王春玲,宋卫堂,赵淑梅,曲明山
H型栽培架组合方式对光照及草莓生长和产量的影响
王春玲1,2,宋卫堂1,3※,赵淑梅1,3,曲明山4
(1. 中国农业大学水利与土木工程学院,北京 100083; 2. 塔里木大学水利与建筑工程学院,阿拉尔 843300;3. 农业部设施农业工程重点实验室,北京 100083;4. 北京市农业局土肥工作站,北京100029)
H型立体栽培架是目前在生产中应用较广的一种草莓立体栽培装置。针对草莓立体栽培过程中产生的遮光和植株生长不良等问题,该研究提出将两层和三层的H型栽培架进行不同组合,通过在日光温室中设置两层+两层(T1)、两层+三层交替(T2)、三层+三层(T3)的H型栽培架的3种布置组合方式,比较不同组合处理下草莓的光照环境、生长及产量的差异。结果表明:T1上、下层草莓的光照条件最佳,T2次之,T3最差;试验期内,T1上层的草莓达到光饱和点(light saturation point,LSP)的时间比T2增加了40.0%,并且T1上、下层草莓达到光补偿点(light compensation point,LCP)的时间分别比T2中两层栽培架的上、下层增加了9.3%和21.3%;T1处理草莓的生长状况最佳。T1的单元产量最高,为50.8 kg,分别比T2与T3的单元产量提高了2.8%和33.7%。因此,日光温室内H型栽培架以两层与两层相邻的布置方式较适合用于草莓的立体栽培,可在生产中推广应用。
日光温室;栽培;光照;H型栽培架;草莓;产量
草莓立体栽培首先于20世纪80年代在日本出现[1],因其产量高、效益好、节省土地、劳动强度低等特点深受广大生产者的喜爱[2]。随着草莓反季节栽培规模的扩大,中国草莓立体栽培的研究速度也逐步加快。近年来的研究表明:草莓立体栽培可以提高土地利用率3~5倍、提高单位面积产量2~3倍[3]。国内外对草莓立体栽培的模式进行了很多研究,如国内常用的传统A字型、改良架式[4-5]、后墙式[6],吊柱式等,国外的如上下摆动式、悬挂式、可拆卸式、可移动式等[7-10]。
在立体栽培模式的开发和使用过程中,人们对各种模式的环境特点、草莓生长状况进行了研究,同时也进行了相应地改进和调整[11-14]。宗静等[15]通过对草莓双层高架栽培模式的气象条件进行测试,发现下层的温、光条件都较上层差,上层草莓可提前13 d进行采收。张豫超等[16]对3种草莓立体栽培架的生产性能进行了比较研究,明确了单层双列架型操作最便捷,双层品字形架型投入产出比最优,四层阶梯形架型适合草莓立体观光采摘。杨振华[17]认为A型槽架式与立柱式栽培模式经济效益高于高畦栽培。陈一飞等[18]研发了一种日光温室草莓立体栽培的智能控制系统,该系统可以使草莓的挂果期比传统种植方式平均提前40 d,产量平均提高33%。
Li等[19]在比较了A字型、H型、品字型3种立体栽培架草莓的生长状况后认为,H型栽培架的通风和光照更好,同时其种植密度也较另外两种大,获得的产量最高。目前,H型栽培架因其构造简单、管理方便、使用年限长等优点,在草莓立体栽培中应用较为广泛。本文对2种H型栽培架的3种不同布置方式:两层与两层相邻布置、两层与三层交替布置、三层与三层相邻布置,进行草莓的光照环境特点测试和研究,并对其生长及产量进行测量分析。比较并确定一种布置方式,能够使草莓的光环境较优、生长和产量较佳,以期为生产应用提供指导和建议。
1.1 栽培架结构
如图1,H型栽培架由栽培支架、栽培槽、进水管、回水管等组成。栽培架长6 m,宽0.4 m,南北向放置于日光温室内,其中栽培支架是由直径20 mm的镀锌钢管焊接而成,为整个栽培架的骨架结构,侧面呈H型;栽培槽由卡子固定于栽培骨架各层上,其结构从外向内依次由黑白膜(正、反面分别为黑、白两色的聚乙烯薄膜)、无纺布、防虫网、基质组成;进水管安装在栽培架北部,回水管在南部,栽培架由北向南有5°~10°的倾角,以利于多余的水和营养液流出。图1a、1b分别为三层和两层的H型栽培架。三层栽培架仅比两层栽培架多一层栽培槽,其他结构相同,具体尺寸如图2。
a. 三层
a. Three layers
b. 两层
b. Two layers
1.栽培支架 2.栽培槽 3.进水管 4.回水管 5.草莓植株
1.Cultivation structure support 2.Cultivation trough 3.Water inlet pipe 4.Water return pipe 5.Strawberry
