孙争宇,顾丽红,李 林
少突胶质细胞体外培养方法的研究进展①
孙争宇,顾丽红,李 林
寻求纯度高、简便易行的体外培养少突胶质细胞的方法具有非常重要的应用价值。本文综述大鼠皮层胶质细胞混合培养、少突胶质前体细胞增殖纯化、少突胶质细胞诱导分化及细胞体系各发育分化阶段细胞表面抗原的鉴定等体外培养方法。
少突胶质细胞;少突胶质前体细胞;细胞培养;综述
少突胶质细胞(oligodendrocyte,OL)是中枢神经系统的髓鞘形成细胞,起源于胚胎神经管腹侧的神经上皮细胞,在胚胎发生过程中从运动神经元前体区(motor neuron progenitor domain, MNPD)迁移出[1],胚胎发生末期聚集于边缘区并开始分化;随着中枢神经系统的发育,逐步迁移到白质,并进一步增殖、分化;成熟的OL可包绕神经纤维的轴突并形成髓鞘,在促进神经元功能电位的正确快速传导和支持轴突存活中发挥着重要作用[2]。OL在发育过程中,大致经历了少突胶质祖细胞、少突胶质前体细胞(oligodendrocyte precursor cells,OPC)、未成熟OL和成熟OL几个阶段[3],其形态、功能和表达产物呈现连续渐变过程,各发育阶段之间没有严格界限。越来越多的研究表明,OL异常在中枢神经系统脱髓鞘病变[4]、神经元损伤[5]、精神疾病等的发病机制中起着重要作用[6-8]。OL可能成为逆转神经精神疾病(抑郁症、孤独症、精神分裂症等)认知障碍的潜在治疗靶点[9]。精神分裂症患者OL密度及数量下降,而且细胞内出现异染色质及异常线粒体聚集等凋亡现象[10]。
将体外培养的OL移植入髓鞘形成障碍或脱失的中枢神经系统内行细胞替代治疗[11],或应用一些药物促进髓鞘的形成和再生,有利于脱髓鞘病灶的修复以改善脑白质病变[12-13],是近年来的研究热点。而体外纯化和培养OL也是了解该细胞生长特性、对缺氧耐受性、某些特殊因子的表达及其内部信号传递、揭示髓鞘形成和再生机制等研究的重要前提[14]。寻求一种纯化度高、简便易行的培养OL方法,具有非常重要的应用价值。
大多数研究者选取出生后0~3 d的新生Sprague-Dawley大鼠[15-17],雌雄不限;也有研究者选取孕14~18 d的胎鼠[18],或出生后0~2 d新生C57B6小鼠[19]。OPC培养在种属之间的差异尚不十分清楚,小鼠OPC对胰酶消化较敏感,成活率较Sprague-Dawley大鼠低[20]。有研究表明[21],成年大鼠中枢神经系统中绝大部分为成熟OL,丧失迁移及增殖能力,但也存在OPC;而新生大鼠出生后约1周,OL即逐渐成熟。髓鞘化发生的高峰期约在哺乳期结束时,即出生后第3周,因此可采用72 h内的新生Sprague-Dawley大鼠皮层进行OL原代培养,且多采用出生24 h内的,这时处在前体细胞充分发育后,髓鞘形成活跃期之前。也有研究者取双侧视神经进行OL培养[22-23]。
在无菌条件下取大脑,解剖显微镜下剔除脑膜及血管,分离出大脑皮层是取材的关键步骤。原代细胞培养常用胰酶消化法结合物理吹打法获得单细胞悬液[24],但在实际操作过程中,可能因胰酶消化过度或吹打力度不均,导致细胞产量过低。胰蛋白酶的浓度多选取0.125%~0.25%[25],37℃孵育15~25 min,用胶质细胞基本培养液终止消化,如含10%胎牛血清的DMEM/F12培养基[26],或含15%胎牛血清的高糖DMEM培养基[27]。机械吹打时,有研究者采用平滑管口[28]或经火焰抛光的细头吸管[29]分层轻柔吹打,以达到离散细胞的目的,在很大程度上减少吹打所致的机械性损伤。制备成细胞数为5×106/ml的细胞悬液,种植于预先用0.1 mg/ml多聚赖氨酸包被的培养瓶中,置于37℃、5%CO2培养箱中,24 h后换全液,之后可每3天换半液或每隔1天换全液,培养7~8 d。
