马伦,白岩,2,刘太元,马潇越,2,窦社伟,王梅云,2,3*
脑胶质瘤是成人颅内最常见的原发性肿瘤, 其中恶性胶质瘤约占所有胶质瘤患者的45%,5年生存率小于5%[1]。脑脓肿是一种可由多种致病菌引起的严重的颅内感染性疾病,死亡率约为10%[2]。常规磁共振成像中,坏死性脑胶质瘤和脑脓肿均可表现为伴有周围组织水肿的环形强化病灶[3],因此难以将二者区分开来。磁敏感加权成像(susceptibility weighted imaging,SWI)是利用不同物质磁敏感性不同而成像的磁共振技术,可敏感地显示病灶内部的出血和铁沉积等,已被证实在多种神经系统疾病的诊断中具有很大价值[4-6]。本研究探讨SWI在坏死性脑胶质瘤与脑脓肿鉴别诊断中的价值。
选取2015年1月至2016年12月间在我院就诊的脑胶质瘤和脑脓肿患者为研究对象。纳入标准:(1)经手术病理证实为脑胶质瘤或脑脓肿;(2)术前行头部平扫、增强3.0 T MRI及3D-SWI序列检查。排除标准:(1)病变部位增强MRI检查为非环形强化;(2)入院前经过针对脑胶质瘤和脑脓肿的治疗。最终纳入脑胶质瘤患者23例,纳入脑脓肿患者16例。23例脑胶质瘤患者中,男17例,女6例,年龄23~73岁,平均年龄(51.4±15.4)岁。16例脑脓肿患者中,男9例,女7例,年龄18~71岁,平均年龄(45.3±15.6)岁。
所有患者均采用3.0 T MRI成像仪(德国Siemens公司Trio Tim)和8通道颅脑线圈在治疗前行常规MRI和SWI成像。常规MRI成像序列包括轴位T1加权成像(T1 weighted imaging,T1WI)、T2加权成像(T2 weighted imaging,T2WI)、液体衰减反转恢复和轴位增强T1WI,增强扫描对比剂为Gd-DTPA (马根维显),剂量为每公斤体重0.1 mmol,经前臂静脉推注。3D-SWI序列扫描在增强扫描前完成,扫描参数如下:视野240 mm×240 mm,TR 29 ms,TE 20 ms,反转角为15°,层厚为3 mm,扫描时间为2 min 18 s。
图像分析采用双盲法,由我院2名中级职称的影像诊断医师分别对SWI图像进行分析,判断SWI图像上是否有病灶内磁敏感信号(intralesional susceptibility signal,ILSS),如2名医师的判定结果不一致,以第三名高级职称影像诊断医师的判断为准。
采用SPSS 22.0统计软件进行统计学分析,P<0.05为差异有统计学意义。采用Logistic回归模型对脑胶质瘤组和脑脓肿组进行统计学分析,分析脑胶质瘤和脑脓肿患者ILSS检出的阳性率、灵敏度和特异度。
23例脑胶质瘤患者和16例脑脓肿患者ILSS检出情况和MRI表现见表1和图1,2。SWI诊断敏感度为96%,特异度为63%,脑胶质瘤患者ILSS检出率多于脑脓肿患者(OR=36.67,P=0.002)。
表1 胶质瘤组和脑脓肿组检出ILSS结果Tab. 1 Detection results of ILSSs between glioblastomas and brain abscesses
本研究回顾性分析SWI在坏死性胶质瘤与脑脓肿鉴别诊断中的价值,结果显示坏死性脑胶质瘤的ILSS检出率显著高于脑脓肿,表明SWI可有效鉴别坏死性脑胶质瘤和脑脓肿。既往有研究通过采用SWI技术检出坏死性胶质瘤和脑脓肿病灶周围的环状低信号影来对二者进行鉴别诊断,显示SWI可有效鉴别坏死性胶质瘤和脑脓肿[7],本研究中采用SWI技术进一步对坏死性胶质瘤和脑脓肿病灶内的低信号进行分析,结果表明SWI检测出的ILSS在坏死性胶质瘤和脑脓肿的鉴别诊断中具有重要价值。
图1 男,52岁,左侧颞叶脑脓肿。A、B:左侧颞叶囊性占位性病变,周围可见水肿区;C:T1WI增强扫描示病变环形强化;D:SWI未检出ILSS;E:病理结果为脑脓肿(HE ×20) 图2 男,70岁,左侧顶叶胶质母细胞瘤。A、B:左侧顶叶囊性占位性病变,周围可见水肿区;C:T1WI增强扫描示病变环形强化;D:SWI检出ILSS。