图1 不同层数H型栽培架示意图
Fig.1 Sketch map of different H-cultivation layers
1.2 两种栽培架的三种布置组合
2种栽培架的组合分为两层与两层相邻布置(T1)、两层与三层交替布置(T2)、三层与三层相邻布置(T3)三种,如图2。两层栽培架的总高度为95 cm,三层栽培架的总高度为160 cm;栽培槽厚度为20 cm,相邻两层的间距为65 cm,最下层距地面30 cm;相邻两栽培架的间距为60 cm[20]。
2.1 试验条件
本试验于2015年8月至2016年4月在北京市昌平区兴寿镇的一个日光温室内进行,温室东西长度为100 m,南北跨度为8 m。草莓品种为“红颜”,定植日期为2015年8月29日,株距为20 cm,行距为30 cm。每个栽培槽定植两列,共60株草莓。
2.2 试验设计
供试栽培架均放置在温室中部,所处环境基本一致,每个处理栽培架20个,选择中间位置的6个栽培架为试验区,重复3次。栽培架和栽培槽的编号见表1。
表1 不同栽培架组合中栽培槽的位置编号
采用顺序排列的试验设计方法。根据试验设计,将S-LIA-M003型光照传感器布置于试验区每个栽培架各层的中部、基质上方约25 cm的位置,进行草莓冠层光合有效光量子流密度(photosynthetic photon flux density, PPFD)的测量。
待草莓缓苗后,在每个处理试验区栽培架的每层上,选择植株健壮、长势一致的草莓24株进行标记。2015年10月5日开始对标记的草莓的株高和叶片叶绿素相对含量(soil and plant analyzer development,SPAD)值进行测量。叶绿素相对含量测量方法:采用SPAD-502便携式叶绿素测量仪[21],选择草莓新叶外第3片叶进行测量,测量时应避开叶脉,每个叶片测量3次取平均值。草莓成熟后测量草莓的单株果实个数、平均单果质量、单株产量,测试时间为:2016年1月15日-2016年4月15日。
采用SPSS20.0软件对数据进行单因素方差分析,显著性由Duncan新复极差法检测,采用Excel 2010进行数据处理。
3.1 不同处理栽培架上的光环境特点
为使数据具有代表性,选择典型天气的光照数据进行分析。图3是2016-03-02-2016-03-05(4 d)中T2和T3中的三层栽培架上、中、下各层的光照数据,其中3月4日为阴天。由图3可以看出,2个处理中的栽培架中各层草莓冠层的PPFD曲线走势基本一致,但在4 d内的相同时刻中2S、2Z、2X的草莓冠层PPFD值均高于3S、3Z、3X。以3月2日为例,2S达到草莓光饱和点[22](light saturation point,LSP)377.4~566.0mol/(m2·s)的时长比3S长约250 min;2Z达到LSP的时长约为240 min,而3Z的全天光照都在LSP以下;此外,2X达到草莓光补偿点[22](light compensation point,LCP)94.3~188.7mol/(m2·s)的时长约为230 min,但3X的光照全天都在LCP以下。以上结果说明,T3与T2相比,栽培架增加一层会使其中、下层的光照受到了较大程度的遮挡,不利于草莓的生长。
a. T2三层处理中上、中、下各层的PPFD曲线图
a. PPFD curves of each layer of treatment T2
表2是3月12—13日2 d内T1和T2中的两层栽培架上、下层的光照情况。可以看出T1上、下两层2 d内达到LSP和LCP的时长均大于T2上、下层。累积计算2 d的LSP,结果显示:1U的草莓冠层达到LSP的时长比2U增加了40%;1L、2L达到LSP的时长分别为100、0 min。1U、1L草莓冠层达到LCP的时长分别比2U、2L增加了9.3%、21.4%。因此,T1处理比T2处理的光照环境更佳。
表2 T1与T2中两层不同布置方式的各层光照环境(2016-03-02—03-13)
注:LSP表示光饱和点,LCP表示光补偿点;累计采集测量时间为每日7:00-19:00。
Note: LSP represents light saturation point, LCP represents light compensation point; cumulative acquisition time is 7:00-19:00 each day.
