25%~39%,并且以较快的速率增长[9]。中国因施氮造成每年63万t的N2O排放,农业生产过程中排放的N2O占全国N2O排放总量的92%[10]。针对中国氮肥用量大,肥效低、N2O排放损失大的事实[10-11],一些研究指出,通过合理的氮肥用量提高作物对氮肥利用率,可有效降低土壤N2O排放[12-13]。

马铃薯是全球第4大栽培作物,中国是世界马铃薯第一生产国[14]。据联合国粮农组织统计资料(FAOSTAT)显示,2012年中国马铃薯种植面积占世界总种植面积28%,总产占世界的24%,预计2020年50%以上的马铃薯将作为主粮消费[15]。在中国西南山区、东北北部和黄土高原省份,马铃薯作为当地主要的粮食和蔬菜作物,占全国播种面积85%以上,而其单产却不到世界平均水平的83%[16-17]。在大量氮肥施用引起农田土壤N2O排放加剧全球气候变暖的大背景下,研究施氮量对产量和土壤N2O排放的关系,对保障作物产量并兼顾环境效应的农业生产实践具有重要指导意义。已有部分研究涉及施氮条件下马铃薯土壤N2O排放和产量,但主要集中在温带大陆性气候区,且单一关注施氮对产量或N2O排放的影响[18-21],而在北亚热带季风气候条件下尚无报道。本文采用田间小区试验,利用静态箱-气相色谱法测定土壤N2O排放,研究不同施氮量对马铃薯产量与N2O排放的影响,通过综合分析探讨合理施氮量,为氮肥施用提供理论参考。

1 材料与方法

1.1 试验点概况

2015年4-11月在云南农业大学寻甸大河桥试验基地进行试验(23°32′N、103°13′E),地处昆明市东北部,属北亚热带季风气候。年日照数2 077.7 h,无霜期257 d,试验期间月平均气温和月降水量如图1所示。土壤类型为红壤,有机质质量分数25.06 g/kg,全氮1.11 g/kg,碱解氮87.37 mg/kg,速效磷23.31 mg/kg,速效钾207.82 mg/kg,pH 6.79。

1.2 试验设计

本试验供试马铃薯(L)品种为“会泽2号”,小区试验采用随机区组设计,4个施氮量水平,3次重复,小区面积32.5 m2(5 m×6.5 m)。马铃薯株距35 cm,行距均为50 cm。

4个施氮水平分别为不施氮(N0)、低氮(N1,比常规施氮减50%,67.5 kg/hm2)、常规施氮(N2,125 kg/hm2)、高氮(N3,比常规施氮高50%,187.5 kg/hm2)。分2次施入,基肥60%,现蕾期40%。磷肥(P2O5)75 kg/hm2,钾肥(K2O)125 kg/hm2,磷钾肥均以基肥形式施入。所用氮、磷、钾肥分别为46%尿素、14%普钙和50%硫酸钾。

马铃薯于2015年4月4日播种,5月14日出苗,8月11日收获,生育过程各处理中耕、培土、除草、病虫害防治等田间管理保持一致。

1.3 样品采集及测定方法

在马铃薯成熟期取中间2行进行测产。同时,取部分块茎在105 ℃杀青30 min,65~70 ℃烘干至恒重,称重并计算块茎含水量,折算出每公顷马铃薯产量(含水量80%)。

在作物生育期每隔1周使用土钻采集表层土壤(0~20 cm),如遇施肥和降雨等特殊情况增加采样频次,采集样品立即保存在4 ℃冰箱,直到测定时取出。准确称取鲜土12 g,加入50 mL浓度为1 mol/L的KCl溶液,180 r/min震荡1 h后过滤备用。滤液用连续流动分析仪(Bran Luebbe AA3,Germany)直接测定土壤NO3--N和NH4+-N含量。取滤液5 mL于50 mL容量瓶中,加入氧化剂在121~123 ℃高压锅中氧化30 min,冷却定容后使用流动分析仪测定溶解性全氮(TDN)。将滤液过0.45m滤膜,吸取5 mL滤液,使用高锰酸钾-外加热法测定溶解性有机碳(DOC)。使用pH计水土比2.5:1测定pH。用烘干法测定土壤质量含水量。溶解性有机氮(DON)=溶解性全氮含量(TDN)-硝态氮含量-铵态氮含量。以上指标测定参照《土壤农业化学分析方法》[22]。