OPC增殖、发育分化和髓鞘形成过程受细胞内部性质、细胞生存时间周期和来源于其他细胞(神经元、间充质干细胞、施万细胞、心肌细胞等)信号分子等因素的影响[30]。混合胶质细胞生长7~8 d时可进行OPC的纯化[31]。有研究发现[32],小鼠OPC与心肌细胞共培养时,心肌细胞条件培养基中磷酸化的磷脂酰肌醇3激酶(phosphatidylinositol 3-kinase,PI3K)和细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)可以促进OPC的增殖,且共培养比OPC单独培养表现出更高的增殖能力。而将来源于外胚层神经嵴的间充质干细胞与OPC共培养,可以促进OPC的分化和成熟,能够增加OL的数量和突起长度[33]。脑微血管内皮细胞(microvascular endothelial cell, MVEC)能够减少OPC的凋亡[34]。MVEC条件培养液释放胞外囊泡可以促进OPC的增殖和迁移,促进轴突髓鞘修复。血小板源性生长因子(platelet-derived growth factor,PDGF)、碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)、神经营养因子3(neurotrophin 3,NT3)和胰岛素样生长因子1(insulin-like growth factor 1,IGF-1)等可促进OPC增殖[35-37]。甲状腺素、雌激素、孕激素、糖皮质激素、视黄酸以及细胞外基质相关分子等都对OPC的发育分化有重要作用,而外环境因素需通过调节细胞内部的因子来发挥作用[38]。有研究发现[39],P21激酶3(p21-activated kinase 3,PAK3)在OPC中高表达,可能是OPC分化的一个新的调节因子。在OPC培养过程中添加10 ng/ml bFGF,可明显提高OPC的产出率和纯度;更高浓度的bFGF则减弱其促增殖作用[40]。经β-淀粉样蛋白处理过的OL出现了细胞凋亡,可能是通过提高Dp5的表达、氧化应激等机制参与诱导OL的死亡[41]。
在OPC增殖、分离、接种、分化等培养基中加入相应的物质,可促进其增殖、分化。目前常用的培养基配方如下。①OPC混合培养基:DMEM/F12培养基+10%胎牛血清[42]。②OPC增殖培养基:DMEM/F12+1%N2+15%B104条件培养基[43];或DMEM/F12+10 ng/ml PDGF+10 ng/ml bFGF+0.5%胎牛血清[35]。③OPC分离培养基:DMEM/F12+0.01%EDTA+0.2 mg/ml DNA酶+5µg/ml胰岛素。④OPC接种培养基:50%OPC增殖培养基+50%混合培养基。⑤OPC纯化培养基:无糖DMEM+1%Lactate(0.5 mol/L)+1%N2+15%B104条件培养基。⑥OPC分化培养基:DMEM/F12+0.8µg/ml亚硒酸钠+ 16.1µg/ml腐胺+50µg/ml转铁蛋白+5µg/ml胰岛素+0.4µg/ml甲状腺素。
B104条件培养基具有促细胞增殖的效应[44],c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)通过磷酸化促进OPC的增殖,其作用与商品化生长因子(PDGF-AA、bFGF)的效应相似[45],应用B104培养基代替商品化的细胞生长因子,花费较低。进一步研究发现[46],B104条件培养基促进OPC增殖具有浓度依赖性特征。15%B104条件培养基具有最佳的促进OPC增殖效应,而更高浓度则抑制OPC增殖。可能是因为B104条件培养基是培养B104细胞的陈旧培养基,其中除含有有益于OPC增殖的物质外,也含有大量的细胞代谢废物。
有研究者通过神经细胞化学限定性培养基思路,列出了可用于OL体外培养的无血清培养基配方[47-48]。该培养基以DMEM和F12为基础,通过添加一系列维生素、激素及微量元素等成分而成[42]。但是该配方可能不是专门针对OL的体外生长,用这一配方培养神经细胞、星形胶质细胞,也会增殖和生长。
体外培养OL接种后,一般仍先用有血清培养液,在获得足够的细胞数量后,换为无血清培养液的化学条件培养基,可使体外培养条件下OPC定向分化为成熟OL,细胞形态呈现渐变过程。杨凯等[49]发现,DMEM/F12较DMEM/高糖培养基更适于OL培养,在一定范围内,获取的OL数量随细胞接种密度成梯度增多,接种密度在(4×104~8×104)/cm2范围时,有利于观察细胞生长情况。
