师文娟 戚智锋 刘克建
(首都医科大学宣武医院 北京市老年病医疗研究中心 脑血管病研究室,北京 100053)
· 脑血管病、认知障碍的基础及临床研究 ·
常压高浓度氧下调电压依赖性阴离子通道蛋白对脑缺血-再灌注损伤大鼠的保护作用
师文娟 戚智锋 刘克建*
(首都医科大学宣武医院 北京市老年病医疗研究中心 脑血管病研究室,北京 100053)
目的 观察常压高浓度氧治疗(normobaric hyperoxia, NBO)对脑缺血-再灌注大鼠电压依赖性阴离子通道蛋白(voltage-dependent anion channel , VDAC)以及凋亡蛋白细胞色素C(cytochrome C, CytC)和活化型半胱天冬酶-3(cleaved caspase-3)的影响,初步探讨其作用机制。方法将15只健康成年雄性SD大鼠(280~320 g)采用数字表法分为3组:假手术组(Sham)、正常氧浓度组(Normoxia)和NBO组,采用线栓法制备大鼠大脑中动脉阻塞模型,模型大鼠缺血1.5 h,再灌注24 h。Sham组和Normoxia组大鼠术后呼吸普通空气,NBO 组大鼠术后至再灌注前呼吸100%常压氧气。采用Western blotting方法,检测脑缺血半影区VDAC、CytC和cleaved caspase-3蛋白的表达变化。结果1)与Sham组相比,Normoxia组缺血侧半影区VDAC显著升高(P<0.05);与Normoxia组相比,NBO组缺血侧半影区VDAC显著降低(P<0.05);2)与Normoxia组相比,NBO组缺血侧半影区凋亡蛋白CytC和cleaved caspase-3显著减少(P<0.05)。结论NBO治疗可能通过调节缺血侧半影区电压依赖性阴离子通道蛋白VDAC的表达来抑制脑缺血诱发的细胞凋亡,从而实现脑神经保护作用。
脑缺血-再灌注;常压高浓度氧;电压依赖性阴离子通道蛋白;凋亡
线粒体是神经细胞中极为重要的细胞器,不仅对物质能量代谢和信号转导等生理活动具有重要调节作用,而且在调控神经细胞凋亡过程中起决定性作用。线粒体外膜电压依赖性阴离子通道蛋白(voltage-dependent anion channel, VDAC)是线粒体依赖性凋亡过程中的关键蛋白,与细胞生存密切相关[1-2]。研究[3]显示缺血缺氧后VDAC表达上调,严重影响线粒体的正常功能,因此有效调控VDAC蛋白的表达及其功能,对于减轻缺血损伤具有重要意义。常压高浓度氧(normobaric hyperoxia , NBO)治疗是一种通过提高脑缺血半影区组织氧分压,直接改善缺血脑组织氧合状态的有效易行的疗法[4-5]。NBO治疗可以显著减少大脑缺血组织梗死体积,可能是通过缓解脑缺血导致的线粒体代谢功能障碍、降低脑缺血半影区细胞凋亡水平发挥其神经保护作用[6]。然而,对于NBO治疗调控细胞凋亡的具体分子机制尚不完全清楚,NBO对线粒体依赖性凋亡的关键蛋白VDAC有何影响?笔者推测NBO抑制神经细胞凋亡的作用,可能是通过调控线粒体外膜电压依赖性阴离子通道蛋白VDAC的表达水平来实现的,本研究旨在利用大鼠脑缺血1.5 h 再灌注24 h 模型,研究NBO治疗对脑缺血半影区VDAC以及相关凋亡蛋白的影响,探究NBO治疗潜在的神经保护分子机制。
1.1 实验材料