采用静态箱-气相色谱法对土壤N2O排放量进行原位观测。采样箱由顶箱和底座两部分组合而成,箱体材料为6 mm厚PVC板。静态箱规格尺寸为40 cm×40 cm× 40 cm,箱内配有搅拌空气的小风扇和温度计,确保所采气体均匀有代表性,所测温度用于计算N2O排放通量。整个马铃薯生育期,每隔1周采集1次气体样品,遇施肥或降雨增加采样频次,采样时间均安排在9:00-11:00。采样时,在底座凹槽中加入2~3 cm的水(加水起到密封作用),盖上顶箱。使用25 mL三通注射器分别于0、15、30 min进行取样。取样同时,使用土壤温度计测定土壤15 cm温度,使用土壤水分测定仪测定土壤体积含水量。N2O浓度采用安捷伦气相色谱仪测定(GC;7890A GC System,Agilent Technologies,US)。

1.4 数据处理与统计分析

土壤N2O排放通量计算公式为[18]

式中为被测气体的排放通量,g/(m2·h);为标准状态下被测气体浓度,g/m3;为单位时间内取样箱内被测气体浓度的变化量,g/h;为采样时箱内气温,℃;为采样箱体积,m3;为采样箱底面积,m2。

土壤孔隙含水量(Water-filled pore spaces, WFPS, %)[19]

式中SGC为土壤质量含水量,%;BD为土壤容重,g/cm3;2.65为土壤密度,g/cm3。

氮素以N2O排放量占施肥量的比例计为N2O排放系数[20]。

式中为N2O排放系数;为生育期施氮处理N2O累积排放量,kg/hm2;0为不施氮处理生育期N2O累积排放量,kg/hm2;为单位面积施肥量,kg/hm2。

累积N2O排放量[21]

式中为生育期内气体排放量,kg/hm2,为气体排放通量,g/(m2·h),为采样次数,为采样时间即距初次采样的天数,d。

硝酸盐强度(Nitrate intensity,NI)反映某一时间尺度内硝态氮累积量[21]。

式中为生育期表层(0~20 cm)土壤硝态氮含量,mg/kg,为采样次数,为采样时间,d。

单位产量N2O累积排放量(Yield-scaled N2O intensity,Y-SN2O):

式中Y-SN2O为单位产量N2O累积排放量,g/kg,为作物产量,kg/hm2。

采用excel 2010、SPSS 17.0软件对数据进行处理和分析,采用LSD进行处理间差异显著性检验。

2 结果与分析

2.1 不同施氮水平下马铃薯产量及土壤N2O排放情况

整个马铃薯生长季,马铃薯种植土壤都是大气N2O排放的源,呈现明显的季节性差异(图2)。N0、N1、N2和N3处理土壤N2O排放通量分别为1.39~18.63、2.53~67.61、3.70~250.07和3.80~391.33g/(m2·h),平均达9.61、23.60、47.16和68.45g/(m2·h)(表1)。施肥显著增加马铃薯土壤N2O排放通量(<0.05),N1、N2和N3分别是NO处理的2.5、4.9、7.1倍。

整个马铃薯生长季N2O共观测214 d,土壤N2O累积排放量如表1所示。4个处理累积排放量在0.50~3.30 kg/hm2之间,随着施氮量增加,累积N2O排放量显著增加(<0.05),N1、N2和N3处理是N0处理的2.3、4.4、6.7倍。施氮显著增加氮素以N2O形式损失的比例,N1、N2和N3处理土壤N2O排放系数分别为0.93%、1.36%、1.50%。同时,施氮也显著增加马铃薯产量(<0.05),较不施氮(N0)处理,N1、N2和N3处理马铃薯产量增加78.5%、93.1%和95.6%。与N1处理相比,N2和N3处理马铃薯产量分别增加8.2%和9.6%,N2和N3处理间差异不显著。尽管施氮显著增加马铃薯产量,随施氮量增加,单产N2O排放量损失越大,暗示在高氮水平下,生产1 kg马铃薯将损失更多的氮素,所付出的环境代价更大。

表1 不同施氮水平马铃薯土壤N2O排放及其相关影响因子

注:同一列中数值后不同小写字母表示处理间0.05水平差异显著性。

Note: Different lowercase letters following values in same column means significant difference among treatments at 5% level.