OPC原代培养是一种共培养状态[50],和星形胶质细胞一起生长,需把握好细胞分离的时机。星形胶质细胞层可以主动分泌一些细胞因子,促进OPC的存活和增殖,为OPC的迁移和增殖提供良好的环境,且不抑制其分化[51]。根据星形胶质细胞和OL的生长时间差异、细胞生长方式及细胞对培养层黏附等特性的不同[52],星形胶质细胞贴壁更快且更紧密,可采用两次恒温摇床振荡分离纯化法、差速贴壁法、胰酶消化法,结合条件限定培养基培养,可获取并鉴定出高纯度的大鼠OL[53]。分离时间过早则存活能力差,分离时间过晚则影响OPC的分化。
体外纯化OPC,常用的方法包括植块培养法和分离细胞培养法。分离细胞培养法又因白质组织和灰质组织两种材料来源而分为密度梯度离心法[54]和恒温摇床处理法[55]两种。恒温摇床处理法分离OL的主要缺点是必须经过一定时间的原代培养期。
杨俊林等[16]利用细胞分层生长的特点和单克隆形成,简便地制备出高纯度的胶质限制前体细胞,分化成星形胶质细胞和OL,而未分化成神经元。段朝霞等[19]根据星形胶质细胞和OPC系生长时间的差异、细胞黏附特性的不同,通过振荡及差速贴壁法,结合添加N2、PDGF、bFGF的无血清OL定向培养基,成功获得高纯度的OPC,应用巨噬细胞移动抑制因子(macrophage migration inhibitory factor,MIF)促进OPC增殖。卢玉仙等[20]依据各种胶质细胞黏附性及生长时间的差异,通过机械振荡法和差速贴壁法,从原代培养中获得纯化的OPC,接种于含有PDGF、bFGF的培养液中观察其增殖情况,再以三碘甲状腺原氨酸和睫状神经营养因子定向诱导分化,发现OPC具有良好的增殖能力,沿着少突胶质谱系细胞定向分化,随有形态学及表面表达抗原的变化。与段朝霞等的研究具有一致性。有研究者提出改良化学分离传代法[56],采用EDTA化学分离为基础的机械振荡法获取OPC,并与传统的振荡分离法及单用化学分离法进行对比,发现采用EDTA化学分离为基础的机械振荡改良传代法能高效获取大量高纯度体外培养的OPC,所得的OPC纯度明显高于另外两种分离方法,数量显著多于传统的培养方法,且较其他如抗体免疫筛选法[57-58]简便、可靠。
发育过程中调控OPC分化的分子机制主要包括细胞骨架水平、转录水平、时空水平以及轴突水平等方面[59-60],胞内转录因子Sox10、SCIP、Krox24以及大量含螺旋-环-螺旋(helix-loop-helix,HLH)结构域的转录因子等发挥重要作用[61-62]。
OL的每个发育阶段都呈现出不同的形态变化,主要是从简单的双极状态向分支复杂的状态转变,表达不同的细胞表面抗原,通常采用细胞免疫荧光进行鉴定。免疫荧光特异性A2B5、PDGFR和NG2抗体标记OPC;特异性O1、O4、CNP抗体标记未成熟OL;髓鞘碱性蛋白(myelin basic protein,MBP)和髓鞘少突胶质细胞糖蛋白(myelin oligodendrocyte glycoprotein,MOG)抗体标记成熟OL[63];特异性胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)抗体标记星形胶质细胞[64-65]。
混合胶质细胞制备成单个细胞悬液适当稀释后,应用台盼蓝排除实验方法计数活细胞个数,计数时间为3 min,镜下观察死细胞被染成蓝色,活细胞为无色透明状。培养并分离纯化的OPC定向分化培养15 d后,细胞形态发生明显改变,突起增多,呈“分枝”或“蜘蛛网”状分布于胞体四周,95%左右的细胞成熟OL特异性抗体MBP和O4染色呈阳性。有研究应用恒温摇床结合无血清培养的方法纯化OL[54],Galc免疫细胞化学法鉴定OL,发现纯化后的OL胞体呈圆形或椭圆形,折光性强,突起少,阳性细胞胞浆和突起呈棕黄色,发现采用此种方法培养出的OL纯化度达95%。该方法耗材少,且方便简易。无血清化学条件培养基加入后3 d,相差显微镜下观察可见OL胞体增大,周围折光强,突起明显增多,相互之间连接成网;扫描电镜观察可见胞体边缘不规则,突起分支更加清晰,分支彼此呈三维立体交错,部分细小突起间可见膜片状结
构[66]。
OL异常在脱髓鞘疾病、神经元损伤、精神疾病等发病机制中的作用越来越受到重视。OL原代培养增殖、纯化和各分化阶段的鉴定仍是难点,需要不断优化培养条件,简化实验步骤,降低成本,寻求一种简便易行、经济有效的办法。在进行体外培养时,可根据研究目的和需要,摸索实验条件,添加多种不同浓度的营养因子,应用增殖、纯化、定向诱导等培养基,得到高产出率、高纯度的OL。
