樊子健,吴丽萍,任有忠,鞠文萍,刘晓艺,王现亮*
膝关节软骨损伤是临床常见病损,关节软骨损伤后不能再生且自我修复能力有限,若不及时诊治,最终将发展为骨性关节炎(osteoarthritis,OA)。骨性关节炎患者会出现关节疼痛,水肿、活动受限及关节绞锁等症状,且有较高的致残率。临床上常用外科手术的方法对软骨损伤进行修复,因此术前能正确评估软骨损伤范围及程度十分重要。磁共振成像是膝关节软骨损伤诊断和分级的最佳影像学方法。本研究旨在用T2-mapping、三维快速自旋回波脉冲序列(threedimensional fast spin echo cube,3D-FSE-Cube)及常规序列评估膝关节软骨损伤敏感度、特异度,以确定三种序列在评估膝关节软骨损伤分级以及临床应用的价值。
搜集2016年3月至2016年12月因膝关节疼痛等症状来潍坊市人民医院住院诊治的患者124例,男64例,年龄19~63岁,平均年龄43.4岁;女60例,年龄18~64岁,平均年龄42.3岁,所有患者均接受膝关节常规序列、3D-FSE-Cube序列、T2-mapping序列MR扫描。选取其中符合标准的患者63例,其中男32例,年龄21~63岁,平均年龄42.8岁;女31例,年龄20~63岁,平均年龄41.9岁。纳入标准:(1)年龄小于65岁;(2)接受膝关节MRI检查1周内行膝关节镜手术;(3)短期内(1~3 d)有明确外伤或明确诊断OA患者,OA患者的诊断采用骨关节炎诊治指南(中华医学会骨科学分会,2007年)中的诊断标准;(4)患者体重指数小于30 kg/m2;(5)此前无膝关节手术史。
采用GE 3.0 T Discovery 750 w MR仪及8通道相控膝关节线圈,对124例患者进行扫描,扫描序列包括:(1)常规序列:矢状面FSE-T1WI (TR 528 ms,TE 20 ms,层厚3.5 cm,间隔1.0 mm,扫描时间1 min 40 s)、FSE-T2WI (TR 5200 ms,TE 85 ms,层厚3.5 cm,间隔1.0 mm,扫描时间1 min 49 s)及FS-FSE-PDWI (TR 2046 ms,TE 32 ms,层厚3.5 cm,间隔1.0 mm,扫描时间2 min 15 s),冠状面FS-FSE-PDWI (TR 1756 ms,TE 38 ms,层厚4.0 cm,间隔1.5 mm,扫描时间1 min 42 s),横断面FS-FSE-PDWI (TR 1722 ms,TE 32 ms,层厚5.0 cm,间隔1.0 mm,扫描时间1 min6 s),以上序列的FOV均为18 cm×18 cm,矩阵均为320×256,激励次数均为2;(2)矢状面T2-mapping序列:采用8回波SE序列扫描,TR 1000 ms,TE 7.6、15.3、22.9、30.5、38.2、45.8、53.4、61.1 ms,层厚4.0 cm,间隔2.0 mm,FOV 16 cm×16 cm,矩阵256×192,激励次数为2,扫描时间6 min 26 s;(3)矢状面3D-FSE-Cube序列:TR 1500 ms,TE 28 ms,层厚1.6 cm,间隔0 mm,FOV 18 cm×18 cm,矩阵256×256,激励次数为1,扫描时间4 min 49 s。
将原始图像传送至GE-ADW 4.6工作站,应用Functool 2软件生成T2-mapping伪彩图,调节上下阈值(色彩范围为14~144 ms)使正常膝关节软骨显示为红、黄色,软骨损伤显示为蓝、绿色。由2名经验丰富的放射科肌骨影像诊断医师观察分析T2-mapping伪彩图、 3D-FSE-Cube图像和常规序列的图像,对膝关节股骨内、外侧髁,胫骨内、外侧平台,股骨滑车及髌骨表面的6处软骨进行损伤分级。2名医师独立完成分级诊断,意见不一致时,讨论并达成统一意见。
对于软骨损伤MRI分级诊断标准采用ICRS分级[1],0级:软骨表面光滑、未见缺损,软骨内信号均匀,软骨下骨未出现异常信号影;Ⅰ级:软骨结构完整,表面光滑、未见缺损,内出现局灶性异常信号影;Ⅱ级:软骨表面出现缺损,缺损深度小于全层软骨厚度的50%;Ⅲ级:缺损深度大于全层软骨厚度的50%,但缺损尚未累及全层软骨;Ⅳ级:全层软骨完全缺失,软骨下骨质裸露。同一处软骨存在不同级别损伤时,以最高级别损伤为准[2]。
