彭卓颖,薛 婧,魏 强
(北京协和医学院比较医学中心,中国医学科学院医学实验动物研究所,卫生部人类疾病比较医学重点实验室,国家中医药管理局人类疾病动物模型三级实验室,新发再发传染病动物模型研究北京市重点实验室,北京 100021)
HIV-1病毒与浆细胞样树突状细胞的相互作用
彭卓颖,薛 婧,魏 强
(北京协和医学院比较医学中心,中国医学科学院医学实验动物研究所,卫生部人类疾病比较医学重点实验室,国家中医药管理局人类疾病动物模型三级实验室,新发再发传染病动物模型研究北京市重点实验室,北京 100021)
浆细胞样树突状细胞(plamcytoid dendritic cells,pDCs)是一类可以产生大量I型干扰素(interferon α,IFN-α)的固有免疫细胞。在人类免疫缺陷病毒(human immunodeficiency virus,HIV)急性感染期,pDCs通过分泌IFN-α抑制病毒复制并激活适应性免疫应答。在HIV慢性感染期,pDCs通过调节免疫细胞发挥免疫抑制的作用,不断破坏淋巴细胞,从而造成免疫系统崩溃,促进疾病进程。本文将就HIV-1与pDCs之间的相互作用做一综述。
浆细胞样树突状细胞;人类免疫缺陷病毒;I型干扰素
获得性免疫缺陷综合征(acquired immunodeficiency syndrome,AIDS)是人类免疫缺陷病毒(human immunodeficiency virus,HIV)感染机体后引发的全身性疾病,其最大特点是破坏适应性免疫系统,这也是疾病治疗过程中的难点所在。天然免疫系统是机体抵抗病原体入侵的首要屏障,在病原体感染的早期阶段即可对其进行控制和清除。树突状细胞(dendritic cells,DCs)是一类特殊的固有免疫细胞,是HIV-1在粘膜感染途径中首先接触到的细胞,在HIV-1传播过程中起关键作用[1]。近年来,浆细胞样树突状细胞(plamcytoid dendritic cells,pDCs)的功能在艾滋病领域受到广泛关注,在HIV-1感染过程中,pDCs可产生大量的IFN-α,IFN-α是重要的免疫调节因子,在抗感染和抗肿瘤免疫中发挥重要作用,对pDCs功能的进一步研究可能会给AIDS治疗带来新思路。
pDCs是1958年发现的一种具有浆细胞形态的细胞[2],大小介于淋巴细胞和单核细胞之间[3],主要来源于骨髓,可存在于血液循环中,也可通过趋化因子的作用迁移到淋巴组织(如扁桃体、脾脏、胸腺、粘膜相关淋巴组织等)及存在炎症的部位,主要相关的趋化因子受体为CCR1、CCR5、CXCR3、CXCR4和CCR7[4]。pDCs在外周血单个核细胞中所占的比例较小(0.2%~0.8%),主要表面分子有血液树突状细胞抗原2(BDCA2)、血液树突状细胞抗原4(BDCA4)、IL-3Rα(CD123)、转录因子E2-2和免疫球蛋白样转录本7(ILT-7),不表达T细胞(CD3)、B细胞(CD19、CD20)和骨髓细胞(CD13、CD14、CD33)等特有表面分子,所以pDCs的表型为CD4+CD45RA+CD123+CD11c,通过该表型可以将pDCs与骨髓来源的CD11c+DCs细胞区分开[5]。
pDCs的内体中选择性高表达病原模式识别分子TLR7和TLR9,这两种TLR可通过识别单链RNA或富含未甲基化CpG的DNA发挥作用[6,7];TLR7直接刺激pDCs分泌IFN-α的能力较弱,但它对pDCs表面分子的影响较大,尤其可以显著降低BDCA2(CD303)的表达,BDCA2对IFN-α的产生具有抑制作用[8];TLR9主要与富含未甲基化CpG的DNA相互作用而发挥功能,但不同的CpG发挥的作用也有所不同,如CpG A可通过激活TLR9诱导pDCs大量释放IFN-α,CpG B可促进pDCs的表面共刺激分子(CD80、CD86)及抗原提呈分子(CD83)的表达[5]。
