饲用马铃薯潜在产量的分析方法

2016-12-03 02:56胡开明王晓斌范阿棋张俊白江平
草业科学 2016年11期
关键词:马铃薯作物产量

赵 锋,胡开明,王晓斌,范阿棋,张俊,白江平

(1.甘肃省作物遗传改良与种质创新重点实验室-甘肃省干旱生境作物学重点实验室,甘肃 兰州 730030;2.甘肃农业大学农学院,甘肃 兰州 730070)



饲用马铃薯潜在产量的分析方法

(1.甘肃省作物遗传改良与种质创新重点实验室-甘肃省干旱生境作物学重点实验室,甘肃 兰州 730030;2.甘肃农业大学农学院,甘肃 兰州 730070)

作物实际产量与潜在产量之间存在较大的差距,潜在产量反映了作物在一个地区产量的理论上限,研究作物的潜在产量,明确作物产量的上限,进而对产量差及产量限制性因素进行研究和分析。通过对国内外马铃薯(Solanumtuberosum)潜在产量研究进行总结发现,当前马铃薯潜在产量研究存在的主要问题是马铃薯潜在产量的概念、计算分析方法以及模型之间的分析机理不一致,导致马铃薯潜在产量的分析结果存在较大的差异。在未来马铃薯潜在产量研究中,重点应该将马铃薯生长模型和遥感技术(RS)、地理信息系统(GIS)等新技术手段更好的结合起来,从单一的考虑自然因素转向自然因素与社会经济等因素相结合的研究。

马铃薯;潜在产量;产量差;作物模型

马铃薯(Solanumtuberosum)为茄科茄属双子叶一年生草本植物,作为仅次于水稻(Oryzasativa)、小麦(Triticumaestivum)、玉米(Zeamays)的世界第四大粮食作物被人们所重视[1]。由于人们的饮食习惯、地理环境以及各个地域的经济效益等因素,我国西北地区借助地理条件等因素成为马铃薯的优势产区[2-3]。在我国,马铃薯不仅被当作重要的粮食作物,同时也被当作重要的蔬菜作物。马铃薯鲜薯还被广泛的用于食品深加工和淀粉、酒精等工业加工当中,在我国的工农业生产中有着非常重要的作用。此外,马铃薯淀粉渣中含有丰富的纤维素、半纤维素、果胶和氨基酸等营养物质,经过调制饲喂肉牛等[4-5]可有效促进其生长,提高肉牛体重,而且马铃薯的鲜茎叶柔嫩多汁,通过青贮可作饲料,不仅可以缓解冬春季节饲料短缺的问题,同时也可以使秸秆资源得到充分利用,对缓解半农半牧区青贮饲料的匮乏具有重要的意义[6]。但是,随着水资源的日益缺乏以及耕地面积的持续减少,马铃薯作为一种具有较高水分利用率的兼用型作物,对保障我国粮食安全的地位越来越重要[7]。马铃薯的需求量越来越大,然而可用于种植马铃薯的耕地面积却是有限的,所以人们对马铃薯的增产潜力、高产品种改良及栽培越来越关心和重视。马铃薯的理论产量即潜在产量要远远大于当前马铃薯的实际产量,但由于气候、病虫害、灌溉等而导致收益较低。我国作为世界上最大的马铃薯生产国,马铃薯产业种植面积和产量都占了世界的20%以上,虽然我国马铃薯的种植面积很大,却不是马铃薯产业的强国[8]。目前,我国马铃薯的单产产量仍然低于世界平均水平,和欧美一些发达国家还有很大的差距[9]。因此,要提高我国马铃薯的产量以及品质,缩小当前的马铃薯产量与理论上可以实现的产量之间的差距。

多种因素对马铃薯产量都有较大影响,包括马铃薯自身的遗传因素、田间管理措施、病虫害等,其中光照、温度与水分等环境因素对马铃薯产量的影响巨大。但要提高我国马铃薯的产量以及品质,不能只靠对马铃薯进行遗传改良来实现,还要通过对马铃薯潜在产量的研究,分析并调整影响马铃薯产量的限制性因素,从而缩小产能差以提高马铃薯实际产出效率。如何合理地根据马铃薯自身的遗传因素及环境因素制定适宜的田间管理模式,达到高产优质的目的,是我国乃至全世界马铃薯生产目前所面对的主要问题。为此,本文通过分析总结国内外有关马铃薯潜在产能研究的进展,着重对马铃薯潜在产能研究中存在的问题进行探讨,以期对未来马铃薯潜在产量的研究提供参考。