由2名经验丰富的骨关节外科医生共同完成膝关节镜手术,关节镜下软骨损伤分级诊断标准采用Outerbridge[3]分级:0级,正常关节软骨;Ⅰ级,软骨软化,表面可见轻度的水泡样结构,无裂隙样溃疡;Ⅱ级,软骨变薄,软骨轻、中度纤维化或浅表裂隙样溃疡,通常表现为纵向“鲨鱼腮”样改变;Ⅲ级,软骨重度纤维化,软骨部分剥脱,呈“蟹肉样”改变,无软骨下骨暴露;Ⅳ级,早期骨性关节炎,软骨全层缺失、软骨下骨暴露。
关节镜诊断结果作为参考“金标准”,采用SPSS 19.0进行数据处理和分析,分别计算T2-mapping、3D-FSE-Cube和常规序列对膝关节软骨损伤的敏感度、特异度,用卡方检验来比较三种MRI序列之间在评估膝关节软骨损伤分级诊断的差异,规定P<0.05为差异有统计学意义。如果三者比较有统计学意义,采用卡方分割法进行两两比较,校正检验标准α'=α/[k×(k-1)/2+1] (α为检验标准,k为样本量的个数,本研究α=0.05,k=3),规定P<0.0125为差异有统计学意义。
T2-mapping、3D-FSE-Cube、常规序列及关节镜对63例患者共378处软骨(股骨内、外侧髁,胫骨内、外侧平台,股骨髁间滑车及髌骨表面软骨)进行损伤分级,其中0级(正常关节软骨)分别为153、168、201、188处,Ⅰ级损伤分别为106、84、61、76 处,Ⅱ级损伤分别为60、69、59、58处,Ⅲ级损伤分别为33、31、35、30处,Ⅳ级损伤分别为26、26、22、26处(表1);各级损伤表现见图1~4。
T2-mapping、3D-FSE-Cube、常规序列对膝关节软骨各级损伤的敏感度、特异度见表2。
三种磁共振序列评估膝关节软骨损伤总的敏感度、特异度及Ⅰ、Ⅱ级损伤的敏感度差异均有统计学意义(P值<0.05),Ⅲ、Ⅳ级损伤的敏感度差异均无统计学意义(P>0.05;表2)。
T2-mapping序列对膝关节关节软骨Ⅰ级损伤的敏感度显著高于3D-FSE-Cube,差异有统计学意义(P<0.0125),二者在Ⅱ级损伤的敏感度差异无统计学意义(P>0.0125),二者在评估膝关节软骨损伤总的敏感度、特异度差异均无统计学意义(P值>0.0125)。T2-mapping与3D-FSE-Cube序列对膝关节软骨损伤总的敏感度及Ⅰ、Ⅱ级损伤敏感度均高于常规序列,而特异度均低于常规序列,差异均有统计学意义(P值均<0.0125;表3)。
膝关节软骨覆盖于膝关节组成骨的表面,属于透明软骨,组成成分包括胶原纤维、蛋白多糖和水,具有润滑固定关节、减少骨摩擦、缓冲运动时的震动等作用。膝关节软骨损伤发病率较高,易导致关节疼痛、水肿、活动受限及关节绞锁[4],MRI是其诊断和分级的最佳影像学方法。
T2-mapping成像是一种通过描述组织横向磁化衰减来反映组织特性的技术,一般采用多层面多回波SE序列,通过测量不同回波时间信号强度获取T2加权原始图像,经工作站后处理生成不同的灰阶或色阶的伪彩图[5],多应用于软骨病变的检测,能够敏感发现软骨内水和胶原含量以及胶原排列结构等组织成分的变化。以往T2-mapping用于定量评价未见明显肉眼形态改变的关节软骨早期损伤,利用T2-mapping伪彩图从结构成像直接观察软骨损伤报道不多,但也有相关学者对该方法进行了研究。相关研究表明,当软骨损伤时,关节软骨内胶原和蛋白多糖含量减少、水含量增加,T2值增加,使T2-mapping伪彩图上的色阶增高[6-7]。王鹤翔等[7]对膝关节胫骨平台软骨退变研究发现,T2-mapping伪彩图可以敏感显示软骨损伤,但无法评价软骨损伤的程度,提出改变阈值可能对评价软骨损伤程度有一定帮助。崔倩[8]在对髌软骨损伤研究中发现,将T2-mapping伪彩图、FS-FSE-PDWI和关节镜分级进行对照分析发现,在T2-mapping伪彩图上,通过调节阈值可以较好显示软骨缺损程度,可用于评价髌软骨损伤的程度,T2-mapping伪彩图与关节镜评价髌软骨损伤的相关性优于FS-FSE-PDWI与关节镜检查的相关性,但二者评价髌软骨损伤的程度无显著差异。本组结果表明T2-mapping序列对膝关节软骨Ⅰ级损伤的敏感度显著高于3D-FSE-Cube (P=0.008)及常规序列(P<0.001),对Ⅱ级损伤的敏感性高于常规序列(P=0.004),可见T2-mapping序列评估膝关节软骨早期损伤的敏感性较高,这与以往学者认为T2-mapping序列可以检测软骨中水和胶原含量等生化结构的变化,更早地发现膝关节软骨损伤的观点相一致[9-10]。