[1]O'Rourke M,Gasperini R,Young KM.Adult myelination: wrapping up neuronal plasticity[J].Neural Regener Res,2014, 9(13):1261-1264.
[2]Amaral AI,Tavares JM,Sonnewald U,et al.Oligodendrocytes: development,physiology and glucose metabolism[J].Adv Neurobiol,2016,13:275-294.
[3]El Waly B,Macchi M,Cayre M,et al.Oligodendrogenesis in the normal and pathological central nervous system[J].Front Neurosci,2014,8:145.
[4]Iijima K,Kurachi M,Shibasaki K,et al.Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions[J].J Neurochem, 2015,135(3):539-550.
[5]Takase H,Washida K,Hayakawa K,et al.Oligodendrogenesis after traumatic brain injury[J].Behav Brain Res,2016,11(8): 112-116.
[6]McKenzie IA,Ohayon D,Li H,et al.Motor skill learning requires active central myelination[J].Science,2014,346 (6207):318-322.
[7]Nave KA,Ehrenreich H.Myelination and oligodendrocyte functions in psychiatric diseases[J].JAMA Psychiatry,2014, 71(5):582-584.
[8]Barateiro A,Brites D,Fernandes A.Oligodendrocyte development and myelination in neurodevelopment:molecular mechanisms in health and disease[J].Curr Pharm Des,2016,22(6): 656-679.
[9]Takahashi N,Sakurai T,Davis KL,et al.Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia[J].Prog Neurobiol,2011,93(1):13-24.
[10]Mauney S,Pietersen CY,Sonntag KC,et al.Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia[J].Schizophr Res,2015,169(1-3):374-380.
[11]Gibson EM,Purger D,Mount CW,et al.Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain[J].Science,2014,344(6183):1252304.
[12]Bothwell M.Mechanisms and medicines for remyelination[J].Annu Rev Med,2017,68:431-443.
[13]Lourenço T,Grãos M.Modulation of oligodendrocyte differ-entiation by mechanotransduction[J].Front Cell Neurosci, 2016,29(10):277-285.