E:病理结果为胶质母细胞瘤(WHO 4级) (HE ×20)Fig.1 A 52-year-old man with a brain abscess in the left temporal lobe. A, B:Cystic space-occupying lesion in left temporal lobe with surrounding edema. C:Gadolinium-based contrast material-enhanced T1WI showed ring enhancement.D: There was no ILSS in SWI. E: A brain abscess was confirmed by the pathological results (HE ×20). Fig. 2 A 70-year-old man with glioblastoma in left parietal. A, B: Cystic space-occupying lesion in left parietal with surrounding edema. C: Gadolinium-based enhanced scan showed ring enhancement. D:Detected ILSS with SWI. E: A glioblastoma was confirmed by the pathological results (HE ×20).
坏死性胶质瘤患者中ILSS检出率较脑脓肿高不仅与肿瘤内新生血管增多、血供丰富有关,而且与肿瘤内出血或微出血有关。研究表明,胶质瘤内部新生血管伴随肿瘤恶性程度的增高而增多,且新生血管管壁常不完整,血脑屏障破坏严重[8],易发生出血。另外,恶性脑胶质瘤细胞持续分裂与增殖速度快,易发生缺血坏死。出血随着时间进展,血红蛋白氧解离形成去氧血红蛋白,去氧血红蛋白进一步氧化生成正铁血红蛋白,最终降解为含铁血黄素[9]。血红蛋白四种状态除含氧血红蛋白外,均为顺磁性物质,且去氧血红蛋白和含铁血黄素具有较强的磁敏感性,因此出血在SWI图像上表现为明显的低信号[10]。SWI是目前对出血成分检出最敏感的影像学技术[10-12],SWI检出的ILSS能够反映脑胶质瘤组织内部出血情况。前期研究显示,SWI作为一种无创性成像方法可以有效提高胶质瘤分级的准确性[13-14],且可以为颅内占位性病变的鉴别诊断提供重要参考价值[14-15]。有研究将SWI与灌注加权成像(perfusion weighted imaging,PWI)对比应用于脑胶质瘤诊断中,显示SWI检出的ILSS密集程度与肿瘤局部血流量高度相关,表明ILSS可在一定程度上反映胶质瘤组织局部血流量情况[16]。
与坏死性胶质瘤相比,脑脓肿在SWI上的ILSS表现较少,这可能与脑脓肿病灶内缺乏新生血管和出血成分有关。脑脓肿在T1WI可表现为与坏死性胶质瘤类似的环形强化,这是由于脓肿外周的新生血管细胞之间连接疏松易造成液体漏出所致[17-18]。但二者在病理特征方面存在显著差别。脑脓肿由脑炎演化而来,在脑炎时期,脑内病灶组织可因血脑屏障的破坏和坏死区的产生而形成出血,但随着脑脓肿的形成,脓肿内部坏死物质可因炎症细胞吞噬、溶解液化从而形成脓腔[17]。另外,病灶周围胶原纤维包裹导致新生血管无法生成,从而使脑脓肿内难以出现新的出血成分[18],因此脑脓肿在SWI上通常检测不到ILSS。
扩散加权成像(diffusion weighted imaging,DWI)可以反映生物体内水扩散情况。前期研究采用DWI生成的表观扩散系数(apparent diffusion coefficient,ADC)值对坏死性脑胶质瘤和脑脓肿进行鉴别,研究结果显示脑脓肿的ADC值通常较低,而坏死性脑胶质瘤的ADC值一般较高[19-20]。然而,由于不同时期脑脓肿内脓液成分存在差异,早期脑脓肿为由炎症细胞、微生物和蛋白质形成黏稠的液体,表现为扩散受限,ADC值降低,随着脓肿进展,中心坏死带缩小并被纤维组织取代,结合水减少,水分子扩散不再受限[21],有研究显示16%脑脓肿病例DWI表现为非完全受限,易被误诊为肿瘤坏死[22]。另外,坏死性脑胶质瘤腔内可因残留细胞骨架的存在而表现为较低ADC值,有研究显示11%坏死性胶质瘤内部DWI可表现为高信号[23]。因此DWI技术有时不能准确地对脑脓肿与坏死性脑胶质瘤进行鉴别。
磁共振波谱成像(magnetic resonance spectroscopy,MRS)可反映组织器官代谢情况,但MRS鉴别诊断价值可因病变靠近外周或颅骨而受限,前期研究应用DWI与MRS同时应用于坏死性脑胶质瘤与脑脓肿的鉴别诊断中,发现MRS反映的代谢信息对二者鉴别的准确性不如DWI且扫描时间较长,因此MRS技术在区分坏死性脑胶质瘤与脑脓肿方面存在局限性[21,24]。