图1 女,29岁,膝关节外伤。A~D分别为其髌软骨矢状面T2-mapping伪彩图、3D-FSE-Cube-T2WI、FS-FSE-PDWI及关节镜图;A:可见髌软骨结构连续完整,表面光滑,厚度均匀,大部分区域呈现红黄色色阶(正常软骨),局部区域见斑片状绿色色阶(黑箭);B:可见髌软骨结构连续完整,表面光滑,内未见明显异常高信号;C:可见髌软骨结构连续完整,表面光滑,内未见明显异常高信号;D:关节镜下可见髌软骨局部软化,表面出现轻度的水泡样结构(黑箭),为软骨Ⅰ级损伤 图2 男,36岁,膝关节外伤。A~D分别为其髌软骨矢状面T2-mapping伪彩图、3D-FSE-Cube-T2WI、FS-FSE-PDWI及关节镜图。A:见髌软骨表面红黄色色阶部分缺损,缺损深度小于全层软骨厚度的50% (白箭);B:见软骨表面局部缺损,缺损深度小于全层软骨厚度的50%;C:仅见软骨表面模糊(白箭);D:可见软骨变薄,中度度纤维化(黑箭),为软骨Ⅱ级损伤Fig. 1 A twenty-nine years old female patient with knee joint trauma. Fig A—D were sagittal T2-mapping artificial color of patellar cartilage, 3D-FSECube-T2WI, FS-FSE-PDWI and arthroscopy findings of her knee joint, respectively. A: The patellar cartilage was intact, with uniform thickness and smooth surface, most part of it was red or yellow (normal cartilage), a little was patchy green (black arrow). B: The patellar cartilage was intact, with smooth surface and no abnormal high signal. C: The patellar cartilage was intact, with smooth surface and no abnormal high signal. D: Arthroscopy showed that the local patellar cartilage was softened and its surface was slightly vesicular (black arrow), the cartilage injury was diagnosed as gradeⅠ. Fig. 2 A thirtysix years old male with knee joint trauma. Fig A—D were the patellar cartilage sagittal T2-mapping artificial color, 3D-FSE-Cube-T2WI, FS-FSE-PDWI and arthroscopy findings of his knee joint, respectively. A: The red and yellow surface of patellar cartilage was partly defect, the defect depth was less than 50% of the thickness of articular cartilage (black arrow). B: The patellar cartilage surface was defect, the defect depth was less than 50% of the thickness of articular cartilage (white arrow). C: The surface of patellar cartilage was obscure (white arrow). D: Arthroscopic cartilage was thin and moderate fibrosis (black arrow), the cartilage injury was diagnosed as grade Ⅱ.