[14]Liu J,Dupree JL,Gacias M,et al.Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice[J].Neuroscience,2016,36(3): 957-962.
[15]Morrison BM,Lee Y,Rothstein JD.Oligodendroglia:metabolic supporters of axons[J].Trends Cell Biol,2013,23(12): 644-651.
[16]杨俊林,曹林,邱猛生.从小鼠大脑皮层制备高纯度胶质限制前体细胞[J].现代生物医学进展,2013,13(11):2057-2061.
[17]Azim K,Butt AM.GSK3-beta negatively regulates oligodendrocyte differentiation and myelination in vivo[J].Glia,2011, 59(4):540-553.
[18]Marsters CM,Rosin JM,Thornton HF,et al.Oligodendrocyte development in the embryonic tuberal hypothalamus and the influence ofAscl1[J].Neural Dev,2016,11(1):20-26.
[19]段朝霞,张洁元,陈魁君,等.少突胶质前体细胞的培养、鉴定及巨噬细胞移动抑制因子对其促增殖作用研究[J].中国医药导报,2012,9(35):52-54.
[20]卢玉仙,夏春林,高薇,等.少突胶质谱系细胞的生物学特性[J].解剖科学进展,2015,21(5):505-508.
[21]Chen CD,Sloane JA,Li H,et al.The anti-aging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS[J].J Neurosci,2013,33(5):1927-1939.
[22]王晓虹,王苏平,车菊华,等.大鼠视神经少突胶质细胞培养方法的改良[J].转化医学杂志,2014,3(6):330-346.
[23]Skaper SD.Culture of purified glial cell populations from optic nerve[J].Methods Mol Biol,2012,846:131-145.
[24]唐军,钟琳,姚裕家,等.SD大鼠少突胶质前体细胞系的分离、培养及鉴定[J].实用儿科临床杂志,2006,21(23): 1657-1659.
[25]Fancy SPJ,Baranzini SE,Zhao C,et al.Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS[J].Genes Dev,2009,23(13):1571-1585.
[26]徐思敏,周亮,沈颖.GSK3调控神经干细胞和少突胶质细胞前体细胞发育的研究进展[J].生理科学进展,2012,43(3): 238-241.
[27]Fancy SPJ,Harrington EP,Yuen TJ,et al.Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination[J].Nat Neurosci,2011,14(8):1009-1016.
[28]兴启,刘轩,杨丽华,等.高纯度少突胶质前体细胞改良培养方法的建立[J].上海交通大学学报(医学版),2010,30(11): 1444-1447.
[29]Gottle P,Sabo JK,Heinen A,et al.Oligodendroglial maturation is dependent on intracellular protein shuttling[J].Neuroscience,2015,35(3):906-919.
[30]Emery B.Regulation of oligodendrocyte differentiation and myelination[J].Science,2010,330(6005):779-782.
[31]Ming X,Chew LJ,Gallo V.Transgenic overexpression of Sox17 promotes oligodendrocyte development and attenuates demyelination[J].Neuroscience,2013,33(30):12528-12542.
[32]Kuroda M,Muramatsu R,Yamashita T.Cardiomyocyte-released factors stimulate oligodendrocyte precursor cells proliferation[J].Biochem Biophys Res Commun,2016,12(4):1-5.
[33]Zhang Z,Li Z,Deng W,et al.Ectoderm mesenchymal stem cells promote differentiation and maturation of oligodendrocyte precursor cells[J].Biochem Biophys Res Commun,2016, 480(4):727-733.
[34]Kurachi M,Mikuni M,Ishizaki Y.Extracellular vesicles from vascular endothelial cells promote survival,proliferation and motility of oligodendrocyte precursor cells[J].PLoS One, 2016,11(7):1-14.
[35]Deverman BE,Patterson PH.Exogenous leukemia inhibitory factor stimulates oligodendrocyte progenitor cell proliferation and enhances hippocampal remyelination[J].J Neurosci,2012, 32(6):2100-2109.