VDAC抗体(CST公司,美国),CytC抗体(BD公司,美国),cleaved caspase-3抗体(CST公司,美国),β-actin抗体、HRP标记山羊抗小鼠二抗、HRP标记山羊抗兔二抗(北京中杉金桥公司),手术显微镜 ( Carl Zeiss公司,德国 ), SPF级雄性SD大鼠15只,体质量280~320 g,由北京维通利华实验动物技术有限公司提供[实验动物许可证号:SCXK(京)2014-0001]。
1.2 动物模型制作及取材
采用数字表法将SD大鼠随机分为Sham组(n=3)、Normoxia组(n=6)和NBO组(n=6)。称量大鼠体质量后,先使用5%(体积分数)恩氟烷诱导麻醉大鼠,后使用2%(体积分数)恩氟烷混合70%(体积分数)N2O及30%(体积分数)O2维持大鼠麻醉状态。借鉴改良的Longa线栓法[7]制备大鼠MCAO缺血再灌注模型:于大鼠颈部正中切口,钝性分离组织,暴露右侧颈总、颈内及颈外动脉;电凝颈外动脉后,在颈外动脉残端剪口,将线栓插入颈内动脉,至线栓顶端距离颈总动脉分叉处约1.8~2.0 cm且遇阻力感时停止。手术过程中监测大鼠心率、肛温及平均动脉压,保持各项生理参数在正常范围。阻断血流1.5 h后,拔出线栓电凝血管切口恢复血流灌注。Sham组大鼠进行手术及插栓操作后即刻拔出线栓,并电凝血管恢复血供。NBO组大鼠于缺血5 min后,置于通入100%(体积分数) O2的麻醉盒中,其他2组大鼠置于空气环境。再灌注24 h后,使用水合氯醛麻醉大鼠,经心脏灌注PBS溶液冲净血管内的血液,断头取脑。于鼠脑视交叉处作冠状切片,向前囟方向切2 片,小脑方向切4 片,每片厚度约2 mm。将第2片和第4片脑组织进行TTC染色,留取第3片脑组织用作Western blotting检测。
1.3 Western blotting检测
选取缺血侧半影区脑组织,加入蛋白裂解液和蛋白酶抑制剂后置于冰上匀浆,冰浴30 min充分裂解后于4 ℃、12 000 g,离心30 min,吸出上清液体,采用BCA法测定蛋白浓度。在样品中加入上样缓冲液,煮沸10 min后进行SDS-PAGE电泳分离,以90 V恒定电压转膜90 min。印迹膜在5%(质量分数) 牛奶中封闭1 h后,置于合适稀释度的一抗溶液中4 ℃孵育过夜,VDAC抗体(1∶1 000),CytC抗体(1∶1 000),cleaved-caspase-3抗体(1∶1 000),β-actin抗体(1∶1 000)。吸出一抗孵育液,以TBST漂洗5 min,重复3次;加入HRP标记的山羊抗小鼠/兔二抗(1∶5 000),室温孵育1 h。吸去二抗,以TBST漂洗5 min,重复3次;在膜上滴加ECL化学发光液显影,使用Chemi Scope化学发光系统扫描分析。蛋白水平用VDAC、CytC或cleaved caspase-3与相应β-actin的条带灰度比值表示。
1.4 统计学方法
2.1 NBO治疗对大鼠脑缺血梗死体积的影响
TTC 染色结果显示,NBO组大鼠脑缺血梗死体积明显小于Normoxia组(P<0.05):NBO组脑缺血梗死体积比例为(65.94±4.29)%,Normoxia组脑缺血梗死体积比例为(38.28±5.12)%。典型 TTC 染色如图1 所示。
图1 缺血再灌注大鼠脑组织TTC染色
TTC: triphenyl tetrazolium chlorid; NBO:normobaric hyperoxia.