pDCs被HIV-1感染后释放出具有感染性的病毒颗粒[9],并且pDCs可将病毒传递给CD4 T细胞,从而促进HIV-1对机体的感染[10],但这一过程可被中和抗体阻断[11]。HIV-1在pDCs内的复制能力较差,这主要与多种宿主限制因子有关,例如SAMHD1[12],当HIV-1感染pDCs后细胞内SAMHD1的表达量会有一定程度的降低,但是当pDCs与T细胞共培养时SAMHD1的表达量则出现显著下降,因此增强了HIV-1的复制,促进pDCs成熟及IFN-α的释放[13]。虽然HIV-1激活pDCs后可释放大量IFN-α,但是HIV-1不能促使pDCs完全成熟,只是在一定程度上上调共刺激分子的表达和炎性细胞因子的分泌,使得pDCs的抗原提呈作用较弱[14,11],这可能与HIV-1通过初级内体进入pDCs有关,这种感染方式虽然可以介导较强的IFN-α分泌信号,但对pDCs的促成熟作用较弱,且导致NF-κB依赖性的炎性细胞因子的释放相对较低[15]。
pDCs暴露于活的或是已灭活的HIV-1都可以释放大量IFN-α[15],但是当其暴露于包膜有缺陷的HIV-1则无法被刺激产生大量IFN-α,这是因为IFN-α的产生有赖于gp160与pDCs表达的CD4分子相结合[16,17]。最近研究表明,HIV-1诱导pDCs激活的过程依赖于Env对CD4分子受体的高亲和力,而HIV-1的Nef蛋白功能的异常可导致CD4分子的下调,这也可能与病毒膜表面gp160的表达相关[18]。
在HIV-1急性感染期,血液循环中pDCs的数量会显著下降[19],这可能是细胞被删除或迁移到淋巴组织的结果。研究发现,在HIV-1感染过程中,血液中pDCs的肠道归巢标记分子(α4β7)表达上调,随后pDCs会迁移到肠道粘膜[20,21],并且发现pDCs向肠道的迁移与循环中CD4 T和CD8 T细胞的Ki67与HLA-DR的表达上调有关,与病毒复制无关[22];pDCs可在此过程中迁移并积累于淋巴结(lymph nodes,LNs),通过释放大量IFN-α调节免疫反应[23,24];pDCs还可迁移到脾,但此处的pDCs并不是主要的IFN-α产生细胞[25]。
目前有多种人源化小鼠模型应用于HIV-1感染的研究,如NOD-scid小鼠、NOG小鼠和DKO小鼠等[26,27],其中人源化DKO小鼠的使用更为普遍,HIV-1感染人源化DKO小鼠后,可有效的感染并激活骨髓和外周淋巴器官中的pDCs[27],用特异性单克隆抗体BDCA2(CD303)删除人源化DKO小鼠体内的pDCs后,再用HIV-1对小鼠进行感染,发现无法诱导IFN-α的产生和I型干扰素刺激基因(type I interferon-stimulated genes,ISGs)的表达,并且淋巴器官中T细胞死亡率降低,HIV-1病毒的复制明显增加[28],这说明pDCs所释放的IFN-α在HIV-1感染中发挥重要作用。
3.1 IFN-α与艾滋病发病密切相关
猴免疫缺陷病毒(simian immunodeficiency virus,SIV)的天然宿主在急性感染期会快速产生大量IFN-α,但在慢性感染阶段这种反应出现明显下调,从而抑制了疾病进展[29]。同样当SIV感染其它致病性宿主时,无论是疾病长期不进展者还是疾病进展者,在急性感染期同样会有大量IFN-α的产生,但在疾病长期不进展者的慢性感染期其IFN-α分泌会得到控制,而在疾病进展者的慢性感染期其IFN-α依旧持续性产生,由此表明疾病进程与IFN-α的产生相关,IFN-α的持续性产生可导致慢性免疫的激活[30,31],进而促进CD4 T细胞消耗并破坏免疫系统,最终发展为AIDS[32]。还有研究证明,在HIV-1感染过程中不同性别患者的发病过程有显著差异,与男性患者相比,女性患者的病毒载量普遍较低,但是疾病进程较快,这与女性患者在慢性感染期中较高水平的IFN-α呈正相关[33]。
3.2 IFN-α的双重作用