硝态氮强度为整个马铃薯生育期内硝态氮累积量,与土壤N2O排放通量密切相关。随施氮量增加,土壤硝态氮累积强度逐渐增加,较不施氮处理,分别增加了0.86、0.89和1.37g/(d·kg)(表1)。以累积N2O排放量与硝态氮强度的商表征单位硝态氮强度累积N2O排放量(无量纲),反映随土壤硝态氮强度变化土壤累积N2O排放的响应程度。通过计算可得,N0、N1、N2和N3施氮处理单位硝态氮强度累积N2O排放量分别为0.51、0.70、1.17和1.40,不同施氮水平差异显著(<0.05)。土壤硝态氮强度能更直观地反映施氮对土壤N2O排放的影响程度。

施氮显著增加马铃薯产量,但马铃薯氮素农学利用率随施氮量增加呈逐渐降低趋势,N1、N2和N3处理依次为17.7、11.3和7.7 kg/kg。施氮显著增加生育期马铃薯累积N2O排放量,且土壤N2O排放系数随施氮量增加,呈显著上升趋势,N1、N2和N3处理N2O排放系数分别为0.93%、1.36%和1.50%。施氮提高马铃薯产量同时也导致N2O排放增加,当产量最大时,继续施氮马铃薯不再增产,而土壤N2O排放量仍继续增加。因此要获得高产低N2O排放不现实,需要在产量和N2O排放之间折衷。

从表1可看出,当施氮量为67.5 kg/hm2时,N2O排放系数为0.93%,接近1%(IPCC报道农田生态系统平均N2O排放系数)[6],产量相比最高产量仅降低7.5%;当施氮量为125 kg/hm2时,尽管产量达最大,但N2O排放系数(1.36%)超过1%。因而,该试验地兼顾施氮量和累积N2O排放的环保施氮量可在62.5 kg/hm2的基础上有所增加,但需低于125 kg/hm2。

2.2 土壤理化性质变化及土壤N2O排放影响因子

从图1和图3中可以看出,马铃薯生育期大气温度和地下0~20 cm深处土壤温度具有相似季节变化规律,5-8月温度最高,最高温度32 ℃,最低温度−1 ℃,平均温度18.3 ℃,不同施氮处理间土壤温度没有显著不同。不同施氮水平土壤孔隙含水量(WFPS)与降雨量变化趋势相似,存在明显季节变化规律,变化幅度较大,为9.5%~124.9%,平均为82.2%,不同施氮处理土壤孔隙含水量变化规律一致。

生育期不同施氮水平马铃薯土壤温度、湿度及硝态氮和铵态氮动态变化(0~20 cm)见图3。整个生长季,土壤铵态氮质量分数大多时候低于1 mg/kg,不同施氮处理间没有显著差异。土壤无机氮中硝态氮占比较大,是铵态氮质量分数的5~10倍。不同施氮处理土壤硝态氮含量季节变化趋势一致,明显受施肥时间和作物氮素吸收的影响,在5~7月最高,之后逐渐降低。N0、N1、N2和N3处理土壤硝态氮平均质量分数为4.78、8.37、10.07和12.43 mg/kg,施氮量增加显著提高土壤硝态氮含量,N1、N2、N3分别为N0处理的1.8、2.1和2.6倍。

针对不同施氮水平,运用不同时期土壤理化因子与土壤N2O排放通量进行相关分析,结果表明(表2),N0施氮水平下,土壤N2O排放通量与土壤温度和土壤湿度极显著相关(<0.01),与土壤NH4+-N含量呈显著负相关(<0.05);而N1施氮水平下,土壤N2O排放通量与土壤湿度显著相关(<0.05),与土壤温度极显著相关(<0.01),与其他因素无显著相关性。随施氮量增加,土壤温度和湿度与土壤N2O排放通量相关性不显著,而N3处理时,NO3--N、TDN含量显著影响土壤N2O排放(<0.05),DON含量极显著影响土壤N2O排放(<0.01)。不同施氮水平下(N0~N3),土壤湿度、温度、溶解性氮(NO3--N、TDN、DON)含量显著影响土壤N2O排放。

表2 土壤理化因子与N2O排放的相关性

注:**表示极显著相关(P<0.01);*表示显著相关(P<0.05)。

Note: ** represented significant correlation at 0.01 level, * represented significant correlation at 0.05 level.

