黄 伟,任晓辉,林 松
(首都医科大学附属北京天坛医院神经外科,北京100050)
磁共振灌注成像在胶质瘤复发与放射性坏死鉴别诊断中的应用
黄 伟,任晓辉,林 松
(首都医科大学附属北京天坛医院神经外科,北京100050)
随着放化疗成为胶质瘤标准治疗的一部分,放射性坏死成为了临床医生需要处理的棘手问题.放射性坏死与胶质瘤复发在增强核磁影像中均表现为不均匀增强的病灶,因此鉴别困难.随着影像学的发展,影像技术的涌现,给两者的鉴别提供了多种途径.本文就磁共振灌注成像在脑胶质瘤复发与放射性坏死鉴别诊断进行综述.
胶质瘤;复发;放射性坏死;磁共振灌注成像
胶质瘤是起源于神经上皮组织的肿瘤统称,是颅内最常见的恶性肿瘤,超过颅内原发恶性肿瘤的50%[1],包括少突胶质细胞瘤、星形细胞瘤、胶质母细胞瘤、髓母细胞瘤等.按照世界卫生组织(WHO)分级系统分为Ⅰ~Ⅳ级,其中Ⅲ级和Ⅳ级胶质瘤称为恶性胶质瘤.胶质瘤的标准治疗是保护功能的前提下最大范围的肿瘤组织切除及术后的辅助治疗,即放疗和化疗.放疗导致的放射性损伤在核磁影像中呈现为异常强化灶,表现与复发胶质瘤类似,鉴别非常困难.
磁共振灌注成像(perfusion⁃weighted imaging,PWI)是反映组织微血管分布和血流灌注情况的一种功能性成像方法,能提供组织血流动力学信息,具有高空间分辨率和时间分辨率.近些年在临床上广泛应用于胶质瘤诊断和鉴别诊断[2-5].
磁共振灌注加权成像其常用序列包括:T2加权磁敏感动态增强(dynamic susceptibility contrast,DSC)磁共振成像、T1加权动态增强 (dynamic con⁃trast enhancement,DCE)磁共振成像和动脉自旋标记增强(arterial spin labeling,ASL)磁共振成像.DSC、DCE需要注射外源性对比剂,而ASL则无需注射外源性对比剂.脑肿瘤的PWI多采用DSC法.其方法是静脉注顺磁性对比剂后,对比剂在首过脑组织微循环过程中引起局部磁场的短暂变化导致图像上的信号强度下降[6].信号下降的程度与局部脑血流量和对比剂浓度呈正比.通过测量信号的变化可获得时间⁃信号强度曲线,并可进一步计算相对脑血容量(relative cerebral blood volume,rCBV)、相对脑血流量(relative cerebral blood flow,rCBF)、相对平均通过时间(relative mean transit time,rMTT)等血流动力学参数.
血管内皮生长因子(vascular endothelial growth factor,VEGF)是目前最重要的血管生长刺激因子,而胶质瘤的血管内皮生长因子往往高表达[7],因此,胶质瘤血管众多,血供丰富.但其血管结构与正常组织血管结构具有显著区别.胶质瘤新生血管不仅密度大,而且血管结构不成熟缺乏周围平滑肌层和外皮层,基底膜不完整,肿瘤区域血脑屏障(blood brain barrier,BBB)结构和功能严重破坏,因此胶质瘤血管的通透性较高[8-9].当肿瘤复发时,患者症状往往明显,出现恶心呕吐、癫痫发作等,磁共振影像表现为不均一的增强病灶,且病变血管众多,血供丰富,血流量大.
放射性坏死是放射治疗严重的并发症之一,它既可以是无症状的,也可以是有症状的,比如头疼、神经功能障碍等,临床上难以诊断,影响早期诊断和治疗.放射治疗既可产生即刻的组织损伤,亦可导致延迟的组织损伤[10].急性损伤一般发生于照射后数天至数周,可能由辐射诱导的内皮细胞凋亡引起,导致BBB的破坏和肿瘤周围组织水肿.而内皮重塑的慢性缺氧加剧放射性损伤,进一步导致放射性坏死的微环境变化.BBB的分解也可能增强化疗药物(如替莫唑胺,TMZ)的功效,造成周围组织损伤的意外后果.这些改变引起造影剂容易通过血脑屏障,出现类似肿瘤复发的进展性病灶.但这种病灶往往血管稀少,血流量低.