3.2 不同处理草莓的生长指标
苗期时,对各处理不同层草莓的株高和SPAD进行了测量。从图4a、4b中可以看出,T1与T2处理中各层草莓的株高不存在显著性差异(≤0.05)。T2与T3中的三层栽培架上层与中层草莓的株高不存在显著性差异,但其下层草莓株高显著低于上、中层;2S、2Z、2X的株高分别比3S、3Z、3X分别增加了2.7%、3.3%、6.7%。说明T2的三层栽培架上的草莓植株生长情况优于T3相应的栽培架上的草莓。
草莓叶片叶绿素含量、含氮量与SPAD值显著相关[23],叶片含氮量会影响草莓和其他植物的生长及产量[24-26],因此测量草莓叶片的SPAD值可以直接反应其生长状况。
由图4c可以看出,1U与1L的草莓SPAD值无显著性差异,均分别显著高于2U与2L。说明在两层栽培架中,同一处理栽培架上、下层之间草莓的SPAD 值无显著性差异;相同层之间T1与T2处理相比,能显著地提高草莓的SPAD。图4d显示,T2和T3处理的上、中层草莓的SPAD高于下层的。其中2S、2X为30.3、25.2高于3S、3X的29.6、24.7,且有2Z的27.9显著高于3Z的25.7。说明T2的三层栽培架与T3相比,各层草莓的叶绿素含量均有所提高,反映了T2的草莓生长状况在某种程度上优于T3。
3.3 不同处理草莓的产量及效益
光照环境是引起草莓生长及产量品质变化的重要环境因素[27-33],表3、表4为各处理草莓的产量指标。
表3 T1、T2处理两层栽培架上各层草莓的产量指标
注:同一列中不同小写字母表示不同位置草莓间差异显著,显著水平为0.05,下同。
Note: Same columns with the different small letters indicate that there is significant difference on strawberry yield index between different sites, and significant level is 0.05, the same as below.
表4 T2、T3处理三层栽培架上各层草莓的产量指标
从表3可以看出,1U、1L的单株产量分别显著高于2U、2L,增加量为94.3、38.9 g;同时1U、1L的单株果实个数也分别显著高于2U、2L,产生此种现象主要是由于T2处理中三层栽培架对光照的遮挡所造成。平均单果质量均是上层显著高于下层,并且T1大于T2。由此可见T1处理较T2处理显著地增加了果实的单株产量和单株果实个数,但2个处理对果实的平均单果质量无显著性影响。此外,从表4中可以看出2S、2Z、2X的单株果实个数和单株产量分别显著高于3S、3Z、3X,表现出此差异的主要原因是:T2的两层与三层栽培架交替布置,光照条件在一定程度上优于T3处理的全部三层栽培架的布置方式。T1处理的草莓单株产量和单株果实个数高于其他处理,T3处理草莓产量的相关指标最差,但是其单位土地面积上的种植密度最大。因此,需进一步测试和计算单元面积上各处理草莓的产量和成本,以确定较优的布置组合。
根据不同处理组合中定植的草莓株数,计算试验期间内草莓总产量、经济效益、栽培架成本。每个处理由2个栽培架为组成单元,因此,以每个处理的2个栽培架为计算单位,占地面积为8.4 m2。栽培架按照10 a的使用年限来计算。3个处理的草莓总产量及栽培架年成本如表5。试验期内为草莓产量形成的主要时间段,其平均价格约为60元/ kg,由表可知3个月内T1、T2、T3的收益分别约为3 048、2 964、2 280元。由此可知,所获收益远大于栽培架年成本消耗,因此3个处理的效果可直接通过其产量进行比较分析。
表5 T1、T2、T3处理试验期间草莓的总产量及成本
注:每个处理单元的总产量所占面积为8.4 m2,试验测产期为2016-01-15-2016-04-15。
Note: The total area of each treatment unit is 8.4 m2, the yield test was measured from 2016-01-15-2016-04-15.
