杜加强,舒俭民,赵晨曦,贾尔恒·阿哈提,王丽霞,香 宝,方广玲,刘伟玲,何 萍,*
1 中国环境科学研究院, 北京 100012 2 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012 3 新疆环境保护科学研究院, 乌鲁木齐 830011 4 环境保护部南京环境科学研究所, 南京 210042
两代AVHRR GIMMS NDVI数据集的对比分析
——以新疆地区为例
杜加强1,2,舒俭民1,2,赵晨曦3,贾尔恒·阿哈提3,王丽霞4,香 宝1,2,方广玲1,2,刘伟玲1,2,何 萍1,2,*
1 中国环境科学研究院, 北京 100012 2 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012 3 新疆环境保护科学研究院, 乌鲁木齐 830011 4 环境保护部南京环境科学研究所, 南京 210042
最新发布的1981—2012年的AVHRR GIMMS NDVI3g数据为了解区域植被的近期变化状况提供了数据基础。深入理解该版本与老版本GIMMS NDVIg(1981—2006年)之间的关系,对于使用新数据时充分利用已有老版本的研究结果具有重要意义。以我国西北干旱区的典型区域——新疆为例,研究了两个数据集在反映生长季、春季、夏季和秋季植被现状,植被变化趋势及其对气候变化响应方面的异同。研究结果表明:两个数据集在描述植被活动空间分布、变化趋势及其与气候的相关性方面大体相似,但在数值、动态变化率及其对气候变化响应强度等方面存在的差异也不容忽略。NDVI3g数据生长季和各季节NDVI数值多大于NDVIg,尤其是在夏季和在植被覆盖较好的区域。区域尺度,NDVI3g所反映的植被变化趋势更为平稳,尤其是在夏季和较长的时段,这可能与像元尺度NDVI3g显著增加范围小于NDVIg,而显著减少范围多于NDVIg有关。两个数据集对气温、降水量、潜在蒸散发和湿润指数的响应具有大体一致的空间格局,但对气候因子变化的敏感性存在差异,哪一个数据集更为灵敏依赖于不同的气候因子和时段。一般规律是NDVI3g与热量因子显著正相关的区域小于NDVIg,而与水分因子显著正相关的区域则大于NDVIg。利用长期的生态数据集,尽快理清两个数据集在表征植被变化之间的异同并建立两者的转换关系,对于合理开展植被变化、碳平衡、生态系统服务功能评估等广泛利用NDVI数据的相关研究十分重要。
GIMMS NDVI3g;GIMMS NDVIg;植被活动;气候变化;比较分析;新疆
植被是陆地生态系统最重要的组成部分,联接了土壤圈、水圈和大气圈的物质循环和能量流动,在调节陆地碳平衡和气候系统方面发挥了重要作用[1- 3],监测植被动态变化具有重要的科学价值和现实意义。植被覆盖变化受到气候变化、人类活动的强烈影响[4- 9],地表植被对外界干扰的响应已经成为国内外学术界研究的热点。开展大范围的野外实地调查无疑是理论上监测植被状况的最优方法[10],但该方法需要耗费大量人力、财力,同时由点上的结果扩展到面上时也可能产生偏差[11]。因此,在大尺度监测植被变化的最有效的方法是基于卫星的植被监测[10,12],其具有时间连续、空间范围广、可重复、廉价等特点[10,13- 14]。
归一化植被指数NDVI是公认的陆地植被生长状况的最佳表征指标,广泛地应用于从全球到区域尺度的植被动态及其对气候变化响应、土地退化区域识别、植被生产力和碳平衡等领域的研究之中。AVHRR GIMMS NDVI数据集具有时间序列长、覆盖范围广、时空可比、较强地植被动态变化表征能力[15]等特点,被证明是描述植被生长动态变化最好的数据集之一[7,16- 18],得到了非常广泛的应用,取得了大量的研究成果。目前,最常用的NDVI数据集是时间序列为1981—2006年的GIMMS NDVIg数据集,有关最近几年植被变化及其与过去30年比较的研究需要扩展GIMMS NDVIg数据集的时间序列[14,19- 22]。国内外已经有学者开始进行GIMMS NDVIg和与其他传感器NDVI数据集的比较与数据插补工作[3,12,23- 30]。