[36]Chen YJ,Zhang JX,Shen L,et al.Schwann cells induce proliferation and migration of oligodendrocyte precursor cells through secretion of PDGF-AA and FGF-2[J].Mol Neurosci, 2015,56(4):999-1008.
[37]Annenkov A,Rigby A,Amor S,et al.A chimeric receptor of the insulin-like growth factor receptor type 1(IGFR1)and a single chain antibody specific to myelinoligodendrocyteglycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyteprogenitors[J].Biochim Biophys Acta,2011,1813 (8):1428-1437.
[38]Xiong A,Kundu S,Forsberg M,et al.Heparanase confers a growth advantage to differentiating murine embryonic stem cells,and enhances oligodendrocyte formation[J].Matrix Biol, 2016,11(23):1-13.
[39]Renkilaraj MR,Baudouin L,Wells C,et al.The intellectual disability protein PAK3 regulates oligodendrocyte precursor cell differentiation[J].Neurobiol Dis,2017,98:137-148.
[40]阙海萍,赵沉浮,刘勇,等.一种分离培养少突胶质前体细胞的改进方法[J].神经解剖学杂志,2013,29(4):435-439.
[41]祁鑫洋,张志珺.β-淀粉样蛋白诱导的少突胶质细胞死亡[J].东南大学学报(医学版),2014,33(3):385-387.
[42]Yang J,Cheng X,Shen J,et al.A novel approach for amplification and purification of mouse oligodendrocyte progenitor cells[J].Front Cell Neurosci,2016,10:203-211.
[43]Kleinsimlinghaus K,Marx R,Serdar M,et al.Strategies for repair of white matter:influence of osmolarity and microgliaon proliferation and apoptosis of oligodendrocyte precursor cellsin different basal culture media[J].Front Cell Neurosci,2013, 7:277-283.
[44]Zhang JX,Feng YF,Qi Q,et al.JNK is necessary foroligodendrocyteprecursor cell proliferation induced by the conditioned medium from B104neuroblastoma cells[J].Mol Neurosci, 2014,52(2):269-276.
[45]Hu JG,Wu XJ,Feng YF,et al.PDGF-AA and bFGF mediate B104CM-induced proliferation of oligodendrocyte precursor cells[J].Int J Mol Med,2012,30(5):1113-1118.
[46]Hu JG,Wu XJ,Feng YF,et al.The molecular events involved in oligodendrocyte precursor cell proliferation induced by the conditioned medium from B104 neuroblastoma cells[J].Neurochem Res,2013,38(3):601-609.
[47]Yang N,Zuchero JB,Ahlenius H,et al.Generation of oligodendroglial cells by direct lineage conversion[J].Nat Biotechnol,2013,31(5):434-439.
[48]Zhu Q,Zhao X,Zheng K,et al.Genetic evidence that Nkx2.2 and PDGFRα are major determinants of the timing of oligodendrocyte differentiation in the developing CNS[J].Development,2014,141(3):548-555.
[49]杨凯,李一鹏,刘英富,等.大鼠皮质少突胶质细胞培养条件的优化[J].中国组织工程研究,2016,20(29):4328-4333.
[50]Clemente D,Ortega MC,Melero-Jerez C,et al.The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases[J].Front Cell Neurosci,2013,7:268-272.
[51]Haas C,Neuhuber B,Yamagami T,et al.Phenotypic analysis of astrocytes derived from glial restricted precursors and their impact on axon regeneration[J].Exp Neurol,2012,233(2): 717-732.
[52]Tanner DC,Cherry JD,Mayer-Pröschel M.Oligodendrocyte progenitors reversibly exit the cell cycle and give rise to astrocytes in response to interferon-γ[J].J Neurosci,2011,31(16): 6235-6246.
[53]White R,Krämer-Albers EM.Axon-glia interaction and membrane traffic in myelin formation[J].Front Cell Neurosci, 2014,7:284-290.
[54]Dincman TA,Beare JE,Ohri SS,et al.Isolation of cortical mouse oligodendrocyte precursor cells[J].J Neurosci Methods,2012,209(1):219-226.