从表5可以看出,T1的栽培密度最低,但其单元产量在试验期间内最高,为50.8 kg,同时其年消耗成本最低。T1虽较T2栽培密度减少了,但总产量却提高了2.8%;T3的种植密度虽然最大,但其平均单株产量最低。T1平均单株产量较T3增加了100.3%,试验期内T1的草莓总产量较T3增加了33.7%。由此可知3个处理中T1是最适合于草莓栽培的布置方式。
本研究对2种H形栽培架的3种不同布置方式,进行了草莓光照环境及其生长状况的测试分析,并对产量和效益进行对比。结果如下:
1)两层与两层栽培架相邻布置的方式(T1)草莓能够获得较佳的光照环境,三层与三层相邻布置(T3)的最差,两层与三层交替布置(T2)的介于前两者之间。典型晴天下,两层栽培架上:T1上层草莓达到LSP的时间比T2增加了40.0%,且T1上、下层达到LCP的时间分别较T2上、下层增加了9.3%、21.3%;三层栽培架中T3的上、中、下三层的PPFD值均低于T2相应位置。
2)T1与T2的两层栽培架中,上、下层之间草莓的株高和SPAD值无显著性差异(≤0.05),但T2与T3的下层,草莓植株显著低于上、中层,说明T3处理的下层草莓的生长受到了影响。
3)试验期间T1的单元总产量最高为50.8 kg,分别比T2、T3处理的单元总产量提高了2.8%、33.7%。
因此,在长度100 m,跨度8 m的日光温室内,H型栽培架以两层与两层相邻的布置方式可使草莓的光环境达到较佳,生长较适宜,同时成本也较低,并且可以获得较高的效益,适宜在实际生产中进行推广应用。
[1] 纪开燕,郭成宝,童晓利,等. 设施草莓立体无土栽培的主要模式与发展对策[J]. 江苏农业科学,2013,41(6):136-138.
Ji Kaiyan, GuoChengbao, Tong Xiaoli, et al. The main mode and development strategies of the three-dimensional cultivation of strawberry[J]. Journal of Jiangsu Agricultural Sciences, 2013, 41(6): 136-138. (in Chinese with English abstract)
[2] 陈宗玲,刘鹏,张斌,等. 立体栽培草莓的光温效应及其对光合的影响[J]. 中国农业大学学报,2011,16(1):42-48.
Chen Zongling, Liu Peng, Zhang Bin, et al. Light and temperature and their effects on photosynthesis characteristics of stereoscopic cultivation in strawberry[J]. Journal of China Agricultural University, 2011, 16(1): 42-48. (in Chinese with English abstract)
[3] 邢文鑫,赵永志,曲明山,等. 草莓立体栽培概况[J]. 河北农业科学,2011,15(7):4-7.
Xing Wenxin, Zhao Yongzhi, Qu Mingshan, et al. General introduction of strawberry stereo cultivation Journal of Hebei Agricultural Sciences[J]. 河北农业科学,2011, 15(7): 4-7. (in Chinese with English abstract)
[4] 赵永志,曲明山,宋卫堂,等. 一种温室移动式立体栽培转置:中国专利,CN201947713U[P]. 2011-08-31.
[5] 赵永志,曲明山,魏荔,等. 一种温室开合式立体栽培转置:中国专利,CN2019411140U[P]. 2011-08-3.
[6] 宋卫堂,栗亚飞,曲明山,等. 后墙立体栽培草莓提高冬季日光温室内温度[J]. 农业工程学报,2013,29(16):206-212.
Song Weitang, Li Yafei, QuMingshan, et al. Back wall stereo-cultivation of strawberry improves temperature in Chinese solar greenhouse in winter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(16): 206-212. (in Chinese with English abstract)
[7] Kosir D B, Korez M, Pinoza J, et al.Techniques for growing plants in grow-bags. SodobnoKmetijstvo, 2004, 37(2): 38-41.