最近,最新版本的GIMMS NDVI数据集发布[31],被称作GIMMS NDVI3g,时间跨度为1981—2012年,其数据处理目标旨在提高高纬度地区的数据质量[32- 33],以便于更适合北半球生态系统植被活动变化的研究[23,34]。作为新一代的长时间序列数据集,该数据集可以为地表植被30多年来的整体变化趋势提供基础数据,势必得到广泛的应用。然而,由于AVHRR传感器设计之初并不是以植被研究为目的,获取NDVI之前需要进行一系列的校正处理工作,导致GIMMS NDVI数据集本质上是动态变化的,每一次有更新的数据加入必须要重新计算[35],这就使得即使是重叠年份1981—2006年的GIMMS NDVI3g与GIMMD NDVIg也不相同。因此,最新的GIMMS NDVI3g与过去应用最为广泛的GIMMS NDVIg版本之间的对比研究势在必行,这也是连接已有研究和未来利用GIMMS NDVI3g监测植被活动的桥梁。目前有关两代数据的对比研究刚刚开始,尚未检索到有关我国干旱区两代数据集对比研究的相关报道。
为此,本文以中国西北干旱区的主体——新疆地区为例,利用生长季(3—11月)、春季(3—5月)、夏季(6—8月)和秋季(9—11月)4个合成时段,评价两代数据集在表征植被时空变化趋势及其对气候变化响应的量级和空间模式上存在的差异和相似性,以期为未来利用GIMMS NDVI3g数据集评估干旱区植被动态变化趋势时,如何合理利用GIMMS NDVIg的研究结果提供支撑和参考。
1.1 研究区域
新疆位于我国西北边陲,介于73°20′—96°25′E,34°15′—49°10′N之间,总面积约1.66×106km2。境内大致呈纬向伸展的三大山系阿尔泰山、天山和昆仑山分割着准噶尔和塔里木盆地,形成了独特的山体、盆地相间的地貌格局。山体垂直地带性差异明显,天山、阿尔泰山、昆仑山发育有大面积的森林和草地植被,准噶尔盆地和塔里木盆地分布有典型的温带荒漠植被,绿洲和城市则分布在河谷平原区。由于新疆南北跨度大,形成了以天山为界,南疆、北疆自然地理状况差异较大的格局,分别属于温带大陆性干旱半干旱气候和暖温带大陆性干旱气候。区域干旱、少雨、多大风的气候特点,形成了广布的沙漠戈壁景观,植被覆盖率总体较低,生态系统较为脆弱、敏感,是研究植被变化及其对气候变化响应的理想区域。
1.2 数据来源与处理
GIMMS NDVIg和GIMMS NDVI3g数据集均来源于NASA戈达德航天中心,合成时段均为15 d。GIMMS NDVIg的空间分辨率为8km×8km(约为0.072°×0.072°),时间跨度是1981—2006年;GIMMS NDVI3g则分别为0.083°×0.083°,1981—2012年。
气象数据来源于中国气象科学数据共享服务网,包含53个站点的月气温、月降水量数据(气象站点分布见图1)。1∶1000000矢量化植被类型图来自中国植被类型图[36],将新疆地区的植被分为森林、灌丛、草地、耕地、荒漠和无植被6大类。
两种NDVI数据经过子集提取、图像镶嵌、裁剪、数据格式转换、投影转换及质量检验等预处理过程,形成新疆GIMMS NDVIg和GIMMS NDVI3g数据集。采用最大值合成方法得到月尺度GIMMS NDVI数据,以进一步去除云的影响,并减少月内物候循环的影响[35]。参考相关研究[3,7- 8],采用0.05的NDVI值作为的植被阈值,排除非植被因素的影响。
1.3 研究方法
数值比较[15,29- 30]、相关性分析[17- 18]、趋势一致性分析[15,35]以及NDVI对气候变化响应[32]被认为是评价NDVI数据集之间一致性的有效方法。本文从NDVI数值、变化趋势及其与气候变化的相关性3个方面,来评价重叠年份(1982—2006年)GIMMS NDVIg和GIMMS NDVI3g数据集的一致性,以期在静态、动态、空间格局、对外部干扰反映等多方面综合反映两个数据集的相似性。为了更好地利用两代数据集的优势与特点,以及方便利用已有NDVIg成果和未来NDVI3g数据处理,保留两代数据集各自的分辨率。