有文献指出,放射性坏死的发生率为 3%~24%[11-12],且MGMT突变、替莫唑胺化疗药物的应用可能增加其发生率[13-14].Na等[15]发现脑组织的耐受性放射剂量为45~51 Gy,并且高剂量可增加放射性坏死的风险,潜伏期也明显缩短.
PWI能反应组织微循环的分布及血流灌注情况,评价局部组织活力和功能.最常用的参数是rCBV和rCBF.胶质瘤血管丰富,细胞正常活跃,代谢旺盛,rCBV和rCBF值往往比放射性坏死高.Kong等[16]认为rCBV超过1.47肿瘤进展可能性大.Sugahara等[17]通过20例患者的回顾性研究发现,rCBV<0.6意味着放射性坏死,rCBV>2.6代表肿瘤复发.王玉林等[18]研究发现,rCBV比值≤0.77时,诊断放射性坏死的敏感度为100%,当rCBV比值≥2.44时,诊断胶质瘤复发的特异性为100%.Bobek⁃Billewicz等[19]通过将CBV标准化(即rCBV=CBV患侧/CBV健侧)获取rCBV阈值,当rCBVmax>1.7或平均rCBVmean>1.25判定为肿瘤复发,最大rCBVmax<1.0或平均rCBVmean<0.5判定为放射性损伤.国内外研究众多,但rCBV具体的阈值界定还有待进一步研究.不同研究表明,PWI在鉴别胶质瘤复发与放射性坏死的特异性为90%~100%,敏感性为50.0%~91.7%.
除了PWI,还有多种成像技术应用于鉴别放射性坏死与复发中,如波谱成像(MR spectroscopy,MRS)、弥散加权成像(diffusion weighted imaging,DWI)、灌注成像(perfusion weighted imaging,PWI)、正电子发射计算机断层显像(positron emission tomo⁃graphy,PET)等[20].MRS通过定量检测脑内特定化合物含量而反映局部代谢状况和生化指标.肿瘤复发时,胆碱(Cho)/N⁃乙酰天门冬氨酸(NAA)、Cho/肌酸(Cr)比值明显升高.DWI是以图像形式显示水分子布朗运动,能够提供脑组织结构完整性的部分信息.肿瘤复发时,水分子弥散受限,表观弥散系数(apparent diffusion coefficient,ADC)降低,呈现高信号.PWI反映局部组织血流灌注情况,肿瘤血供丰富,rCBV、rCBF等升高.PET⁃CT可提供病灶详尽的功能与代谢等分子信息,肿瘤复发较放射性坏死代谢高.每种技术反映病变的特性不一,各有其优势.但单个影像诊断区分放射性坏死及肿瘤复发仍然具有挑战性,灵活使用多种影像学资料综合诊断能提高诊断的准确性.
Guzmán⁃De⁃Villoria等[21]比较颅脑原发肿瘤的PWI、DWI、MRS表现,发现高级别肿瘤rCBV、NAA/Cr、Cho/Cr值较低级别肿瘤高,ADC值比低级别肿瘤低.Matsusue等[22]通过分析20例胶质瘤患者的影像学资料发现,ADC比值<1.30时,鉴别肿瘤复发与放射性坏死的精确度为86.7%;当rCBV<2.10时,鉴别精确度也为86.7%;当Cho/Cr>1.29且Cho/NAA>1.06时,诊断的精确度为84.6%.当联合诊断时精确度可达到93.3%,比单独诊断精确度明显提高,因此他们也认为联合多种核磁影像能提高诊断的准确性.
随着胶质瘤术后放疗的广泛应用,放射性坏死与肿瘤复发的鉴别成为了一大难题.不同诊断对应不同的后续治疗及预后.关于放射性坏死的病理生理学知之甚少.放射性坏死主要是对症治疗,包括激素、高压氧、贝伐单抗等.若坏死面积大,患者脑水肿、高颅压或神经损害症状明显,可采用手术切除病灶.而肿瘤复发,根据肿瘤位置、大小、患者症状等,可以选择手术或者放疗、化疗.因此,鉴别肿瘤复发与放射性坏死尤为重要.常规MRI序列,包括T1WI、T2WI以及增强,是通过对病变的含水量、血流流空现象和对比剂透过受损坏的血脑屏障进入病灶的情况来分析、评估脑内病变的.曾经,在治疗后MRI上的增强病灶被认为是肿瘤复发.但随着影像学的发展,发现MRI增强体积并不能与肿瘤的体积划上等号,增强核磁上的异常信号区域主要反映的是血脑屏障受到破坏后范围.炎症、脑缺血、放射性损伤等均可呈现类似现象.