[8] Ehime Ken Prefecture, Akamatasu Y. Hanging culture bed for strawberries has fruit supporting plate which rotates with respect to side section of hanging culture bed body by vertical motion of bearing-bar material: Japan, JP2009219421-A[P], 2009-10-01.
[9] Itoh E, Kotaka I, Kanno T. Outline of the double seesaw system for cultivation of strawberry[]: Japan, JP2008007610-A[P]. 2008-10-30.
[10] Noji Kumiai Hojin Ootomi Noen. Elevated plant cultivation for greenhouse, involves parallelly displacing hanging culture shelves, in which plants are planted, with respect to each other to form route on floor surface: Japan, JP2005046025-A[P]. 2005-03-10.
[11] 林晓,罗赟,王红清. 草莓日光温室立体栽培的光温效应及其影响分析[J]. 中国农业大学学报,2014,19(2):67-73.
Lin Xiao, Luo Yun, Wang Hongqing. Effect of light and temperature on strawberry in three-dimensional culture system[J]. Journal of China Agricultural University, 2014, 19(2): 67-73. (in Chinese with English abstract)
[12] Takeda F. Out-of-season greenhouse strawberry production in soilless substrate[J]. Advances in Strawberry Research, Volume, 2000, 18: 4-15.
[13] VanLooy J, Aerts J. Annual report on strawberries[J]. Proefebdrijf der Noorderkempen, Meerle, 1982: 146.
[14] Paranjpe A V, Cantliffe D J, Stoffella P J, et al. Relationship of plant density to fruit ofSweetCharliestrawberry grown in a pine bark soilless medium in a high-roof passively ventilated greenhouse[J]. Scientia Horticulture, 1977, 115(2): 117-123.
[15] 宗静,刘宝文. 草莓双层高架栽培模式的气象条件分析[J]. 北方园艺,2015(23):58-61.
Zong Jing, Liu Baowen, et al. Analysis of meteorological factors in double elevated substrate culture of strawberry[J]. Northern Horticulture, 2015(23): 58-61. (in Chinese with English abstract)
[16] 张豫超,杨肖芳,苗立祥,等. 三种草莓立体栽培架型及生产性能比较[J]. 浙江农业学报,2013,25(6):1288-1292.
Zhang Yuchao, Yang Xiaofang, Miao Lixiang, et al. Comparison of performances among three different strawberry stereoscopic cultivation systems[J]. Acta Agriculturae Zhejiangensis, 2013, 25(6): 1288-1292. (in Chinese with English abstract)
[17] 杨振华. 两种草莓立体栽培模式与高畦栽培适应性比较试验[J]. 陕西农业科学,2015,61(5):34-37.
[18] 陈一飞,路河,刘柏成,等. 日光温室草莓立体栽培智能控制系统[J]. 农业工程学报,2013,29(增刊1):184-189.
Chen Yifei, Lu He, Liu Baicheng, et al. Intelligent control system for strawberry space planting in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(Supp.1): 184-189. (in Chinese with English abstract)
[19] Li Yongping, Zhu Haisheng, Ma Hongqi,et al. Study on soilless culture of facility strawberry[J]. Agricultural Science and Technology, 2014, 15(7): 1065-1068.
[20] 曲明山,赵永志,王崇旺,等. 一种高低架组合式栽培转置:中国专利,CN204377618U[P]. 2011-08-31.
[21] 张宁. 两种立体A字架结构草莓营养生长特性研究[J]. 宁夏农林科技,2012,53(8):30-32.
Zhang Ning. A study of vegetative growing characteristics of strawberry in two stereoscopic A frame[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2012, 53(8): 30-32. (in Chinese with English abstract)
[22] 钟霈霖,杨仕品,乔荣,等. 光照强度对草莓主要品质的影响[J]. 西南农业学报,2011,24(3):1219-1221.