NDVI的变化趋势采用其与年份的最小二乘法回归进行分析,得到回归方程的斜率(Slope)和Pearson相关系数,分别用来表示植被生长的变化速率和变化趋势。定义(SlopeGIMMS NDVI3g-SlopeGIMMS NDVIg)/ SlopeGIMMS NDVIg×100为两个数据集变化趋势的差值比率(ratio of difference between NDVI3g slope and NDVIg slope, RDNS)。NDVI对气候变化的响应,采用NDVI与同期气候要素的相关性来表征。气象数据采用Kriging方法插值到GIMMS NDVIg和GIMMS NDVI3g数据集的空间分辨率。为了更好地表征植被与干湿条件之间的关系,计算了蒸散发和湿润指数。蒸散发是唯一一个即出现在在水量平衡方程又出现在地表能量平衡方程中的要素[37- 38],与生态系统水分利用密切相关[8,38],尤其是在干旱和半干旱地区。参考相关研究[8],研究区域潜在蒸散发(ET)采用Thornthwaite方法计算,湿润指数(HI)采用降水量与潜在蒸散发之比计算。
时段不同植被变化趋势不同,时段长度也可能会对结果产生影响。因此,为深入探讨两个数据集所反映的新疆植被变化及其对气候变化响应的动态过程,分别在1982—1999年、1982—2000年、…、1982—2006年8个时段计算NDVI变化趋势及其与气候因子的相关性。显著增加、显著减少区域面积在8个时段的变化趋势、强度,采用其与1999—2006年年份的Pearson相关系数、斜率来计算。根据显著性检验结果,将变化趋势分为如下3个等级:极显著(P<0.01);显著(P<0.05);不显著(P>0.05)。
2.1 数值差异与相关性
生长季多年平均NDVI3g和NDVIg数据的数值分布显示(图1),≤0.20区间NDVIg的分布区域均大于NDVI3g,在大于0.20区间则相反。两者之间逐像元的差值结果显示(图1),66%的研究区域NDVI3g均大于NDVIg,生长季多年平均的平均偏差为0.0230,且植被覆盖度较高的天山南北、阿尔泰山以及塔里木盆地西北边缘、西南边缘偏差较大。
图1 NDVI3g与NDVIg生长季多年平均值分布与差值Fig.1 Distribution and differences between NDVIg and NDVI in growing season
分别统计1982—2006年植被区域NDVI3g和NDVIg生长季、各季节的区域平均年NDVI值,并计算相关系数、平均偏差、均方根误差和相对偏差(表1,图2)。各季节两者之间的相关性均达到了0.01的显著性水平,秋季相关性最强,春季最弱;数值差异方面,植被区域NDVI3g数值比NDVIg高19%—28%,秋季相对差异最小,夏季较大。
表1 区域尺度各季节NDVI3g与NDVIg的关系
2.2 变化趋势的一致性
区域尺度,尽管两个数据集NDVI的变化趋势十分相似(图2,表2),两者在8个时段均多呈显著增加趋势;除夏季所有时段NDVI3g变化量小于NDVIg(约低10%—43%),生长季、春季和秋季均呈前几个时段NDVI3g变化量大于NDVIg,而后几个时段NDVIg大于NDVI3g,春季趋势变化幅度差异最大,达到-34%—55%,秋季最小为-15%—13%。两个数据集夏季变化趋势的差异呈随时段延长而增加趋势,生长季、春季和秋季多呈随时段延长先减小后增加趋势。
像元尺度,两者生长季、春夏秋3个季节NDVI变化趋势的空间分布大致较为相似(图3),但不同时段呈显著变化的区域大小明显不同(表3)。夏季、秋季NDVI3g呈增加、显著增加趋势的范围8个时段均小于NDVIg,面积差值的多时段平均值范围为-6.31% —3.15%;生长季和春季也多小于NDVIg,面积差值的多时段平均值范围为-6.91%—1.13%;而NDVI3g呈显著减少趋势的区域则多大于NDVIg,面积差值的多时段平均值范围为0.96%—3.08%。两个数据集除生长季显著增加、春季显著增加区域的差值呈先减少后增加趋势外,生长季、夏季和秋季两者呈增加、显著增加和显著减小区域面积差值均呈随时段延长而明显快速扩大。
2.3 对气候变化响应的差异