表1 三种MR序列与关节镜下膝关节各级软骨损伤数目Tab. 1 The number of knee each grade of cartilage injury in three MR sequence and arthroscopy
表2 三种MR序列评估膝关节软骨损伤的的敏感度及特异度比较Tab.2 Comparison of sensitivity or specificity among three MR sequences in knee cartilage injury
图3 男,40岁,膝关节外伤。A~D分别为其股骨外侧髁软骨矢状面T2-mapping伪彩图、3D-FSE-Cube-T2WI、FS-FSE-PDWI及关节镜图。A:见红黄色色阶部分缺损(黑箭),缺损深度大于全层软骨厚度的50%,缺损区见积液绿色色阶,软骨下骨质内见斑片状深绿色色阶;B、C:可见软骨局部部分缺损(白箭),缺损深度大于全层软骨厚度的50%,软骨下骨质内见斑片状高信号;D:可见软骨重度纤维化,软骨部分剥脱(黑箭),为软骨Ⅲ级损伤 图4 女,56岁,骨性关节炎。A~D分别为其股骨外侧髁软骨矢状面T2-mapping伪彩图、3D-FSE-Cube-T2WI、FS-FSEPDWI及关节镜图。A:见股骨外侧髁软骨局部红黄色色阶全层缺失(黑箭),代之以绿色色阶;B、C:可见股骨外侧髁软骨局部全层缺失(白箭),软骨下骨质见斑片状高信号;D:可见软骨全层缺失、软骨下骨暴露(黑箭),为软骨Ⅳ级损伤Fig. 3 A forty years old male with knee joint trauma. Fig A—D were the femoral lateral condyle cartilage sagittal T2-mapping artificial color, 3D-FSECube-T2WI, FS-FSE-PDWI and arthroscopy findings of his knee joint, respectively. A: The red and yellow surface of femoral lateral condyle cartilage was mostly defect (black arrow), the defect depth was more than 50% of the thickness of articular cartilage. The subchondral bone of defect area was patchy dark green. B, C: Showed the femoral lateral condyle cartilage was almost defect (white arrow), the defect depth was more than 50% of the thickness of articular cartilage, the subchondral bone of defect area has patchy high signal. D: Arthroscopic cartilage was severe fibrosis and stripped partly (black arrow), the cartilage injury was diagnosed as grade Ⅲ. Fig. 4 A fifty-six years old female twitch osteoarthritis. Fig A—D were the femoral lateral condyle cartilage sagittal T2-mapping artificial color, 3D-FSE-Cube-T2WI, FS-FSE-PDWI and arthroscopy findings of his knee joint, respectively. A: The red and yellow surface of femoral lateral condyle cartilage was missing and replaced by green color (black arrow). B, C: Showed the femoral lateral condyle cartilage was striped completely (white arrow), the subchondral bone of defect area has patchy high signal. D: Arthroscopic cartilage was striped completely and the subchondral bone exposed (black arrow), the cartilage injury was diagnosed as grade Ⅳ.
表3 三种磁共振序列评估膝关节软骨损伤的敏感度及特异度的两两比较Tab. 3 Pairwise comparison of sensitivity or specificity among three MR sequences in evaluating knee joint cartilage injury
本研究中笔者还发现T2-mapping序列特异度低于常规序列,可能原因:T2-mapping成像技术T2值易受主磁场均匀程度、磁化率改变、魔角效应、化学位移、软骨与关节液界面所致的部分容积效应等因素的影响[11-14],使正常关节软骨出现损伤的假象,从而造成假阳性。
3D-FSE-Cube是目前新研发的一项具有各向同性以宽回波链采集的三维(three dimensional,3D)快速自旋回波(fast spin echo,FSE)及并行成像的技术[15],该技术对诊断软骨损伤具有独特优势[16]:(1) 3D-FSE -Cub序列所获得的图像提高了软骨和滑液的信噪比及软骨与软骨下骨皮质的对比噪声比,使软骨呈现中等信号,关节液呈现高信号,可较清晰地显示软骨损伤的深度,诊断软骨损伤的敏感度大大提高。(2)具备各向同性以及无间距容积扫描,可获得无间隔的连续薄层图像,避免部分容积效应对软骨损伤分级带来的影响,明显减少软骨损伤漏诊的可能性。(3)所得图像显示软骨的空间分辨率较高,可清晰地显示出软骨内的病灶。3D-FSE-Cube亦存在不足之处,在长回波链晚期进行高空间分辨率采集时,导致图像清晰度下降,使正常关节软骨表面出现损伤的假象,故诊断软骨损伤的特异度减低。Kijowski等[17]在3D-FSE- Cube与常规序列评估膝关节病变对比研究中发现,对软骨损伤进行评估时,前者较后者有较高的敏感度,差异有统计学意义,而特异度却较后者低,差异有统计学意义,与本组研究得出的3D-FSE-Cube序列的敏感度较高,但特异度较低的结论相一致。
总之,在膝关节软骨损伤分级诊断方面,T2-mapping和3D-FSE-Cube序列的敏感度较常规序列高,常规序列的特异度高于T2-mapping和3D-FSECube序列。T2-mapping序列可以发现无明显形态学改变的膝关节软骨早期损伤,为临床早期诊治提供重要参考依据。
[References]
[1] Mainil-Varlet P, Aigner T, Brittberg M, et al. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am, 2003, 85(suppl 2): 45-57.