PWI用于鉴别也有其局限性.同 MRS、DWI、PWI、PET⁃CT等检查一样,特异性和敏感性均不是太高.胶质瘤异质性大,不同肿瘤生长速度快慢不一.对于生长非常迅速的肿瘤,局部肿瘤出现缺血坏死,也可能出现低灌注的情况.放射性坏死时,血脑屏障亦不完整,局部灌注也会升高.再者,临床上一些抗血管生成药物的应用,如贝伐单抗,影响病灶血管的生成,亦可出现假阴性.临床上应联合多种影像资料及患者的症状体征作出综合判断.若此时仍然诊断不清,可活检进一步确诊或者手术[23-27].
[1]Schwartzbaum JA,Fisher JL,Aldape KD,et al.Epidemiology and molecular pathology of glioma[J].Nat Clin Pract Neurol,2006,2(9):494-503.
[2]Kim TH,Yun TJ,Park CK,et al.Combined use of susceptibility weighted magnetic resonance imaging sequences and dynamic suscep⁃tibility contrast perfusion weighted imaging to improve the accuracy of the differential diagnosis of recurrence and radionecrosis in high⁃grade glioma patients[J].Oncotarget,2017,8(12):20340-20353.
[3]Tietze A,Mouridsen K,Lassen⁃Ramshad Y,et al.Perfusion MRI derived indices of microvascular shunting and flow control correlate with tumor grade and outcome in patients with cerebral glioma[J].PLoS One,2015,10(4):1-16.
[4]Lee KM,Kim EJ,Jahng GH,et al.Value of perfusion weighted magnetic resonance imaging in thediagnosisofsupratentorial anaplastic astrocytoma[J].J Korean Neurosurg Soc,2014,56(3):261-264.
[5]Snelling B,Shah AH,Buttrick S,et al.The use of MR perfusion imaging in the evaluation of tumor progression in gliomas[J].J Korean Neurosurg Soc,2017,60(1):15-20.
[6]Li KL,Zhu XP,Jackson A.Parametric mapping of scaled fitting error in dynamic susceptibility contrast enhanced MR perfusion imaging[J].Br J Radiol,2000,73(869):470-481.
[7]韩 影,刁文卓,陈 萍.脑胶质瘤中VEGF、EGFR表达意义研究[J].中国实验诊断学,2012,16(2):320-321.
[8]Adn M,Saikali S,Guegan Y,et al.Pathophysiology of glioma cyst formation[J].Med Hypotheses,2006,66(4):801-804.
[9]Jain RK,Di Tomaso E,Duda DG,et al.Angiogenesis in brain tumours[J].Nat Rev Neurosci,2007,8(8):610-622.
[10]Siu A,Wind JJ,Iorgulescu JB,et al.Radiation necrosis following treatment of high grade glioma⁃⁃a review of the literature and current understanding[J].Acta Neurochir,2012,154(2):191-201.
[11]Ruben JD,Dally M,Bailey M,et al.Cerebral radiation necrosis:incidence,outcomes,and risk factors with emphasis on radiation parameters and chemotherapy[J].Int J Radiat Oncol Biol Phys,2006,65(2):499-508.
[12]Brandsma D,Stalpers L,Taal W,et al.Clinical features,mechanisms,and management of pseudoprogression in malignant gliomas[J].Lancet Oncol,2008,9(5):453-461.
[13]Brandes AA,Franceschi E,Tosoni A,et al.MGMT promoter methy⁃lation status can predict the incidence and outcome of pseudoprogres⁃ sion afterconcomitantradiochemotherapy in newly diagnosed glioblastoma patients[J].J Clin Oncol,2008,26(13):2192-2197.
[14]Chamberlain MC,Glantz MJ,Chalmers L,et al.Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma[J].J Neurooncol,2007,82(1):81-83.