区域平均尺度,两个NDVI数据集与同期气温、降水量、ET和HI的相关性见表4。两个数据集在生长季和各季节对不同气候因子变化响应的差异基本一致。除秋季NDVI3g与降水量和HI的相关系数绝对值在多数时段大于NDVIg以外,NDVIg与气候因子的相关性总体高于NDVI3g,仅在少数时段NDVI3g与气候因子的相关性高于NDVIg。
图2 两个数据集1982—2006年的NDVI变化趋势Fig.2 NDVI dynamics of two datasets during 1982—2006
图3 两个数据集NDVI变化量与趋势显著性Fig.3 Spatial distribution of NDVI trends over Xinjiang with two datasets
季节Seasons指标Indicators1982—19991982—20001982—20011982—20021982—20031982—20041982—20051982—2006生长季NDVI3g0.0010∗∗0.0010∗∗0.0009∗∗0.0009∗∗0.0007∗∗0.0006∗∗0.0005∗∗0.0004∗GrowingseasonNDVIg0.0010∗∗0.0009∗∗0.0009∗∗0.0009∗∗0.0008∗∗0.0007∗∗0.0007∗∗0.0006∗∗RDNS/%1.216.493.70-2.96-10.46-16.67-21.69-33.02春季SpringNDVI3g0.0006∗0.0008∗∗0.0008∗∗0.0007∗∗0.00050.00040.00030.0002NDVIg0.00050.00050.0006∗0.0006∗0.00050.00040.00040.0004RDNS/%40.0555.1427.7216.244.81-7.98-21.16-33.56夏季SummerNDVI3g0.0014∗∗0.0013∗∗0.0011∗∗0.0010∗∗0.0008∗∗0.0007∗0.0006∗0.0005NDVIg0.0016∗∗0.0014∗∗0.0013∗∗0.0012∗∗0.0011∗∗0.0010∗∗0.0010∗∗0.0009∗∗RDNS/%-12.06-9.60-13.67-20.62-26.98-30.87-35.71-43.30秋季AutumnNDVI3g0.0011∗∗0.0009∗∗0.0009∗∗0.0009∗∗0.0008∗∗0.0007∗∗0.0006∗∗0.0005∗NDVIg0.0010∗∗0.0008∗∗0.0008∗∗0.0008∗∗0.0008∗∗0.0007∗∗0.0006∗∗0.0006∗∗RDNS/%4.364.4813.239.264.71-0.57-1.64-14.67
**代表显著性水平小于0.01,*代表小于0.05; RDNS: NDVI变化趋势的差值比率
表3 两个数据集各季节8个时段不同变化趋势的面积比例(%)
P为相关系数为正值区域面积比例,SN、SP分别为显著水平达到0.05的负值和正值区域面积比例
图4 两个数据集生长季NDVI与气候因子的相关性Fig.4 Spatial distribution of correlations between NDVI and climatic factors
像元尺度,两个NDVI数据集与同期气温、降水量、ET和HI相关性的空间格局(图4)表明,总体上,两个数据集在反映植被对气候变化响应方面基本一致,NDVI与气候因子相关性的空间格局较为相似,显著、极显
表4 两个数据集与4种气候因子的相关系数
①、②、③、④分别为生长季、春季、夏季和秋季
表5 两个数据集与4种气候变量不同相关性的区域比例(%)
Tem和Pre分别为气温temperature和降水量precipitation
著相关区域的分布、规模大体一致(表4)。纵观8个时段的计算结果(表5),与NDVIg相比,生长季与各季节NDVI3g与气温、ET显著正相关的区域相对较小,显著负相关的区域范围则在多数时段相对较大。生长季和各季节NDVI3g与降水量、HI呈显著正相关的区域范围在多数时段大于NDVIg,而在春季和秋季NDVI3g与降水量和HI呈显著负相关的区域范围在各时段均小于NDVIg,生长季和夏季则在多数时段大于NDVIg。随着时段延长,两个数据集与气候相关性位于同一显著性水平的面积差距多有扩大趋势。