3 讨 论

氮肥用量是土壤N2O排放最重要的影响因子,也是最有效的调控措施。本研究中,施氮显著增加土壤N2O累积排放量(表1),这与其他研究结果一致[21,23]。

在整个生育期共出现2次较高的排放峰值,分别是马铃薯发稞期(5月23日)和收获期(8月11日)。基肥深施后受土壤含水量的影响,土壤N2O排放通量并没有显著增加,而是在第1次降雨后土壤N2O排放通量才迅速增加,与Zebarth等[18,20-21]的研究一致。可能是基肥深施后,土壤质地较干,土壤N2O并没有立即释放[24-25]。另一N2O排放峰值发生在马铃薯收获期,受翻耕和土壤干-湿交替影响,迅速产生一个短暂的N2O排放高峰[26-28]。很多研究显示,翻耕会破坏土壤结构体释放土壤团聚体中的有机质,促进土壤有机质矿化、无机氮的释放[29-30]和土壤微生物的降解及N的释放[31],从而促进硝化和反硝化作用,增加土壤N2O的排放[32]。

农业中有84%的N2O排放来自于土壤微生物的硝化和反硝化过程,而氮肥施用一方面为土壤微生物提供充足的氮源,且直接或间接引起土壤温度、湿度、NO3--N、NH4+-N等变化,进而影响土壤微生物活性,最终导致土壤N2O排放的不同[33-34]。前人研究表明土壤温度和湿度显著影响土壤N2O排放,而针对不同施氮量下土壤N2O排放的影响因素不清楚[35]。本文研究发现,在不施氮和低氮水平(N0、N1)土壤N2O排放主要受土壤温度和湿度影响,而高氮水平(N2、N3)时无机氮影响较大。在外源氮输入较少时,土壤硝态氮和铵态氮含量处于低水平,氮素含量对硝化和反硝化过程的影响较弱,土壤N2O排放主要受温度和湿度的影响。而当土壤有效氮素盈余过多时则土壤N2O排放受施氮量影响[36]。尽管土壤温度、湿度仍然对土壤N2O排放有贡献作用,其作用远小于土壤氮素的影响,肥料效应掩盖了土壤温度和水分的效应,使得相关性并不显著[37-38]。

本研究显示,土壤N2O排放对硝态氮累积强度更为敏感。可以通过降低硝态氮强度减少土壤N2O排放[20,39]。因此,在农业生产中,通过调整施氮次数(少量多次)、施氮时期(与作物氮吸收相匹配)有望大幅降低土壤N2O排放。本试验结果还显示,土壤累积N2O排放量随施氮水平提高而加倍增加,即低氮处理,土壤N2O累积排放量随施氮量缓慢增加,超过一定施氮量,土壤N2O排放量将会急剧增加,Snyder等[40]的研究结果也证实这一点。可能是过量施氮后,作物对氮素的吸收利用率降低,多余的氮素进入土壤系统,增加了硝化和反硝化作用的底物,加剧土壤N2O的排放[41]。

前人研究表明,施氮量在80~180 kg/hm2时,可实现马铃薯高产,继续施加氮肥马铃薯产量不再增加[19,42]。黄继川等[43]研究认为,马铃薯产量随施氮量增加先增加后降低,施氮240 kg/hm2时产量最大。本研究中,施氮量在125 kg/hm2时产量即达到最大,与Zebarth和井涛等[18,42]的马铃薯高产施氮量接近,但远低于黄继川等[43]高产施氮量。这主要由于本研究为多年田间定位试验,N0处理3年未施氮肥,与N1、N2、N3处理间产量差异较大,造成最高产量时施氮量较低。同时,马铃薯生育后期大量降雨也造成施氮量差异较大。另外,马铃薯种植品种、施肥方式(氮肥60%作基肥,40%于现蕾期施用)及土壤性质(有机质、速效钾和pH值)等方面的差异也一定程度影响施氮量。本研究仅针对于特殊气候和土壤条件,特殊的种植方式以及土壤肥力等因素最终影响马铃薯的施氮量及产量关系,研究结果尚需在其他区域、其他种植方式上进一步验证。因此,确保产量并控制土壤N2O排放的研究应该得到更多关注。