Zhong Peipei, Yang Shipin, Qiao Rong, et al. Effect of light intensity on main quality of strawberry[J]. Southwest China Journal of Agricultural Sciences, 2011, 24(3): 1219-1221. (in Chinese with English abstract)
[23] 雷泽湘,艾天成,李方敏,等. 草莓叶片叶绿素含量、含氮量与SPAD值之间的关系[J]. 湖北农学院学报,2001,21(2):138-140.
Lei Zexiang, Ai Tiancheng, Li Fangmin, et al. The relationships between SPAD readings and the contents of chlorophyll and Nitrogen in strawberry leaves[J]. Journal of Hubei Agricultural College, 2001, 21(2): 138-140. (in Chinese with English abstract)
[24] 彭福田,张青,姜远茂,等. 不同施氮处理草莓氮素吸收分配及产量差异的研究[J]. 植物营养与肥料学报,2006,12(3):400-405.
Peng Futian, Zhang Qing, Jiang Yuanmao, et al. Effects of nitrogen application on nitrogen absorption, distribution and yield of strawberry[J]. Plant Nutrition and Fertilizer Science, 2006, 12(3): 400-405. (in Chinese with English abstract)
[25] 邢宇,王连君,马军,等. 叶绿素仪在草莓氮素营养诊断中的应用研究[J]. 北方园艺,2010(1):73-75.
Xing Yu, Wang Lianjun, Ma Jun, et al. Study on strawberry of N nutrition diagnosis using chlorophyll meter[J]. Northern Horticulture, 2010(1): 73-75. (in Chinese with English abstract)
[26] 王正瑞,芮玉奎,申建波,等. 氮肥施用量和形态对玉米苗期叶绿素含量的影响[J]. 光谱学与光谱分析,2009,29(2):410-412.
Wang Zhengrui, RuiYukui, Shen Jianbo, et al. Effect of forms and level of Nitrogen fertilizer on the content of chlorophyll in leaves of maize seeding[J]. Spectroscopy and Spectral Analysis, 2009, 29(2): 410-412. (in Chinese with English abstract)
[27] 张颜春,崔汉良,代淑红,等. 影响大棚草莓产量和品质的几个问题与对策[J]. 山西果树,2013(3):35-38.
[28] 张春燕. 雾霾、低温寡照对日光温室草莓结果的影响与对策[J]. 中国园艺文摘,2014(12):190-191.
[29] 徐凯,郭延平,张上隆,等. 不同光质对丰香草莓生长发育的影响[J]. 果树学报,2006,23(6):818-824.
Xu Kai, GuoYanping, Zhang Shanglong, et al. Effect of light quality on plant growth and fruiting of Toyonoka strawberry cultivar[J]. Journal of Fruit Science, 2006, 23(6): 818-824. (in Chinese with English abstract)
[30] 徐凯. 草莓的光抑制特性及光质对其生长结果的影响[D]. 杭州:浙江大学农业与生物技术学院,2005.
Xu Kai. Photoinhibition of Photosynthesis in Strawberry and Effect of Light Quality on Its Growth and Fruiting[D]. Hangzhou: College of agriculture and biotechnology, Zhejiang University, 2005. (in Chinese with English abstract)
[31] 崔文华,杨丽娜,等. 光源对草莓生长发育影响的研究现状概述[J]. 中国南方果树,2012,41(5):37-39.
[32] 刘林,孟艳玲,张良英. 三个草莓品种光合特性的研究[J]. 北方园艺,2010,(22):38-40.
[33] 曾国祥,冯小明,向发云,等. 遮阴对草莓光合特性的影响[J]. 湖北农业科学,2010,49(11):2811-2814.