本文的研究结果与北半球高纬度地区研究得出的NDVI3g的变化量是NDVIg两倍[32]的结果不尽相同,新疆地区NDVI3g与NDVIg在表征植被活动动态变化趋势的量级方面,变化量相对大小无固定模式,哪一个数据集的动态变化趋势更强,依赖于时段和季节。与北美地区的研究结果[10]一致,NDVI值较小的区间(约<0.2)NDVIg大于NDVI3g,较大的区间相反,表明在植被低覆盖度区域NDVIg可能高估了植被NDVI值,而在植被高覆盖区域则低估了植被NDVI值。值的说明的是,NDVI3g和NDVIg哪一个更符合新疆的实际情况,则需要采用其他卫星数据或大量的地面长期观测数据集、涡度通量塔观测数据集等来评判,超出了本文的研究范畴。
NDVI3g与反映水分状况的气候因子(降水量、HI)正相关性多强于NDVIg,而与反映热量的气温、ET则多呈相反规律,表明不同时段两个数据集对不同气候因子变化的敏感性存在差异;不同季节之间,两个数据对各种气候因子变化的响应量级也不尽相同。
NDVI长期数据为研究植被活动提供了所必需的关键历史视角[28]。但若想获得任何有意义的陆表植被监测,连续的、相互校准的植被指数长期时间序列是关键需求[10,15,17,28]。NDVI3g和NDVIg之间的数值差异有可能对利用NDVI数据集的各种研究结果产生影响。比如,生长季和夏季两个数据集的不同,有可能对基于NDVI的植被生产力估算、碳汇潜力分析、农作物估产、生态系统服务功能评估等产生较大影响;尤其是植被覆盖更高的地区和生长旺盛的夏季,较大的NDVI数值差异,可能对结果产生实质性的影响。特别是NDVI被广泛用于评估碳汇,NDVI数据集之间的差异可能影响国家碳账户的平衡,从而进一步影响与碳排放相关国际履约和国际谈判。春季、秋季NDVI的不同,则可能影响动植物物候变化的研究结论,从而对预报农事、指导农牧业和林业生产、指示病虫害、引种和选种等方面产生误导。
本文比较了最新的GIMMS NDVI3g和老版本GIMMS NDVIg在监测植被动态变化及其对气候变化响应方面的异同,主要发现归纳如下:
(1)两个数据集在描述植被活动空间分布方面较为一致,但有一定的数量差异。66%的研究区域生长季NDVI3g均大于NDVIg,生长季NDVI3g与NDVIg的平均偏差为0.0230。空间上,植被覆盖度较高的天山南北、阿尔泰山以及塔里木盆地部分边缘地带偏差较大;季节上,夏季两个数据集的数值差异较大。
(2)总体上,NDVI3g与NDVIg在反映区域植被变化趋势及其空间格局方面基本一致,但变化强度差异明显。尽管在较短的时段,生长季、春季和秋季NDVI3g的增加量大于NDVIg,但总体上NDVI3g的变化更为平稳,尤其是在夏季和较长的时段,其年际增加量均小于NDVIg,这与像元尺度NDVI3g显著增加范围小于NDVIg,而显著减少范围多于NDVIg有关。春季NDVI3g与NDVIg变化趋势差异最大,达到-34%—55%,秋季最小为-15%—13%。
(3)NDVI3g和NDVIg对气温、降水量、ET和HI的响应具有大体一致的空间格局,但是显著相关的区域范围具有一定差异。一般来说,NDVI3g与表征热量的气温、ET显著正相关的区域小于NDVIg,显著负相关的区域则相反;NDVI3g与表征水分状况的降水量、HI显著正相关的区域则大于NDVIg;两个数据集与降水量、HI呈显著负相关区域的相对大小则依赖于季节和时段。
(4)NDVI3g数据对于了解地表植被历史状况以及近年的趋势具有重要作用。鉴于NDVIg得到了广泛应用并取得了大量研究成果,评估NDVI3g和NDVIg数据的一致性、建立两者的转换关系,以及利用长期生态数据集评判哪一个数据集更接近实际情况,是必要而紧迫的。
[1] Piao S L, Wang X H, Ciais P, Zhu B, Wang T, Liu J. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 2011, 17(10): 3228- 3239.