4 结 论

1)施氮增加马铃薯产量和土壤N2O累积排放量,当施氮125 kg/hm2时产量最大,继续增加施氮量,马铃薯产量不再增加,过多的氮素将导致土壤N2O排放量急剧增加。

2)土壤N2O排放通量受土壤温度、湿度和氮素含量等因素影响,不同施氮量下影响N2O排放的理化因子各异。低氮处理,土壤温度和湿度显著影响土壤N2O通量,高氮处理,主要受氮素含量影响。

3)施氮增加马铃薯产量,但也增加土壤N2O累积排放量。该试验地施氮量控制在62.5 kg/hm2左右可兼顾试验区马铃薯产量,同时有效降低N2O排放。

[1] Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems, 2002, 63(2): 117-127.

[2] 张福锁,江荣风,陈清. 我国肥料产业和科学施肥战略研究报告[M]. 北京:中国农业大学出版社,2008.

[3] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen Cycle: Recent Trends Questions and potential solutions[J]. Science, 2007, 5878(320): 889-892.

[4] Choi W J, Han G H, Lee S M, et al. Impact of land-use types on nitrate contents ration and15N in unconfined groundwater in rural areas of Korea[J]. Agriculture Ecosystems and Environment, 2007, 120(2/3/4): 259-268.

[5] Kurt M, Walter S, GüNter L. Growth, composition, biological N2fixation and nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field nitrogen balances and nitrate leaching risk[J]. Nutrient Cycling in Agroecosystems, 2008, 82(3): 233-249.

[6] IPCC. Climate change 2001: The scientific Basis[R]. Cambridge, New York: Cambridge University Press, 2001.

[7] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century.[J]. Science, 2009, 326(5949):123-125.

[8] Liu X, Chen C R, Wang W J, et al. Soil environmental factors rather than denitrification gene abundance control N2O fluxes in a wet sclerophyll forest with different burning frequency[J]. Soil Biology & Biochemistry, 2013, 57(10):292-300.

[9] Kanter D, Davidson E, Alcamo J, et al. Drawing Down N2O to Protect Climate and the Ozone Layer: A UNEP Synthesis Report[J]. 2013.

[10] 国家发展和改革委员会. 中华人民共和国气候变化初始国家信息通报[M]. 北京:中国计划出版社,2004.

[11] 王桂良. 中国三大粮食作物农田活性氮损失与氮肥利用率的定量分析[D]. 北京:中国农业大学,2014.

Wang Guiliang. Quantitative Analysis of Reactive Nitrogen Losses and Nitrogen Use Efficiency of Three Major Grain Crops in China[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)

[12] Olander L, Wollenberg E, Tubiello F, et al. Advancing agricultural greenhouse gas quantification[J]. Environmental Research Letters, 2013, 8(1): 011002.

[13] Johnson J M, Franzluebbers A J, Weyers S L, et al. Agricultural opportunities to mitigate greenhouse gas emissions[J]. Environmental Pollution, 2007, 150(1): 107-124.

[14] 赵婷婷,郑顺林,万年鑫,等. 早期施氮对马铃薯苗期抗旱能力的影响[J]. 干旱区资源与环境,2016,30(5):185-190.

Zhao Tingting, Zheng Shunlin, Wan Nianxin, et al. Effects of early application of nitrogen on drought-resistance capability of potato (L)[J]. Agricultural Research in the Arid Areas, 2016, 30(5): 185-190. (in Chinese with English abstract)

[15] FAO(Food and Agriculture Organization). FAOSTAT database collections[EB/OL] //http: //f aostat. fao. org/site/422/Desktop_D efault. aspx? PageID=422#ancor, 2010.

[16] 刘润梅,范茂攀,付云章,等. 云南省马铃薯施肥量与化肥偏生产力的关系研究[J]. 土壤学报,2014,51(4):753-760.