2.2 NBO治疗对大鼠脑缺血半影区线粒体外膜电压离子通道蛋白的影响
Western blotting检测结果显示:与Sham组相比,Normoxia组缺血侧半影区VDAC蛋白显著升高(Sham组:1.00±0.00,n=3;Normoxia组:2.20±0.32,n=6,P<0.05);与Normoxia组相比,NBO组缺血侧半影区VDAC蛋白明显降低(Normoxia组:2.20±0.32;NBO组:1.37±0.19,n=6,P<0.05),差异有统计学意义,说明NBO抑制了缺血-再灌注大鼠缺血损伤引起的VDAC表达上调(图2)。
2.3 NBO治疗对大鼠脑缺血半影区凋亡相关蛋白的影响
Western blotting检测结果显示:与Sham组相比,Normoxia组缺血侧半影区CytC蛋白显著升高;而NBO组缺血侧半影区CytC蛋白明显降低;与Normoxia组相比,NBO组缺血侧半影区CytC蛋白显著减少(Normoxia组:2.60±0.46;NBO组:1.36±0.25,n=6,P<0.05)。
图2 Western blotting检测大鼠脑缺血半影区VDAC蛋白水平
Compared with the sham group (n=3), VDAC was increased in normoxia group significantly (n=6)(#P<0.05vssham group), and VDAC is significantly reduced in ischemic penumbra of NBO group (n=6), compared with the normoxia group (n=6)(*P<0.05vsnormoxia group). VDAC: voltage-dependent anion channel; NBO: normobaric hyperoxia.
与Normoxia组相比,NBO组缺血侧半影区cleaved caspase-3蛋白显著减少(Normoxia组:1.66±0.22;NBO组:1.07±0.13,n=6,P<0.05)。说明NBO减少了缺血-再灌注大鼠缺血损伤诱发的细胞凋亡,(图3)。
图3 Western blotting检测大鼠缺血半影区CytC蛋白及cleaved caspase-3蛋白水平
Both of CytC and Cleaved Caspase-3 are significantly decreased in ischemic penumbra of NBO group (n=6), compared with normoxia group (n=6) (*P<0.05vsnormoxia group ). CytC: cytochrome C; NBO: normobaric hyperoxia.
神经细胞在缺血缺氧条件下的物质和能量代谢异常是造成大脑缺血性损伤的主要原因,而线粒体作为细胞能量代谢的活动中心,同时也在内源性细胞凋亡过程中起决定性作用[8-9]。因此,缺血导致的线粒体代谢障碍是影响神经细胞凋亡的关键因素[10-12]。
电压依赖性阴离子通道蛋白VDAC在线粒体外膜中极为丰富,是能量代谢分子进出线粒体的必经通道,在调节线粒体与胞质间的物质和能量代谢中发挥着重要作用,与细胞的生存密切相关[13]。既往研究[14]表明VDAC在线粒体依赖性凋亡中起关键作用,缺血缺氧条件下VDAC表达水平病理性上调,可能致使其结构或功能发生异常[15]。VDAC表达水平的升高会引起线粒体外膜通透性转变、线粒体肿胀、外膜破裂等不可逆损伤[16-17],导致线粒体能量代谢紊乱;并且线粒体外膜完整性破坏会释放驻留在膜间隙中的凋亡分子细胞色素C[18],进而激活caspase-3,从而实现线粒体介导的一系列细胞凋亡级联反应[19]。因此,保持线粒体稳定的能量代谢水平,抑制线粒体通透性的病理性开放将可能是有效的脑损伤保护手段。
研究[20]表明NBO治疗可通过改善缺血半影区组织血氧的量和缺血细胞的能量代谢能力来保护神经细胞,因此笔者推测NBO对于缓解缺血导致的线粒体代谢障碍也有积极作用,而作为线粒体通透性以及线粒体依赖性凋亡的核心蛋白,VDAC很可能是NBO治疗的潜在作用对象。本研究显示早期给予NBO治疗显著降低了VDAC病理性表达上调,从而降低线粒体外膜通透性,减少细胞色素C的释放及caspase-3的激活,表明VDAC是NBO治疗减缓缺血半影区神经细胞凋亡的潜在靶点。笔者的研究有助于进一步理解NBO治疗脑缺血的可能机制,也为NBO联合其他治疗方式提供了指示。
综上所述,本研究通过观察NBO治疗对电压依赖性阴离子通道VDAC 以及细胞色素C释放和活化型半胱天冬酶-3表达的影响,推测 NBO治疗可能通过抑制VDAC的过度表达,减少凋亡信号细胞色素C释放和caspase-3的激活,降低神经细胞内源性凋亡损伤,从而发挥对脑缺血-再灌注损伤的神经保护作用。
[1] Shoshan-Barmatz V, Ben-Hail D. VDAC, a multi-functional mitochondrial protein as a pharmacological target[J]. Mitochondrion, 2012, 12(1): 24-34.