[55]Niu J,Wang L,Liu S,et al.An efficient and economical culture approach for the enrichment of purified oligodendrocyte progenitor cells[J].Neurosci Methods,2012,209(1):241-249.
[56]陈婧,史明,王静,等.改良传代法获取大量高纯度大鼠少突胶质前体细胞[J].神经解剖学杂志,2014,30(2):141-145.
[57]Wang Y,Tan ZB,Qin LM,et al.Simplified protocol for isolation of multipotential NG2 cells from postnatal mouse[J].J Neurosci Methods,2013,219(2):252-261.
[58]李莹,富赛里,马政文.少突胶质前体细胞分离培养方法的改进及其谱系限定细胞体外分化模型的建立[J].上海交通大学学报,2011,31(10):1500-1504.
[59]Fitzpatrick JK,Anderson RC,McDermott KW.MicroRNA: Key regulators of oligodendrocyte development and pathobiology[J].Int J Biochem Cell Biol,2015,65:134-138.
[60]Pusic AD,Pusic KM,Clayton BLL,et al.IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination[J].J Neuroimmunol,2014,266(1-2):12-23.
[61]Pusic AD,Kraig RP.Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination[J].Glia,2014,62(2):284-299.
[62]Nicolay DJ,Doucette JR,Nazarali AJ.Transcriptional control of oligodendrogenesis[J].Glia,2007,55(13):1287-1299.
[63]Zuchero JB,Barres BA.Intrinsic and extrinsic control of oligodendrocyte development[J].Curr Opin Neurobiol,2013,23 (6):914-920.
[64]Sakry D,Trotter J.The role of the NG2 proteoglycan in OPC and CNS network function[J].Brain Res,2016,16(38): 161-166.
[65]Marinelli C,Bertalot T,Zusso M,et al.Systematic review of pharmacological properties of the oligodendrocyte lineage[J]. Front Cell Neurosci,2016,10(27):1-19.
[66]Wegener A,Deboux C,Bachelin C,et al.Gain of Olig2 functioninoligodendrocyteprogenitorspromotesremyelination[J].Brain,2015,138(Pt 1):120-135.
Progress in Methodology for Oligodendrocyte Culture in Vitro(review)
SUN Zheng-yu,GU Li-hong,LI Lin
Department of Pharmacology,Xuanwu Hospital of Capital Medical University;Beijing Engineering Research Center for Nerve System Drugs;Key Laboratory for Neurodegenerative Diseases of Ministry of Education,Beijing 100053, China
LI Lin.E-mail:linlixw@126.com
It is important to establish a simple method of culture in vitro to obtain purity oligodendrocyte.This paper introduced the researches about co-culture in vitro with rat cortical gliocyte,proliferation and differentiation of oligodendrocyte progenitor,differentiation of oligodendrocyte and identification of cell surface antigens at different stages of development.
oligodendrocyte;oligodendrocyte precursor cell;cell culture;review
R741
A
1006-9771(2017)05-0543-05
2017-01-17
2017-02-09)
10.3969/j.issn.1006-9771.2017.05.011
[本文著录格式]孙争宇,顾丽红,李林.少突胶质细胞体外培养方法的研究进展[J].中国康复理论与实践,2017,23(5): 543-547.
CITED AS:Sun ZY,Gu LH,Li L.Progress in methodology for oligodendrocyte culture in vitro(review)[J].Zhongguo Kangfu Lilun Yu Shijian,2017,23(5):543-547.
1.国家自然科学基金项目(No.81673406;No.81273498);2.北京市科技专项项目(No.Z131102002813066)。
首都医科大学宣武医院药物研究室,北京市神经药物工程技术研究中心,神经变性病教育部重点实验室,北京市100053。作者简介:孙争宇(1983-),女,汉族,河南郑州市人,博士研究生,主治医师,主要研究方向:神经药理学。通讯作者:李林,女,汉族,北京市人,教授,博士生研究生导师,主要研究方向:神经药理学。E-mail:linlixw@126.com。