Liu Runmei, Fan Maopan, Fu Yunzhang, et al. Relationship between fertilization rate and fertilizer partial factor productivity in potato production in Yunnan province[J]. Acta Pedologica Sinica, 2014, 51(4):753-760. (in Chinese with English abstract)

[17] Food and Agriculture Organization of the United Nations. FAOSTAT[DB/OL]. Http: //faostat3. Fao. org /faostat-gateway /go /to /download /Q /QC /E, 2014/2/8.

[18] Zebarth B J, Snowdon E, Burton D L, et al. Controlled release ferilizer product effects on potato crop response and nitrous oxide emissions under rain-fed production on a medium-textured soil[J]. Canadian Journal of Soil Science, 2012, 92(5): 759-769.

[19] Vallejo A, Skiba U M, Garciatorres L, et al. Nitrogen oxides emission from soils bearing a potato crop as influenced by

fertilization with treated pig slurries and composts[J]. Soil Biology & Biochemistry, 2006, 38(9):2782-2793.

[20] Burton D L, Zebarth B J, Gillam K M, et al. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes[J]. Canadian Journal of Soil Science, 2008, 88(2): 229-239.

[21] Gao Xiaopeng, Tenuta Mario, Nelson Alison, et al. Effect of nitrogen fertilizer rate on nitrous oxide emission from irrigated potato on a clay loam soil in Manitoba, Canada[J]. Canadian Journal of Soil Science, 2013, 93(1): 1-11.

[22] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000.

[23] 王海云,邢光熹. 不同施氮水平对稻麦轮作农田氧化亚氮排放的影响[J]. 农业环境科学学,2009,28(12):2631-2636.

Wang Haiyun, Xing Guangxi. Effect of nitrogen fertilizer rates on nitrous oxide emission from paddy field under rice-wheat rotation[J]. Journal of Agro-Environment Science, 2009, 28(12): 2631-2636. (in Chinese with English abstract)

[24] 张岳芳,周炜,王子臣,等. 氮肥施用方式对油菜生长季氧化亚氮排放的影响[J]. 农业环境科学学报,2013,32(8):1690-1696.

Zhang Yuefang, Zhou wei, Wang Zichen, et al. Effects of nitrogen fertilizer application modes on nitrogen oxide emissions during growing season of oilseed rape ()[J]. Journal of Agro-Environment Science, 2013, 32(8): 1690-1696. (in Chinese with English abstract)

[25] 张婧,夏光利,李虎,等. 一次性施肥技术对冬小麦/夏玉米轮作系统土壤N2O排放的影响[J]. 农业环境科学学报,2016,35(1):195-204.

Zhang Jing, Xia Guangli, Li Hu, et al. Effect of single basal fertilization on N2O emissions in wheat and maize rotation system[J]. Journal of Agro-Environment Science, 2016, 35(1): 195-204. (in Chinese with English abstract)

[26] Beare M H, Gregorich E G, St-Georges P. Compaction effects on CO2and N2O production during drying and rewetting of soil[J]. Soil Biology and Biochemistry, 2009, 41(3): 611-621.

[27] Ruser R, Flessa H, Russow R, et al. Emission of N2O, N2and CO2from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting[J]. Soil Biology and Biochemistry, 2006, 38(2): 263-274.

[28] Goldberg S D, Gebauer G. N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought[J]. Soil Biology and Biochemistry, 2009, 41(9): 1986-1995.

[29] Estavillo J M, Merino P, Pinto M, et al. Short term effect of ploughing a permanent pasture on N2O production from nitrification and denitrification[J]. Plant Soil, 2002, 239(2): 253-265.

[30] Kessavalou A, Mosier A R, Doran J W, et al. Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management[J]. Journal of Environmental Quality, 1998, 27(5): 1094-1104.

[31] Kristensen H L, Debosz K, McCartye G W. Short-term effects of tillage on mineralization of nitrogen and carbon in soil[J]. Soil Biology and Biochemistry, 2003, 35(7): 979-986.

[32] Austin A T, Yahdjian L, Stark J M, et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems[J]. Oecologia, 2004, 141(2): 221-235.

[33] Ball B C, Scott A, Parker J P, et al. Field N2O, CO2and CH4fluxes in relation to tillage compaction and soil quality in Scotland[J]. Soil and Tillage Research, 1999, 53(1):29-39.