[2] Mertins B, Psakis G, Essen L O. Voltage-dependent anion channels: the wizard of the mitochondrial outer membrane[J]. Biol Chem, 2014, 395(12):1435-1442.
[3] Liao Z, Liu D, Tang L, et al. Long-term oral resveratrol intake provides nutritional preconditioning against myocardial ischemia/reperfusion injury: involvement of VDAC1 downregulation[J]. Mol Nutr Food Res, 2015, 59(3):454-464.
[4] Liu S, Liu W, Ding W, et al. Electron paramagnetic resonance-guided normobaric hyperoxia treatment protects the brain by maintaining penumbral oxygenation in a rat model of transient focal cerebral ischemia[J]. J Cereb Blood Flow Metab, 2006, 26(10):1274-1284.
[5] Wu O, Benner T, Roccatagliata L, et al. Evaluating effects of normobaric oxygen therapy in acute stroke with MRI based predictive models[J]. Med Gas Res, 2012, 2(1): 5.
[6] Dong W, Qi Z, Liang J, et al. Reduction of zinc accumulation in mitochondria contributes to decreased cerebral ischemic injury by normobaric hyperoxia treatment in an experimental stroke model[J]. Exp Neurol, 2015, 272:181-189.
[7] Tajiri N, Dailey T, Metcalf C, et al. In vivo animal stroke models: a rationale for rodent and non-human primate models[J]. Transl Stroke Res, 2013, 4(3):308-321.
[8] 刘晓婷,王延让,张明. 线粒体介导细胞凋亡的研究进展[J]. 环境与健康杂志, 2013, 30(2): 182-184.
[9] Norberq E, Orrenius S, Zhivotovsky B. Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF)[J]. Biochem Biophys Res Commun, 2010, 396(1): 95-100.
[10]房亚兰, 罗玉敏,赵咏梅. 大黄对缺血性脑血管病的保护作用及机制研究[J]. 首都医科大学学报, 2015,36(5):718-722.
[11]岳志伟, 刘强,陈乃耀. 创伤性脑损伤和线粒体功能障碍[J]. 中国煤炭工业医学杂志,2016,19(4) :645-650.
[12]冯政哲, 张海峰,于瀛,等.线粒体途径介导的细胞凋亡在兔颅内动脉瘤生成中的作用[J]. 中国脑血管病杂志, 2015,12(1) :32-36.
[13]Shoshan-Barmatz V, De Pinto V, Zweckstetter M, et al. VDAC, a multi-functional mitochondrial protein regulating cell Life and death[J]. Mol Aspects Med, 2010, 31(3): 227-285.
[14]Park E, Lee G J, Choi S, et al. The role of glutamate release on voltage-dependent anion channels (VDAC) -mediated apoptosis in an eleven vessel occlusion model in rats[J]. PLoS One, 2010, 5(12): e15192.
[15]Yang M, Camara A K, Wakim B T, et al. Tyrosine nitration of voltage-dependent anion channels in cardiac ischemia-reperfusion: reduction by peroxynitrite scavenging[J].Biochim Biophys Acta, 2012, 1817(11): 2049-2059.