3.2.1 抑制HIV-1的感染及复制:IFN-α一方面通过促进细胞抗病毒效应因子的产生而抑制HIV-1的感染和复制[34],另一方面它还可通过诱导靶细胞内具有抗病毒作用的干扰素效应基因家族(ISGs)的表达而增强细胞抵抗病毒感染的能力[35]。ISGs的上调既可限制感染细胞中病毒的复制,又可使未感染的旁观者细胞进入抗病毒状态,从而降低被感染的风险[36]。而且ISGs中的IP-10可预测CD4 T细胞数量的变化和T细胞的激活情况,并且与CD4 T细胞数量的变化和病毒血症水平相比,血浆中IP-10的水平更能预测疾病的进展情况[37],在pDCs的抗病毒过程中起关键作用[38]。
3.2.2 促进对免疫系统的破坏:尽管pDCs的抗原提呈能力较弱,但它能通过TLR通路激活抗原提呈作用,产生获得性免疫反应;它也可以通过IDO、ICOSL和PD-L1等激活抗原提呈作用诱导免疫耐受的产生[39]。在不同条件刺激下,pDCs会引起初始辅助性T细胞的不同极化。Th17主要通过分泌IL-17发挥维持粘膜屏障功能的完整,该细胞缺失会引发细菌移位和持续性的炎症反应,促进免疫系统的激活[40];Treg具有抑制其它T细胞活化的功能,在维持免疫耐受、抑制过度炎症反应和免疫病理方面发挥重要作用[41]。暴露于HIV-1的pDCs可抑制Th17的产生,但可促使初始CD4 T细胞向Treg细胞转化,这个过程主要依赖于pDCs表达的吲哚-2,3-双加氧酶(indolemine 2,3 dioxygenase,IDO)对色氨酸新陈代谢的调节作用[40,42,43]。HIV-1感染可促进pDCs对IDO的表达,使TH17与Treg的比率降低,这对HIV-1疾病进程中免疫系统的激活有抑制作用。pDCs可以通过对IFN-α的分泌和较弱的抗原提呈能力促进免疫系统的激活[42]。在上述两种作用的平衡过程中机体进入慢性免疫激活状态,使得免疫系统持续性被破坏,机体对机会性感染的防御能力降低,进而促进疾病的进展[40]。
IFN-α还可促使靶细胞释放趋化因子,并在趋化因子的作用下使靶细胞向病毒复制的场所迁移,使得病毒趁机在机体内建立起系统性感染[44]。在感染过程中,pDCs可通过上调肿瘤坏死因子相关凋亡配体(TNF-related apoptosis-inducing ligand,TRAIL)和Bak的表达而促进CD4 T细胞的凋亡[45,46],而且高水平的IFN-α还会诱导胸腺内细胞缺陷并干扰T细胞选择[47],并促进HIV-1诱导第三群固有淋巴细胞(group 3 innate lymphoid cell,ILC3)凋亡[48]。因此,IFN-α在HIV-1感染机体过程中可起到两种截然不同的作用,既可抑制HIV-1病毒的感染和复制,又可促进HIV-1诱导的T细胞凋亡[28],给免疫系统带来损害。
在HIV-1急性感染期,我们可以充分利用IFN-α的抗病毒作用,比如可将CpG作为接种疫苗时的辅助药物,促进IFN-α的释放,增强对HIV-1复制的抑制作用,诱导较强的T细胞免疫反应,这将有利于对疾病进展的控制[49]。在HIV-1慢性感染期,我们应抑制pDCs的持续性激活和IFN-α的产生,比如通过抑制gp120与CD4之间的相互作用[50,51],或者通过封闭TLR7和TLR9而抑制pDCs的激活,但是有研究发现TLR7和TLR9的封闭对血浆中IFN-α的分泌和ISGs的表达、病毒载量和T细胞激活都没有明显影响,这可能与封闭的效果有关,也可能是因为存在其它可以分泌IFN-α的细胞,或者在早期感染中pDCs的激活和IFN-α的释放并不是促进免疫激活的主要因素[52]。
pDCs与HIV-1的相互作用过程十分复杂:一方面pDCs可通过分泌大量的IFN-α起到抗病毒作用;另一方面pDCs又会产生对机体不利的影响:pDCs既可通过分泌IFN-α激活机体免疫反应,又可通过分泌IDO诱导Treg产生和Th17降低,最终引起慢性免疫炎症反应,破坏机体免疫系统,促进了疾病的进展。因此,我们应利用pDCs的特点,寻找既可以增强HIV-1病毒特异性的适应性免疫应答,又可以抑制慢性免疫反应激活的方法,从而发现抑制HIV-1传播、调节适应性免疫的新途径。
[1] Borrow P. Innate immunity in acute HIV-1 infection [J]. Curr Opin HIV AIDS, 2011, 6(5): 353-363.