Zeng guoxiang, Feng xiaoming, Xiang fayun, et al. Effect of shading on photosynthesis of strawberry[J]. Hubei Agricultural Sciences, 2010, 249(11): 2811-2814. (in Chinese with English abstract)
Effect of different combinations of H-type cultivation frames on light and strawberry growth and yield
Wang Chungling1,2, Song Weitang1,3※, Zhao Shumei1,3, Qu Mingshan4
(1.,,100083,; 2.,,843300,; 3.,,100083,; 4.,100029,)
In the process of facility horticulture cultivation, the model of three-dimensional cultivation has been paid more and more attention. “H” type cultivation frame is widely used in stereo-cultivation of strawberry at present. In practical applications, growers choose the different layers of cultivation for planting. The most common arrangement of planting frame is two or three layers, which way can reduce the costs with higher yields and benefits, we do not know now. Therefore, an experiment aimed to select a better combination of cultivation frame was performed in this study. In this experiment, three combinations of “H” type cultivating shelves were set up, namely, two-layer frames arranged adjacently (T1), two-layer frame and three-layer frame are alternately arranged (T2), three-layer frames are arranged adjacently(T3), to compare the light conditions, growth status and yield differences. The experiment was carried out in a solar greenhouse in Changping district of Beijing from August 2015 to April 2016. The length of the greenhouse is 100 m and the span is 8 m. Strawberry varieties is “Hong Yan”, planting date was August 29, 2015. Photosynthetic photon flux density (PPFD) of strawberry canopy and growth index were measured during the trial. Growth index include strawberry plant height and leaf chlorophyll relative content (SPAD), strawberry yield per plant, the number of fruits per plant, the average weight of fruit. Measured production time was three months. Results showed that under T1 treatment, the strawberries light conditions were the best of the upper and lower cultivars. During the experiment, the trend of light curves of the three cultivars in T2 and T3 were basically the same, but PPFD of the upper, middle and lower layers in T2 were higher than that in T3 corresponding position. During the experiment, the time length that light intensity at strawberry canopy reached light saturation point (LSP) of T2 upper layer was longer than that of T3 corresponding position; the time length of T2 middle layer reached the strawberry LSP was 240 min, and that of T3 middle layer was always below the LSP. In addition, the light intensity at strawberry canopy in the lower layer of T2 reached light compensation point was 230 min, and that of T3 lower layer was always below the light compensation point (LCP) all day. During the experiment, the time length that light intensity at strawberry canopy reached the LSP within two days of T1 and T2 were calculated, results showed that the time length reached LSP in T1 upper layer increased by 40% compared with that of T2. The time length of reaching at LSP in lower of T1 and T2 was 100 min and 0 min, respectively. The time length of reaching the LCP in the upper, lower layers of T1 increased by 9.3%, 21.4% compared with that of T2, respectively. Thus, the light environment of T1 was better than that of T2. Growth index of T1 strawberry was the best, yield per plant and the number of fruits per plant in T1 was higher than that of other treatments. Correlation indexes of strawberry yield were the worst in T3. During the test period, the yield per unit area of T1 was 50.8 kg, and the cost of T1 was the lowest in three treatments, yield per unit area of T1 was increased by 2.8%, 33.7% compared with that of T2 and T3, respectively. Therefore, strawberries of all two layers arrangement of “H” type cultivation frame got better lighting conditions, reduced costs and obtained better economic benefit. All two layers arrangement of “H” type cultivation frame (T1) was suitable for application in actual production.
greenhouse; cultivation; light; “H” cultivation frame; strawberry; yield
10.11975/j.issn.1002-6819.2017.02.032
S625.3; S628
A
1002-6819(2017)-02-0234-06
2016-07-11
2016-11-30
“十二五”农村领域国家科技计划课题——植物工厂立体多层栽培系统及其关键技术与装备研究(2013AA103002);现代农业产业技术体系建设专项(CARS-25-06B)
王春玲,河北承德人。主要从事草莓立体栽培技术方面研究。阿拉尔塔里木大学水利与建筑工程学院,843300。Email:chunlingw130@163.com
宋卫堂,博士,教授,主要从事设施园艺栽培技术与设备研究。北京中国农业大学水利与土木工程学院,100083。Email:songchali@cau.edu.cn 中国农业工程学会会员:宋卫堂(E040100004M)
王春玲,宋卫堂,赵淑梅,曲明山. H型栽培架组合方式对光照及草莓生长和产量的影响[J]. 农业工程学报,2017,33(2):234-239. doi:10.11975/j.issn.1002-6819.2017.02.032 http://www.tcsae.org
Wang Chungling, Song Weitang, Zhao Shumei, Qu Mingshan. Effect of different combinations of two H-type cultivation frames on light and strawberry growth and yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 234-239. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.032 http://www.tcsae.org