[15]Na A,Haghigi N,Drummond KJ.Cerebral radiation necrosis[J].Asia Pac J Clin Oncol,2014,10(1):11-21.
[16]Kong DS,Kim ST,Kim EH,et al.Diagnostic dilemma of pseudo⁃progression in the treatment of newly diagnosed glioblastomas:The role of assessing relative cerebral blood flow volume and oxygen⁃6⁃methylguanine⁃DNA methyltransferase promoter methylation status[J].AJNR Am J Neuroradiol,2011,32(2):382-387.
[17]Sugahara T,Korogi Y,Tomiguchi S,et al.Posttherapeutic intraaxial brain tumor:The value of perfusion⁃sensitive contrast⁃enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast⁃enhancing tissue[J].AJNR Am J Neuroradiol,2000,21(5):901-909.
[18]王玉林,有 慧,张爱莲,等.MR灌注成像在鉴别胶质瘤复发与放射性脑损伤中的价值[J].中华放射学杂志,2011,45(7):618-622.
[19]Bobek⁃Billewicz B,Stasik⁃Pres G,Majchrzak H,et al.Differentia⁃tion between brain tumor recurrence and radiation injury using perfu⁃sion,diffusion⁃weighted imaging and MR spectroscopy[J].Folia Neuropathol,2010,48(2):81-92.
[20]Shiroishi MS,Boxerman JL,Pope WB.Physiologic MRI for assess⁃ment of response to therapy and prognosis in glioblastoma[J].Neuro Oncol,2016,18(4):467-478.
[21]Guzmán⁃De⁃Villoria JA,Mateos⁃Pérez JM,Fernández⁃García P,et al.Added value of advanced over conventional magnetic resonance imaging in grading gliomas and other primary brain tumors[J].Cancer Imaging,2014,14:35.
[22]Matsusue E,Fink JR,Rockhill JK,et al.Distinction between glioma progression and post⁃radiation change by combined physiologic MR imaging[J].Neuroradiology,2010,52(4):297-306.
[23]Knudsen⁃Baas KM,Moen G,Fluge Ø,et al.Pseudoprogression in high⁃grade glioma[J].Acta Neurol Scand,2013,127(S196):31-37.
[24]Caroline I,Rosenthal MA.Imaging modalities in high⁃grade gliomas:Pseudoprogression,recurrence,or necrosis[J]?J Clin Neurosci,2012,19(5):633-637.
[25]Shah AH,Snelling B,Bregy A,et al.Discriminating radiation necrosis from tumor progression in gliomas:A systematic review what is the best imaging modality[J]?J Neurooncol,2013,112(2):141-152.
[26]Caroline I,Rosenthal MA.Imaging modalities in high⁃grade gliomas:Pseudoprogression,recurrence,or necrosis[J]?J Clin Neurosci,2012,19(5):633-637.
[27]Masch WR,Wang PI,Chenevert TL,et al.Comparison of diffusion tensor imaging and magnetic resonance perfusion imaging in differen⁃tiating recurrent brain neoplasm from radiation necrosis[J].Acad Radiol,2016,23(5):569-576.
Application of perfusion MR imagingin differential diagnosis of radiation necrosis and recurrence of glioma
HUANG Wei,REN Xiao⁃Hui,LIN Song
Department of Neurosurgery,Beijing Tiantan Hospital,Capital Medical University,Beijing 100050,China
With radiotherapy and chemotherapy as part of the standard treatment of glioma,radiation necrosis has become a big problem which needs to solve.It is very difficult to discriminate radiation necrosis and tumor recurrence only rely on enhanced magnetic resonance.With the development of imaging technology,it provides many ways to identify the necrosis and recurrence of glioma.In this article,we reviewed the using of magnetic reso⁃nance perfusion imaging in differential diagnosis of radiation nec⁃rosis and tumor recurrence.
glioma;tumor recurrence;radiation necrosis;PWI
R739.41
A
2095⁃6894(2017)07⁃80⁃03
2017-05-13;接受日期:2017-05-28
国家自然科学基金项目(2060603)
黄 伟.硕士.E⁃mail:huangwei6067@126.com
林 松.博士,教授.E⁃mail:linsong2005@126.com