[2] Lennert K, Remmele W. Karyometric research on lymph node cells in man. I. Germinoblasts, lymphoblasts & lymphocyte [J]. Acta Haematol, 1958, 19(2): 99-113.
[3] Soumelis V, Liu YJ. From plasmacytoid to dendritic cell: morphological and functional switches during plasmacytoid pre-dendritic cell differentiation [J]. Eur J Immunol, 2006, 36(9): 2286-2292.
[4] Yoneyama H, Matsuno K, Zhang Y, et al. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules [J]. Int Immunol, 2004, 16(7): 915-928.
[5] Zheng Z, Fu SW. Plasmacytoid dendritic cells act as the most competent cell type in linking antiviral innate and adaptive immune responses[J]. Cell Mol Imunol, 2005, 2(6): 411-417.
[6] Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8 [J]. Science, 2004, 303(5663): 1526-1529.
[7] Wagner H. Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity [J]. Curr Opin Microbiol, 2002, 5(1): 62-69.
[8] Kaushik S, Teque F, Patel M, et al. Plasmacytoid dendritic cell number and responses to Toll-like receptor 7 and 9 agonists vary in HIV Type 1-infected individuals in relation to clinical state [J]. AIDS Res Hum Retroviruses, 2013, 29(3): 501-510.
[9] Patterson S, Rae A, Hockey N, et al. Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus [J]. J Virol, 2001, 75(14): 6710-6713.
[10] Groot F, van Capel T M, Kapsenberg M L, et al. Opposing roles of blood myeloid and plasmacytoid dendritic cells in HIV-1 infection of T cells: transmission facilitation versus replication inhibition [J]. Blood, 2006, 108(6): 1957-1964.
[11] Lederle A, Su B, Holl V, et al. Neutralizing antibodies inhibit HIV-1 infection of plasmacytoid dendritic cells by an FcγRIIa independent mechanism and do not diminish cytokines production [J]. Sci Rep, 2014, 4:5845-5845.
[12] Bloch N, O’Brien M, Norton T D, et al. HIV type 1 infection of plasmacytoid and myeloid dendritic cells is restricted by high levels of SAMHD1 and cannot be counteracted by Vpx [J]. AIDS Res Hum Retroviruses, 2014, 30(2): 195-203.
[13] Su B, Lederle A, Laumond G, et al. Broadly neutralizing antibody VRC01 prevents HIV-1 transmission from plasmacytoid dendritic cells to CD4 T lymphocytes [J]. J Virol, 2014, 88(18): 10975-10981.
[14] Smed-Sörensen A, Loré K, Vasudevan J, et al. Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells [J]. J Virol, 2005, 79(14): 8861-8869.
[15] O’Brien M, Manches O, Sabado R L, et al. Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-α-producing and partially matured phenotype [J]. J Clin Invest, 2011, 121(3): 1088-1101.
[16] Beignon AS, McKenna K, Skoberne M, et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions [J]. J Clin Invest, 2005, 115(11): 3265-3275.
[17] Haupt S, Donhauser N, Chaipan C, et al. CD4 binding affinity determines human immunodeficiency virus type 1-induced alpha interferon production in plasmacytoid dendritic cells [J]. J Virol, 2008, 82(17): 8900-8905.
[18] Reszka-Blanco N J, Sivaraman V, Zhang L, et al. HIV-1 env and nef cooperatively contribute to plasmacytoid dendritic cell activation via CD4-dependent mechanisms [J]. J Virol, 2015, 89(15): 7604-7611.
[19] Sabado RL, O’Brien M, Subedi A, et al. Evidence of dysregulation of dendritic cells in primary HIV infection [J]. Blood, 2010, 116(19): 3839-3852.