[2] Peng J, Liu Z H, Liu Y H, Wu J S, Han Y N. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent. Ecological Indicators, 2012, 14(1): 28- 39.
[3] Bao G, Qin Z H, Bao Y H, Zhou Y, Li W J, Sanjjav A. NDVI-Based long-term vegetation dynamics and its response to climatic change in the Mongolian Plateau. Remote Sensing, 2014, 6(9): 8337- 8358.
[4] Myneni R B, Keeling C D, Tucker C J, Asrar G, Nemani R R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 1997, 386(6626): 698- 702.
[5] Goetz S J, Bunn A G, Fiske G J, Houghton R A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceeding of the National Academy of Sciences of the United States of America, 2005, 102(38): 13521- 13525.
[6] Peng S S, Chen A P, Xu L, Cao C X, Fang J Y, Myneni R B, Pinzon J E, Tucker C J, Piao S L. Recent change of vegetation growth trend in China. Environmental Research Letters, 2011, 6(4): 044027.
[7] Nemani R R, Keeling C D, Hashimot H, Jolly W M, Piper S C, Tucker C J, Myneni R B, Running S W. Climate-Driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300(5625): 1560- 1563.
[8] Zhao X, Tan K, Zhao S, Fang J. Changing climate affects vegetation growth in the arid region of the northwestern China. Journal of Arid Environments, 2011, 75(10): 946- 952.
[9] Mohammat A, Wang X H, Xu X T, Peng L Q, Yang Y, Zhang X P, Myneni R B, Piao S L. Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agricultural and Forest Meteorology, 2013, 178- 179: 21- 30.
[10] Scheftic W, Zeng X B, Broxton P, Brunke M. Intercomparison of seven NDVI products over the United States and Mexico. Remote Sensing, 2014, 6(2): 1057- 1084.
[11] 卓莉, 曹鑫, 陈晋, 陈仲鑫, 史培军. 锡林郭勒草原生态恢复工程效果的评价. 地理学报, 2007, 62(5): 471- 480.
[12] Piao S L, Cui M D, Chen A P, Wang X H, Ciais P, Liu J, Tang Y H. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 2011, 151(12): 1599- 1608.
[13] Pettorelli N, Chauvenet A L M, Duffy J P, Cornforth W A, Meillere A, Baillie J E M. Tracking the effect of climate change on ecosystem functioning using protected areas: Africa as a case study. Ecological Indicators, 2012, 20: 269- 276.
[14] De Jong R, De Bruin S, Schaepman M, Dent D. Quantitative mapping of global land degradation using Earth observations. International Journal of Remote Sensing, 2011, 32(21): 6823- 6853.
[15] Beck H E, McVicar T R, van Dijk A I J M, Schellekens J, de Jeu R A M, Bruijnzeel L. Global evaluation of four AVHRR-NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sensing of Environment, 2011, 115(10): 2547- 2563.
[16] Beck P S A, Goetz S J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environmental Research Letters, 2011, 6(4): 045501.
[17] Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince S D, Tucker C, Choles R J, Le Q B, Bondeau A, Eastman R, Epstein H, Gaughan A E, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K. Greenness in semi-arid areas across the globe 1981- 2007——an Earth Observing Satellite based analysis of trends an drivers. Remote Sensing of Environment, 2012, 121: 144- 158.
[18] Alcaraz-Segura D, Liras E, Tabik S, Paruelo J, Cabello J. Evaluating the consistency of the 1982- 1999 NDVI trends in the Iberian Peninsula across four time-series derived from the AVHRR sensor: LTDR, GIMMS, FASIR, and PAL-II. Sensor, 2010, 10(2): 1291- 1314.
[19] 毛德华, 王宗明, 宋开山, 刘殿伟, 张柏, 张素梅, 罗玲, 张春华. 东北多年冻土区植被NDVI变化及其对气候变化和土地覆被变化的响应. 中国环境科学, 2011, 31(2): 283- 292.