前期研究显示,联合应用DWI和MRS对颅内占位性病变进行鉴别诊断,可较DWI或MRS提供更多有价值的信息[25]。本研究结果显示SWI可有效鉴别坏死性脑胶质瘤和脑脓肿。SWI、DWI、MRS等技术可以分别从出血、水扩散情况、代谢等方面反映组织信息,因此将SWI与DWI、MRS等其他磁共振成像技术相结合,能否进一步提高坏死性脑胶质瘤与脑脓肿鉴别的准确性值得进一步去研究。
本研究存在以下一些局限性:(1)病例样本数量较少;(2)未对脑脓肿致病菌情况进行亚组分析。
采用SWI技术对坏死性脑胶质瘤和脑脓肿进行鉴别诊断,结果显示坏死性脑胶质瘤ILSS检出率显著高于脑脓肿,提示SWI可为临床鉴别坏死性脑胶质瘤和脑脓肿提供一种新的影像学方法。
[References]
[1] Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol, 2014, 16(7):896-913.
[2] Carvalho RM, Nunes SM, Santana AN. Brain abscess. N Engl J Med,2014, 371(18): 1757-1758.
[3] Muccio CF, Caranci F, D'Arco F, et al. Magnetic resonance features of pyogenic brain abscesses and differential diagnosis using morphological and functional imaging studies: a pictorial essay. J Neuroradiol, 2014, 41(3): 153-167.
[4] Liu TY, Bai Y, Ma XY, et al. The value of "swallow tail" appearance of nigrosome on ESWAN at 3.0 T MR in the diagnosis of Parkinson's disease. Chin J Magn Reson Imaging, 2016, 7(4): 265-269.刘太元, 白岩, 马潇越, 等. 3.0 T MR非高分辨ESWAN上黑质 "燕尾征" 在帕金森病诊断中的价值. 磁共振成像, 2016, 7(4): 265-269.
[5] Li B, Xu ZF, Zhu B. The value of 3.0 T MR-SWI in diagnosis of diffuse axonal injury with non-lesional CT fndings. Chin J Magn Reson Imaging, 2016, 7(10): 759-762.李斌, 徐志锋, 朱彬. 3.0 T MR-SWI诊断CT阴性急性弥漫性轴索损伤的价值. 磁共振成像, 2016, 7(10): 759-762.
[6] Jia SL, Wang XM. The diagnosis value of susceptibility-weighted imaging in cerebral ischemic stroke. Chin J Magn Reson Imaging,2015, 6(3): 182-186.贾素兰, 王晓明. 磁敏感加权成像对脑梗死的诊断价值. 磁共振成像, 2015, 6(3): 182-186.
[7] Toh CH, Wei KC, Chang CN, et al. Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibilityweighted imaging. AJNR Am J Neuroradiol, 2012, 33(8): 1534-1538.
[8] Miyagami M, Katayama Y. Angiogenesis of glioma: evaluation of ultrastructural characteristics of microvessels and tubular bodies(Weibel-Palade) in endothelial cells and immunohistochemical findings with VEGF and p53 protein. Med Mol Morphol, 2005,38(1): 36-42.