[34] Li Hu, Qiu Jianjun, Wang Ligang, et al. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China[J]. Agriculture, Ecosystem and Environment, 2010, 135(1/2): 24-33.

[35] 王改玲,陈德立,李勇. 土壤温度、水分和NH4+-N浓度对土壤硝化反应速度及N2O排放的影响[J]. 中国生态农业学报,2010,18(1):1-6.

Wang Gailing, Chen Deli, Li Yong. Effect of soil temperature, moisture and NH4+-N concentration on nitrification and nitrification-induced N2O emission[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1): 1-6. (in Chinese with English abstract)

[36] 焦燕,黄耀,宗良纲,等. 氮肥水平对不同土壤N2O排放的影响[J]. 环境科学, 2008,29(8):2094-2098.

Jiao Yan, Huang Yao, Zong Lianggang, et al. Impact of Different Levels of Nitrogen Fertilizer on N2O Emission from Different Soils[J]. Environment Science, 2008, 29(8):2094-2098. (in Chinese with English abstract)

[37] 张中杰,朱波,江长胜,等. 川中丘陵区旱地小麦生态系统CO2、N2O和CH4排放特征[J]. 生态学杂志,2005,24(2):131-135.

Zhang Zhongjie, Zhu Bo, Jiang Changsheng, et al. CO2, N2O and CH4emission from dry-land wheat ecosystem in hilly area of central Sichuan Basin[J]. Chinese Journal of Ecology, 2005, 24(2): 131-135. (in Chinese with English abstract)

[38] 董玉红,欧阳竹,李运生,等. 肥料施用及环境因子对农田土壤CO2和N2O排放的影响[J]. 农业环境科学学报,2005,24(5):913-918.

Dong Yuhong, Ou Yangzhu, Li Yunsheng, et al.Influence of fertilization and environmental factors on CO2and N2O fluxes from agricultural soil[J]. Journal of Agro-Environment Science, 2005, 24(5):913-918. (in Chinese with English abstract)

[39] Avrahami S, Bohannan B J M. N2O emission rates in a California meadow soil are influenced by fertilizer level, soil moisture and the community structure of ammonia-oxidizing bacteria[J]. Global Change Biology, 2009, 15(3): 643-655.

[40] Snyder C S, Bruulsema T W, Jensen T L, et al. Review of greenhouse gas emissions from crop production systems and fertilizer management effects[J]. Agriculture, Ecosystems and Environment, 2009, 133(3): 247-266.

[41] 熊舞,夏永秋,周伟,等. 菜地氮肥用量与N2O排放的关系及硝化抑制剂效果[J]. 土壤学报,2013,50(4):743-751. Xiong Wu, Xia Yongqiu, Zhou Wei, et al. Relationship between nitrogen application rate and nitrous oxide emission and effect of nitrification inhibitor in vegetable farming system[J]. Acta Pedologica Sinica, 2013, 50(4):743-751. (in Chinese with English abstract)

[42] 井涛,樊明寿,周登博,等. 滴灌施氮对高垄覆膜马铃薯产量、氮素吸收及土壤硝态氮累积的影响[J]. 植物营养与肥料学报,2012,18(3):654-661.

Jing Tao, Fan Mingshou, Zhou Dengbo, et al. Effects of nitrogen fertilization on potato tuber yield,N uptake and soil NO3--N accumulation under plastic mulching with drip irrigation[J]. Journal of Plant Nutrition and Fertilizer Science, 2012, 18(3): 654-661. (in Chinese with English abstract)

[43] 黄继川,彭智平,于俊红,等. 不同氮肥用量对冬种马铃薯产量品质和氮肥利用率的影响[J]. 热带作物学报,2014,35(2):266-270.