[20] Mao D H, Wang Z M, Luo L, Ren C Y. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. International Journal of Applied Earth Observation and Geoinformation, 2012, 18: 528- 536.
[21] 信忠保, 许炯心, 郑伟. 气候变化和人类活动对黄土高原植被覆盖变化的影响. 中国科学 D辑: 地球科学, 2007, 37(11): 1504- 1514.
[22] 丁明军, 张镱锂, 刘林山, 王兆锋. 1982- 2009年青藏高原草地覆盖度时空变化特征. 自然资源学报, 2010, 25(12): 2114- 2122.
[23] 陈燕丽, 龙步菊, 潘学标, 钟仕全, 莫伟华. MODIS NDVI和AVHRR NDVI对草原植被变化监测差异. 遥感学报, 2011, 15(4): 831- 845.
[24] Fensholt R, Rasmussen K, Nielsen T T, Mbow C. Evaluation of earth observation based long term vegetation trends——Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sensing of Environment, 2009, 113(9): 1886- 1898.
[25] Gallo K, Ji L, Reed B, Eidenshink J, Dwyer J. Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data. Remote Sensing of Environment, 2005, 99(3): 221- 231.
[26] 何月, 樊高峰, 张小伟, 柳苗, 高大伟. 浙江省植被NDVI动态及其对气候的响应. 生态学报, 2012, 32(14): 4352- 4362.
[27] Tucker C J, Pinzon J E, Brown M E, Slayback D A, Pak E W, Mahoney R, Vermonte E F, El Saleous N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation data. International Journal of Remote Sensing, 2005, 26(20): 4485- 4498.
[28] Brown M E, Pinzon J E, Didan K, Morisette J T, Tucker C J. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and Landsat ETM+ Sensors. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1787- 1793.
[29] Steven M D, Malthus T J, Baret F, Xu H, Chopping M J. Intercalibration of vegetation indices from different sensor systems. Remote Sensing of Environment, 2003, 88(4): 412- 422.
[30] Fontana F M A, Coops N C, Khlopenkov K V, Trishchenko A P, Riffler M, Wulder M A. Generation of a novel 1km NDVI data set over Canada, the northern United States, and Greenland based on historical AVHRR data. Remote Sensing of Environment, 2012, 121: 171- 185.
[31] Pinzon J E, Tucker C J. A non-stationary 1981- 2012 AVHRR NDVI3gtime series. Remote Sensing, 2014, 6(8): 6929- 6960.
[32] Jiang N, Zhu W Q, Zheng Z T, Chen G S, Fan D Q. A comparative analysis between GIMSS NDVIg and NDVI3g for monitoring vegetation activity change in the northern hemisphere during 1982- 2008. Remote Sensing, 2013, 5(8): 4031- 4044.
[33] Zhu Z C, Bi J, Pan Y Z, Ganguly S, Anav A, Xu L, Samanta A, Piao S L, Nemani R R, Myneni R B. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sensing, 2013, 5(2): 927- 948.
[34] Xu L, Myneni R B, Chapin III F S, Callaghan T V, Pinzon J E, Tucker C J, Zhu Z, Bi J, Ciais P, Tømmervik H, Euskirchen E S, Forbes B C, Piao S L, Anderson B T, Ganguly S, Nemani R R, Goetz S J, Beck P S A, Bunn A G, Cao C, Stroeve J C. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 2013, 3(6): 581- 586.
[35] Fensholt R, Proud S R. Evaluation of Earth Observation based global long term vegetation trends——Comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment, 2012, 119: 131- 147.
[36] CVAEC, CAS. Vegetation Atlas of China (1:1,000,000), 2001. Beijing: Science Press, 2001.
[37] Xu C Y, Singh V P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. Journal of Hydrology, 2005, 308(1/4): 105- 121.
[38] Gao G, Chen D L, Xu C Y, Simelton E. Trend of estimated actual evapotranspiration over China during 1960- 2002. Journal of Geophysical Research, 2007, 112(D11): D11120.