[20] Reeves RK, Evans TI, Gillis J, et al. SIV infection induces accumulation of plasmacytoid dendritic cells in the gut mucosa [J]. J Infect Dis, 2012, 206(9): 1462-1468.
[21] Kwa S, Kannanganat S, Nigam P, et al. Plasmacytoid dendritic cells are recruited to the colorectum and contribute to immune activation during pathogenic SIV infection in rhesus macaques [J]. Blood, 2011, 118(10): 2763-2773.
[22] Li H, Goepfert P, Reeves RK. Short communication: plasmacytoid dendritic cells from HIV-1 elite controllers maintain a gut-homing phenotype associated with immune activation [J]. AIDS Res Hum Retroviruses, 2014, 30(12): 1213-1215.
[23] Brown KN, Wijewardana V, Liu X, et al. Rapid influx and death of plasmacytoid dendritic cells in lymph nodes mediate depletion in acute simian immunodeficiency virus infection [J]. PLoS Pathogens, 2009, 5(5): 4713-4715.
[24] Lehmann C, Lafferty M, Garzinodemo A,etal. Plasmacytoid dendritic cells accumulate and secrete interferon alpha in lymph nodes of HIV-1 patients [J]. PLoS One, 2010, 5(6): 600-603.
[25] Nascimbeni M, Perié L, Chorro L, et al. Plasmacytoid dendritic cells accumulate in spleens from chronically HIV-infected patients but barely participate in interferon-αlpha expression [J]. Blood, 2009, 113(24): 6112-6119.
[26] Koyanagi Y. HIV-1感染的小动物模型 [C]. 中国实验动物学报, 2005, 13(S1): 13-14.
[27] Zhang L, Jiang Q, Li G, et al. Efficient infection, activation, and impairment of pDCs in the BM and peripheral lymphoid organs during early HIV-1 infection in humanized rag2-/-γ C-/-mice in vivo [J]. Blood, 2011, 117(23): 6184-6192.
[28] Li G, Cheng M, Nunoya J, et al. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice[J]. PLoS Pathogens, 2014, 10(7): 295-295.
[29] Harris LD, Tabb B, Sodora DL, et al. Downregulation of robust acute type I interferon responses distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection of natural hosts from pathogenic SIV infection of rhesus macaques [J]. J Virol, 2010, 84(15): 7886-7891.
[30] Hyrcza MD, Kovacs C, Loutfy M, et al. Distinct transcriptional profiles in ex vivo CD4+and CD8+T cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional changes in CD8+T cells [J]. J Virol, 2007, 81(7): 3477-3486.
[31] Campillo-Gimenez L, Laforge M, Fay M, et al. Nonpathogenesis of simian immunodeficiency virus infection is associated with reduced inflammation and recruitment of plasmacytoid dendritic cells to lymph nodes, not to lack of an interferon type I response, during the acute phase [J]. J Virol, 2010, 84(4): 1838-1846.
[32] Jacquelin B, Mayau V, Targat B, et al. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response [J]. J Clin Invest, 2009, 119(12): 3544-3555.
[33] Meier A, Chang JJ, Chan E S, et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1 [J]. Nat Med, 2009, 15(8): 955-959.
[34] Neff H, Bove FJ, Robinson EJ. Alpha interferon-induced antiretroviral activities: restriction of viral nucleic acid synthesis and progeny virion production in human immunodeficiency virus type 1-infected monocytes [J]. J Virol, 1994, 68(11): 7559-7565.
[35] Audigé A, Urosevic M, Schlaepfer E, et al. Anti-HIV state but not apoptosis depends on IFN signature in CD4+T cells[J]. J Immunol, 2006, 177(9): 6227-6237.
[36] Yan N, Chen ZJ. Intrinsic antiviral immunity [J]. Nat Immunol, 2012, 13(3): 214-222.
[37] Liovat AS, Rey-Cuillé MA, Lécuroux C, et al. Acute plasma biomarkers of T cell activation set-point levels and of disease progression in HIV-1 infection [J]. PLoS One, 2012, 7(10): e46143.
[38] Fentonmay AE, Dibben O, Emmerich T, et al. Relative resistance of HIV-1 founder viruses to control by interferon-alpha [J]. Retrovirology, 2013, 10(1): 1-18.