[9] Kang BK, Na DG, Ryoo JW, et al. Diffusion-weighted MR imaging of intracerebral hemorrhage. Korean J Radiol, 2001, 2(4): 183-191.
[10] Mittal S, Wu Z, Neelavalli J, et al. Susceptibility-weighted imaging:technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol, 2009, 30(2): 232-252.
[11] Buch S, Cheng YN, Hu J, et al. Determination of detection sensitivity for cerebral microbleeds using susceptibility-weighted imaging.NMR Biomed, 2017, 30(4). [Epub ahead of print]
[12] Ma X, Bai Y, Lin Y, et al. Amide proton transfer magnetic resonance imaging in detecting intracranial hemorrhage at different stages: a comparative study with susceptibility weighted imaging. Sci Rep,2017, 7: 45696.
[13] Pinker K, Noebauer-Huhmann IM, Stavrou I, et al. High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3 T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR Am J Neuroradiol,2007, 28(7): 1280-1286.
[14] Di Ieva A, Le Reste PJ, Carsin-Nicol B, et al. Diagnostic value of fractal analysis for the differentiation of brain tumors using 3-tesla magnetic resonance susceptibility-weighted imaging. Neurosurgery,2016, 79(6): 839-846.
[15] Ding Y, Xing Z, Liu B, et al. Differentiation of primary central nervous system lymphoma from high-grade glioma and brain metastases using susceptibility-weighted imaging. Brain Behav,2014, 4(6): 841-849.
[16] Wang XC, Zhang H, Tan Y, et al. Combined value of susceptibilityweighted and perfusion-weighted imaging in assessing who grade for brain astrocytomas. J Magn Reson Imaging, 2014, 39(6): 1569-1574.
[17] Enzmann DR, Britt RH, Yeager AS. Experimental brain abscess evolution: computed tomographic and neuropathologic correlation.Radiology, 1979, 133(1): 113-122.
[18] Lai PH, Chang HC, Chuang TC, et al. Susceptibility-weighted imaging in patients with pyogenic brain abscesses at 1.5 T:characteristics of the abscess capsule. AJNR Am J Neuroradiol, 2012,33(5): 910-914.
[19] Alam MS, Sajjad Z, Azeemuddin M, et al. Diffusion weighted MR imaging of ring enhancing brain lesions. J Coll Physicians Surg Pak,2012, 22(7): 428-431.
[20] Bhatt N, Gupta N, Soni N, et al. Role of diffusion-weighted imaging in head and neck lesions: Pictorial review. Neuroradiol J. 2017,30(4): 356-369.
[21] Huang MH, Dong XZ, Guo Y, et al. Dynamic changes of MR diffusion-weighted imaging on brain abscecc. Chin J Med Imaging,206,14(4): 256-258.黄敏华, 董秀珍, 郭勇, 等. 脑脓肿磁共振弥散加权成像动态变化.中国医学影像学杂志, 2006, 14(4) : 256-258.
[22] Zhou MH, Lin XW, Hu ZP, et al. Clinical significance of infection mechanism and imaging examination in patients with cerebral abscess. Chin J Nosocomiol, 2017, 27(7): 1550-1553.周明华, 林兴旺, 胡振平, 等. 脑脓肿患者的感染机制及影像学检查临床意义研究. 中华医院感染学杂志, 2017, 27(7): 1550-1553.
[23] Ko CC, Tai MH, Li CF, et al. Differentiation between glioblastoma multiforme and primary cerebral lymphoma: additional benefits of quantitative diffusion-weighted mr imaging. PLoS One, 2016, 11(9): e0162565.
[24] Lai PH, Ho JT, Chen WL, et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusionweighted imaging. AJNR Am J Neuroradiol, 2002, 23(8): 1369-1377.
[25] Lai PH, Hsu SS, Ding SW, et al. Proton magnetic resonance spectroscopy and diffusion-weighted imaging in intracranial cystic mass lesions. Surg Neurol, 2007, 68(Suppl 1): S25-S36.