[2] Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair.J Bone Joint Surg Am, 2003, 85(suppl 2): 58-69.
[3] Outerbridge RE. Further studies on the etiology of chondromalacia patellae. J Bone Joint Surg Br, 1964, 46(2): 179-190.
[4] Tao HY, Chen S. A new technique for MRI imaging of articular cartilage injury and degeneration. Radiol Pract, 2012, 27(9):1024 -1028.陶虹月, 陈爽. 踝关节软骨损伤、退变的MRI成像新技术. 放射学实践, 2012, 27(9): 1024-1028.
[5] Blumenkrantz G, Stahl R, Carballido-Gamio J, et al. The feasibility of characterizing the spatial distribution of cartilage T2 using texture analysis. Osteoarthritis Cartilage, 2008, 16(5): 584-590.
[6] Chen QC, Zou YF, Wang DH, et al. The Application of MRI T2-mapping imaging in the early osteoarthritis of the knee. J Clin Radiol, 2012, 31(1): 81-85.陈其春, 邹月芬, 王德杭, 等. 磁共振T2-mapping成像在膝关节早期骨性关节炎中的应用. 临床放射学杂志, 2012, 31(1): 81-85.
[7] Wang HX, Hao DP, Xu WJ, et al. 3.0 T MRI T2-mapping evaluates knee cartilage degeneration. Chin J Magn Reson Imaging, 2012,3(4): 245-249.王鹤翔, 郝大鹏, 徐文坚, 等. 3.0 T MRI T2-mapping对膝关节软骨退变的评估价值. 磁共振成像, 2012, 3(4): 245-249.
[8] Cui Q. Assessment of the patellar cartilage damage with T2-mapping artificial color image and quantitative research of T2 value. Dalian Med University, 2013.崔倩. T2 mapping伪彩图及T2值对髌软骨损伤的诊断价值研究.大连: 大连医科大学, 2013: 1-29.
[9] Kim HK, Laor T, Graham TB, et al. T2 relaxation time changes in distal femoral articular cartilage in children with juvenile idiopathic arthritis: a 3-year longitudinal study. AJR Am J Roentgenol, 2010,195(4): 1021-1025.
[10] Crema MD, Roemer FW, Marra MD, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics, 2011, 31(1): 37-61.
[11] Kang Y, Choi JA. T2 mapping of articular cartilage of the glenohumeral joint at 3.0 T in healthy volunteers: a feasibility study.Skeletal Radiol, 2016, 45(7): 915-920.
[12] Yu A, Heilmeier U, Kretzschmar M, et al. Racial differences in biochemical knee cartilage composition between African-American and Caucasian-American women with 3 T MR-based T2 relaxation time measurements-data from the Osteoarthritis Initiative.Osteoarthritis Cartilage, 2015, 23(9): 1595-1604.
[13] Juras V, Zbýň Š, Mlynarik V, et al. The compositional difference between ankle and knee cartilage demonstrated by T2 mapping at 7 Tesla MR. Eur J Radiol, 2016, 85(4): 771-777.
[14] Juras V, Bohndorf K, Heule R, et al. A comparison of multi-echo spinecho and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage. Eur J Radiol, 2016, 26(6): 1905-1912.
[15] Busse RF, Hariharan H, Vu A, et al. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med,2006, 55(5): 1030-1037.
[16] Chen CA, Kijowski R, Shapiro LM, et al. Cartilage morphology at 3.0 T: assessment of three-dimensional magnetic resonance imaging techniques. J Magn Reson Imaging, 2010, 32(1): 173-183.
[17] Kijowski R, Davis KW, Woods MA, et al. Knee joint: Comprehensive assessment with 3D isotropic resolution fast spin-echo MR imagingdiagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology, 2009, 252(2): 486-495.