夏永霞
摘要:本文明晰了数学思想和数学方法的概念,并对小学数学思想和数学方法的教学渗透进行了详尽的阐述,加强数学思想方法在小学的渗透,还需要进一步提高认识,清楚地界定和刻画适合小学生领悟的数学思想方法,提出明确具体而又恰当的渗透要求,同时对其进行了反思。
关键词:小学数学;数学思想;数学方法
一、数学思想和数学方法的内涵
所谓数学思想,是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,是被人们反复运用和确认的、带有普遍意义和相对稳定的特征,它是对数学事实与数学理论的本质认识。所谓数学方法,是指处理数学问题中所采用的被人们反复运用和确认的各种手段、途径和方式。数学思想和数学方法互为表里、密切相关,两者都以一定的知识为基础,反过来又促进知识的深化及形成能力。方法是实施思想的技术手段,而思想是对应方法的精神实质和理论依据。
小学新课程标准明确指出义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。这意味着数学是人们生活、劳动、学习必不可少的工具,数学能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分直接为社会创造价值。
二、小学数学思想和数学方法的教学渗透
数学思想和数学方法的教学要求教师必需较好地重视并掌握有关的数学思想和数学方法。数学思想方法是以数学为工具进行科学研究的方法。纵观数学的发展史我们看到数学总是伴随着数学思想方法的发展而发展的。如坐标法思想的具体应用产生了解析几何;无限细分求和思想方法导致了微积分学的诞生……,数学思想方法产生数学知识,而数学知识又蕴载着数学思想,二者相辅相成,密不可分。正是数学知识与数学思想方法的这种辩证统一性,决定了我们在传授数学知识的同时必须重视数学思想方法的教学。
对小学数学而言,数学思想方法主要在以下几个方面进行渗透:一、组合思想。组合思想是把所研究的对象进行合理的分组,并对可能出现的各种情况既不重复又不遗漏地一一求解。二、变换思想。变换思想是由一种形式转变为另一种形式的思想。如解方程中的同解变换,定律、公式中的命题等价变换,几何形体中的等积变换,理解数学问题中的逆向变换等等。三、数形结合思想。数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。四、化归思想。化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。此外,还有符号思想、对应思想、极限思想、集合思想等,在小学数学教学中都应注意有目的、有选择、适时地进行渗透。
三、小学数学思想和数学方法渗透的教学反思
重视基本数学知识和数学技能的教学,并务必使学生掌握这些基本知识和基本技能,这是数学思想和数学方法教学的基础和前提。著名数学家华罗庚说过:“学习数学最好到数学家的纸篓里找材料,不要只看书上的结论。”这就是说,对探索结论过程的数学思想方法学习,其重要性决不亚于结论本身。在教师引导下,通过问题和总结促使学生对掌握的基本知识和基本技能认识深化、内化,即对蕴于其中的数学思想、数学方法有所体会、有所领悟。许多教师往产生这样的困惑:题目讲得不少,但学生总是停留在模仿型解题的水平上,只要条件稍稍一变则不知所措,学生一直不能形成较强解决问题的能力。更谈不上创新能力的形成。究其原因就在于教师在教学中仅仅是就题论题,殊不知授之以“渔”比授之以“鱼”更为重要。因此,在数学问题的探索的教学中重要的是让学生真正领悟隐含于数学问题探索中的数学思想方法。使学生从中掌握关于数学思想方法方面的知识,并使这种“知识”消化吸收成具有“个性”的数学思想。逐步形成用数学思想方法指导思维活动,这样在遇到同类问题时才能胸有成竹,从容对待。数学思想、数学方法的教学是循环往复、螺旋上升的过程,往往是几种数学思想、数学方法交织在一起,在教学中依据具体情况在一段时间内再渗透、明确介绍或突出体现一种数学思想或数学方法,这样效果会更好。数学知识的学习要经过预习、听讲、复习、练习等才能掌握和巩固。数学思想、方法的形成同样有一个循序渐进的过程。只有经过反复训练才能使学生真正领会。另外,使学生形成自觉运用数学思想方法的意识,必须建立起学生自我的“数学思想方法系统”,这更需要一个反复训练、不断完善的过程。比如,运用类比的数学方法,在新概念提出、新知识点的学习过程中,可以使学生易于理解和掌握。如通过分数和百分数应用题有规律的对比板演,指导学生小结解答这类应用题的关键,找到具体数量的对应分率,从而使学生自己体验到对应思想和化归思想。其次要注意渗透的长期性,应该看到,对学生数学思想方法的渗透不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。数学思想方法必须经过循序渐进和反复训练,才能使学生真正地有所领悟。通过多次重复性的演示,使学生真正理解、掌握类比的数学方法。教学中要适时恰当地对数学方法给予提炼和概括,让学生有明确的印象。由于数学思想、方法分散在各个不同部分,而同一问题又可以用不同的数学思想、方法来解决。因此,教师的概括、分析是十分重要的。教师还要有意识地培养学生自我提炼、揣摩概括数学思想方法的能力,这样才能把数学思想、方法的教学落在实处。
数学思想方法贯穿在整个中学数学教材的知识点中,以内隐的方式溶于数学知识体系。要使学生把这种思想内化成自己的观点,应用它去解决问题,就要把各种知识所表现出来的数学思想适时作出归纳概括。概括数学思想方法要纳入教学计划,要有目的、有步骤地引导参与数学思想的提炼概括过程,特别是章节复习时在对知识复习的同时,将统领知识的数学思想方法概括出来,增强学生对数学思想的应用意识,从而有利于学生更透彻地理解所学的知识,提高独立分析、解决问题的能力。
总之,教学实践证明,加强数学思想方法的教学对于提高教学质量,改变重结论,轻过程,重知识、重形式,轻思想的现状,培养高素质人才有着深远而重大的现实意义。
参考文献:
[1] 陈祥彬.在小学数学教学中渗透数学思想方法[J].课程·教材·教法.2010(07)
[2] 李晓梅.关于在小学数学教学中发展学生主体性的思考[J].课程·教材·教法.2010(08)
[3] 李银银.小学高段“空间与图形”教学中数学思想渗透策略探讨[J].新课程(小学).2016(01)
[4] 李彩琴.小学数学教学中渗透数学思想方法的认识点滴[J].新课程(小学).2016(01)