Comparison of GIMMS NDVI3g and GIMMS NDVIg for monitoring vegetation activity and its responses to climate changes in Xinjiang during 1982—2006
DU Jiaqiang1,2, SHU Jianmin1,2, ZHAO Chenxi3, JIAERHENG Ahati3, WANG Lixia4, XIANG bao1,2, FANG Guangling1,2, LIU Weiling1,2, HE Ping1,2,*
1ChineseResearchAcademyofEnvironmentalSciences,Beijing100012,China2StateKeyLaboratoryofEnvironmentalCriteriaandRiskAssessment,ChineseResearchAcademyofEnvironmentalSciences,Beijing100012,China3XinjiangAcademyofEnvironmentalProtectionScience,Urumqi830011,China4NanjingInstituteofEnvironmentalSciences,MinistryofEnvironmentalProtectionofthePeople′sRepublicofChina,Nanjing210042,China
The released third-generation NDVI datasets in 2014, GIMMS NDVI3g, provide a data basis for quantifying recent regional vegetation dynamics over a sufficiently long term. The comparison between the new and old versions (GIMMS NDVIg, from 1981 to 2006) is necessary to link previous studies with future applications of GIMMS NDVI3g in monitoring vegetation activity trends and their responses to climate change. In this study, GIMMS NDVI3g was initially compared with GIMMS NDVIg in an evaluation of spatio-temporal patterns of seasonal vegetation changes in Xinjiang Province, China, at regional and pixel scales during overlapping periods from 1982 to 2006. The influences of climate change (including temperature, precipitation, potential evapotranspiration, and humidity index) on vegetation growth were then analyzed based on GIMMS NDVI3g and GIMMS NDVIg. To better understand the relationships between GIMMS NDVI3g and GIMMS NDVIg, NDVI trends and correlations between NDVI and climatic factors were calculated over multiple nested time series from 18 to 25 starting in 1982. The results indicated that most areas showed an approximate consistency in overall changing trends and correlations with climate variables for both datasets, but differences in many aspects should not be ignored. In most pixels, numerical values of GIMMS NDVI3g were larger than those of GIMMS NDVIg in the growing season, spring, summer, and autumn, particularly in summer, and also in those areas with dense vegetation. At a regional scale, the NDVI trends of GIMMS NDVI3g were smoother than those of GIMMS NDVIg in the growing season and all seasons, particularly in summer and longer periods. At the pixel scale, areas with a significant increase in GIMMS NDVI3g were less than those in GIMMS NDVIg, whereas this was not true in those areas with a significant decrease. The spatial patterns of correlations between GIMMS NDVI3g and four climate variables were approximately similar to those between GIMMS NDVIg and the climate variables, but there were some differences in the sensitivity of both datasets to climate change. Which dataset is more sensitive depends on climate variables and periods. In general, areas with significantly positive correlations between GIMMS NDVI3g and thermal factors were fewer than those of GIMMS NDVIg, whereas positive correlations between NDVI and moisture factors were greater in GIMMS NDVI3g than in GIMMS NDVIg. Integrated other ecological datasets, it is urgent to identify the similarities and differences between the two datasets and to establish a connection between them for reasonably monitoring vegetation dynamics using NDVI datasets.
GIMMS NDVI3g; GIMMS NDVIg; vegetation; climate change; comparison; Xinjiang
国家自然科学基金资助项目(41001055);国家环保公益性行业科研专项经费资助(201209027- 5);中国环境科学研究院中央级公益性科研院所改革启动专项(2012-YSGQ-05)
2015- 04- 19;
日期:2016- 03- 03
10.5846/stxb201504190805
*通讯作者Corresponding author.E-mail: heping@craes.org.cn
杜加强,舒俭民,赵晨曦,贾尔恒·阿哈提,王丽霞,香宝,方广玲,刘伟玲,何萍.两代AVHRR GIMMS NDVI数据集的对比分析——以新疆地区为例.生态学报,2016,36(21):6738- 6749.
Du J Q, Shu J M, Zhao C X, Jiaerheng Ahati, Wang L X, Xiang B, Fang G L, Liu W L, He P.Comparison of GIMMS NDVI3g and GIMMS NDVIg for monitoring vegetation activity and its responses to climate changes in Xinjiang during 1982—2006.Acta Ecologica Sinica,2016,36(21):6738- 6749.