[39] Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells [J]. Nat Rev Immunol, 2015, 15(8): 471-485.
[40] Favre D, Mold J, Hunt PW, et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease [J]. Sci Transl Med, 2010, 2(32): 32ra36.
[41] 何维. 医学免疫学[M]. 北京,人民卫生出版社,2005: 190.
[42] Miller E, Bhardwaj N. Dendritic cell dysregulation during HIV-1 infection [J]. Immunol Rev, 2013, 254(1): 170-189.
[43] Manches O, Munn D, Fallahi A, et al. HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism [J]. Retrovirology, 2009, 118(3): 3431-3439.
[44] Li Q, Estes JD, Schlievert PM, et al. Glycerol monolaurate prevents mucosal SIV transmission [J]. Nature, 2009, 458(7241): 1034-1038.
[45] Herbeuval JP, Nilsson J, Boasso A, et al. HAART reduces death ligand but not death receptors in lymphoid tissue of HIV-infected patients and simian immunodeficiency virus-infected macaques [J]. AIDS, 2009, 23(1): 35-40.
[46] Fraietta JA, Mueller YM, Yang G, et al. Type I interferon upregulates Bak and contributes to T cell loss during human immunodeficiency virus (HIV) infection [J]. PLoS Pathogens, 2013, 9(10): 623-626.
[47] Keir ME, Rosenberg MG, Sandberg JK, et al. Generation of CD3+CD8lowthymocytes in the HIV type 1-infected thymus [J]. J Immunol, 2002, 169(5): 2788-2796.
[48] Zhang Z, Cheng L, Zhao J, et al. Plasmacytoid dendritic cells promote HIV-1-induced group 3 innate lymphoid cell depletion [J]. J Clin Invest, 2015, 125(9): 3692-3703.
[49] Gurney KB, Colantonio AD, Blom B, et al. Endogenous IFN-alpha production by plasmacytoid dendritic cells exerts an antiviral effect on thymic HIV-1 infection [J]. J Immunol, 2004, 173(12): 7269-7276.
[50] Herbeuval JP, Shearer GM. Are blockers of gp120/CD4 interaction effective inhibitors of HIV-1 immunopathogenesis? [J]. AIDS Rev, 2006, 8(1): 3-8.
[51] Herbeuval JP, Hardy AW, Boasso A, et al. Regulation of TNF-related apoptosis-inducing ligand on primary CD4+T cells by HIV-1: role of type I IFN-producing plasmacytoid dendritic cells [J]. Proc Natl Acad Sci U S A, 2005, 102(39): 13974-13979.
[52] Kader M, Smith A P, Guiducci C,etal. Blocking TLR7- and TLR9-mediated IFN-α production by plasmacytoid dendritic cells does not diminish immune activation in early SIV infection [J]. PLoS Pathogens, 2013, 9(7): e1003530.
Interaction of HIV-1 and plasmacytoid dendritic cells
PENG Zhuo-ying,XUE Jing,WEI Qiang
(Comparative Medicine Center, Peking Union College (PUMC) & Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS); Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Key Laboratory of Human Diseases Animal Models, State administration of Traditional Chinese medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing 100021, China)
Plasmacytoid dendritic cells (pDCs) as innate immune cells can produce a large amount of interferon-alpha (IFN-α). During the stage of acute human immunodeficiency virus (HIV) infection, pDCs can inhibit HIV replication by releasing IFN-α and activating adaptive immune responses. In the stage of chronic HIV infection, pDCs play a role in immune suppression by regulating immunocytes and damage of the immune system by depletion of the lymphocytes. Finally, pDCs have influence on the disease progression of acquired immune deficiency syndrome (AIDS).
plasmacytoid dendritic cells; HIV; type I interferon
国家自然科学基金(青年科学基金项目,81301437),科技部重大专项(2014ZX10001001-001-004,2014ZX10001001-002-006)。
彭卓颖,女,硕士研究生,从事实验动物病毒学研究工作,E-mail:18810963239@163.com。
魏强,教授,博士导师,研究方向:实验动物病毒学,E-mail:weiqiang@cnilas.pumc.edu.cn。
综述与专论
R-33
A
1671-7856(2017) 06-0077-05
10.3969.j.issn.1671-7856. 2017.06.016
2016-11-09