Huang Jichuan, Peng Zhiping, Yu Junhong, et al. Effects of nitrogen application rate on yield, quality and nitrogen efficiency of winter potato[J]. Chinese Journal of Tropical Crops, 2014, 35(2): 266-270. (in Chinese with English abstract)

Analysis on N application rates considering yield and N2O emission in potato production

Zhou Long, Long Guangqiang, Tang Li※, Zheng Yi

(650201,)

Agriculture soil is the important source of N2O emission. Fertilization can increase crop yield, but also can enhance emissions of greenhouse gas N2O. There is an important guiding significance to analyze the relationship between yield, soil N2O emissions under varied nitrogen levels for ensuring crop yield and reducing environment impacts. The potato is the fourth largest planting crops in the world, and China is the biggest producer. Effect of N application rates on soil N2O emission and crop yield have been intensively studied in the temperate zone with continental climate, and these studies simply focused on either yield or N2O emission, while it has never been reported in the north subtropical monsoon climate. In this study, field experiment was conducted in the Daheqiao experiment base (23°32′N, 103°13′E) of Yunnan agricultural university, in Xundian County, Yunnan province of China, from April to November in 2015. And four N application levels (unfertilized-N0, 0; low nitrogen application rate -N1, 67.5 kg/hm2; conventional nitrogen application rate-N2, 125 kg/hm2; high nitrogen application rate -N3, 187.5 kg/hm2) with three replications were compared based on potato cultivation of Huize 2. Aiming to study the effect of N application rates on potato yield and soil N2O emission at growing period, soil N2O emission was collected in situ by static chamber and analyzed using gas chronographs technique. Simultaneously, optimizing N application rates to increase yield and minimize N2O emission was analyzed. The results showed that fertilization increased the potato yield and cumulative N2O emission significantly. The soil was a source of atmospheric N2O emissions in whole potato growing season, and an obvious seasonal difference was monitored. Compared with N0, N1, N2, and N3 treatments increased by78.5%, 93.1% and 95.6% in yield. The cumulative N2O emission of N1, N2, and N3 treatments were 2.3, 4.4, and 6.7 times that of N0 treatment, respectively. The potato yield was largest when N application rates 125 kg/hm2, and no longer increased with the increasing N application rate. The first and secondary peaks of N2O emission were observed at the flourishing stage (23 May) and harvest stage (11 August), respectively. Meanwhile, N2O emission factor and yield-scaled N2O intensity significantly improved with the increase of N fertilizer. The proportion of the loss of nitrogen in the form of N2O significantly increased with the increasing N fertilizer. Nitrate intensity could effectively reflect the intensity of soil N2O emission. N2O emission flux was significantly correlated with soil temperature and humidity only at low N levels (N0, N1) .Soil NO3--N content was the key factor for N2O emission at high N levels. Comprehensive considering the average N2O emission coefficient (1%) reported by IPCC as the fertilization standard of nitrogen and potato yield in farmland ecosystem ,therefore, the reasonable N application rates were about 62.5 kg/hm2in potato production.

yield; fertilizers; emission control; potato; N2O emission

10.11975/j.issn.1002-6819.2017.02.021

S1

A

1002-6819(2017)-02-0155-07

2016-03-31

2016-11-20

国家自然科学基金项目(41361065,41201289,31210103906);云南省科技计划重点项目(2015FA022)。

周 龙,主要从事施肥与作物养分吸收及生态效应研究。昆明云南农业大学资源与环境学院,650201。Email:zhoulongl.com@qq.com

汤 利,教授,博士生导师,主要从事作物养分高效利用研究。昆明云南农业大学资源与环境学院,650201。Email:ltang@ynau.edu.cn农业工程学会会员:汤利

周 龙,龙光强,汤 利,郑 毅. 综合产量和土壤N2O排放的马铃薯施氮量分析[J]. 农业工程学报,2017,33(2):155-161. doi:10.11975/j.issn.1002-6819.2017.02.021 http://www.tcsae.org

Zhou Long, Long Guangqiang, Tang Li, Zheng Yi. Analysis on N application rates considering yield and N2O emission in potato production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 155-161. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.021 http://www.tcsae.org

猜你喜欢
施氮土壤温度硝态
阿尔泰山森林土壤温度动态变化及其预测
电化学法去除硝态氮的研究
施氮水平对油菜生育后期氮素吸收积累和分配的影响
不同种植模式棉田土壤温度的时空变化特征
长三角区典型林分浅层土壤温度变化特征
不同施氮方法对两种株型糯玉米穗部性状及产量的影响
管群间歇散热的土壤温度响应与恢复特性
活性碳源显著降低蔬菜地土壤硝态氮
均匀施氮利于玉米根系生长及产量形成
施氮水平对超高产夏玉米籽粒及植株形态学特征的影响