[16]Yu Z, Liu N, Li Y, et al. Neuroglobin overexpression inhibits oxygen-glucose deprivation-induced mitochondrial permeability transition pore opening in primary cultured mouse cortical neurons[J]. Neurobiol Dis, 2013, 56: 95-103.
[17]Ren R, Zhang Y, Li B, et al. Effect of β-amyloid (25-35) on mitochondrial function and expression of mitochondrial permeability transition pore proteins in rat hippocampal neurons[J]. J Cell Biochem, 2011, 112(5):1450-1457.
[18]Matsumura M, Tsuchida M, Lsoyama N, et al. FTY720 mediates cytochrome c release from mitochondria during rat thymocyte apoptosis[J]. Transpl Immunol, 2010, 23(4): 174-179.
[19]Eloy L, Jarrousse A S, Teyssot M L, et al. Anticancer activity of silver-N-heterocyclic carbene complexes: caspase -independent induction of apoptosis via mitochondrial apoptosis-inducing factor (AIF)[J]. Chem Med Chem, 2012, 7(5): 805-815.
[20]Sun L, Strelow H, Mies G, et al. Oxygen therapy improves energy metabolism in focal cerebral ischemia [J]. Brain Res, 2011,1415 (1):103-108.
编辑 陈瑞芳
Normobaric hyperoxia protect cerebral ischemia/reperfusion injured rats by downregulating voltage-dependent anion channel protein
Shi Wenjuan, Qi Zhifeng, Liu Kejian*
(XuanwuHospital,CapitalMedicalUniversity,BeijingGeriatricMedicalResearchCenter,CerebrovascularDiseasesResearchInstitute,Beijing100053,China)
Objective To observe the effect of normobaric hyperoxia (NBO) on expression of voltage-dependent anion channel (VDAC), cytochrome C (CytC) and cleaved caspase-3 induced by cerebral ischemia-reperfusion injury in rats, and preliminarily explore the mechanism of NBO treatment on prevention of apoptosis. Methods Fifteen healthy adult male Sprague-Dawley (SD) rats (280-320 g) were divided randomly into three groups: Sham group (n=3), Normoxia group (n=6) and NBO group (n=6). A model operation of MCAO was performed using intraluminal suture method. The rats underwent MCAO for 1.5 h plus 24 h reperfusion. After model operation the rats of sham group and normoxia group breathed normal air, and instead NBO group rats breathed 100% oxygen until reperfusion. Western blotting was used to test the expression of VDAC, CytC and cleaved caspase-3 protein in ischemic penumbra region. Results Western blotting results showed that compared with the sham group, the VDAC protein expression of ischemic penumbra was increased (P<0.05) in the normoxia group, and compared with the normoxia group, the expression of VDAC protein in ischemic penumbra region was statistically significantly reduced (P<0.05) in NBO group. Compared with the normoxia group, the expressions of CytC protein and cleaved caspase-3 protein in ischemic penumbra region were statistically significantly decreased (P<0.05) in NBO group. Conclusion NBO treatment may inhibit cerebral ischemia-induced apoptosis by downregulating the excessive expression of voltage-dependent anion channel protein in ischemic penumbra region, thus to play a protective role in the ischemia/reperfusion injured brain.
cerebral ischemia-reperfusion; normobaric hyperoxia(NBO); voltage-dependent anion channel(VDAC); apoptosis
国家自然科学基金项目(81620108011,81571175),北京市科技新星项目(Z141107001814045)资助。This study was supported by National Natural Science Foundation of China (81620108011,81571175), Beijing Nova Program (Z141107001814045).
时间:2017-01-17 23∶22
http://www.cnki.net/kcms/detail/11.3662.R.20170117.2322.008.html
10.3969/j.issn.1006-7795.2017.01.009]
R 743.3
2016-11-28)
*Corresponding author, E-mail:kliu@salud.unm.edu