1 作物的潜在产量

1.1 作物潜在产量的概念及研究意义

作物潜在产量(crop potential yield)这一概念早在19世纪中期就被提出,但是直到1993年Evans[10]才对潜在产量进行了明确的定义:作物潜在产量是指在作物生长环境中的水分和养分不受限制以及生物之间的影响效应得到有效控制时作物的产量。此后人们对这一概念进行了总结和补充[11],Evans在1999年又进一步补充,作物潜在产量是指作物潜在的产量,即理论产量,指的是作物在适宜的环境中,即在营养和水分不受任何限制,病、虫、杂草、倒伏等不利因素得到有效控制,栽培技术水平和生产管理水平处于最佳状态的条件下可能达到的最大产量[12]。作物的潜在产量具有时间性和空间性,也就是说作物的潜在产量会随着地点的不同或当地社会技术的改变而发生变化[13]。在实际生产中,由于受到杂草、病虫害及环境因素等影响而导致实际产量偏低。对于一些雨养作物,水分是其最大的影响因素,所以,它们在水分限制下的产量等同于水分限制下的潜在产量。在理想条件下,作物的生长只取决于大气中的CO2量、太阳辐射、温度以及作物的品种特性,所以潜在产量理论上只与气候环境有关,而土壤特性等可以通过水分和养分等进行调节[14](图1)。

而生产当中,作物产量的理论上限(即光温潜在产量)与农民实际收获的产量(即农民实际产量)存在比较大的差异,把这种差异叫做产量差(yield gap)。产量差的概念是由Datta[15]提出的,引起产量差距的因子被称为产量限制因子(yield constraints)。通过改善这些作物产量的限制因子可以大幅提高作物的产量及品质,实际产量最高可以达到潜在产量的80%[16]。但是现阶段由于生产水平等问题,很多作物的产量限制性因素都不明确,实际产量与可达到的产量仍然有较大的差距(图2)。潜在产量反映了作物在一个地区的产量的理论上限,即作物产量可能达到的最大值。通过研究作物的潜在产量,明确作物产量的上限,进而对产量差及产量限制性因素进行分析研究,通过一系列措施来改善产量限制性因素,缩小潜在产量与实际产量的差距,从而尽可能大地提高作物的收益率,是农业研究工作者的最终目的。

图1 不同生产水平下决定产量的因素Fig.1 Influential factors of crop yields under different production levels

图2 实际产量与可达到产量的产量差Fig.2 Yield gap between actual and exploitable yields

1.2 作物潜在产量的研究方法

一般研究作物潜在产量的方法有:1)田区定位试验法[16];2)农户最高产量纪录值调查法[17];3)联合国粮农组织(FAO)的农业生态地区(Agro-ecological Zone,简称AEZ)法[18];4)作物模型法[19]。其中,田区定位试验法可以评估当地当前栽培管理措施下作物的潜在产量,但是这种方法需要研究理想栽培管理措施以及排除那些导致减产的因素(如营养缺乏以及植物的病虫害等),而且这种方法必须通过多年的重复试验才能估算出作物的潜在产量。在田区定位试验中可能需要很多年去改进它的栽培管理措施,而且通过估算得到的作物潜在产量也不准确。农户最高产量纪录值调查法需要将作物生产的环境(包括土壤资源)以及投入生产的技术水平记录下来,这种方法可以得到最高产量的资源利用率[20-23],然而这种方法毕竟是在农户当中调查,其与实际最大产量值的误差有时会很大,其中有很多因素是很难避免的,因此,所得的潜在产量值会随作物生产环境的变化而改变。

FAO的农业生态区域法是基于Mitscherlich-Baule的复合指数方程[24],它将所种植的农田区域分为雨养区农田和灌溉区农田。

Y1R=∑ij∈CSZSijAijYijIR/∑ij∈CSZSijAij

(1)

式中:Y表示作物的潜在产量(t·hm-2);l表示作物的品种名称;R表示该区是雨养区农田;i表示农田横向单元的序列;j表示农田纵向单元的序列;S表示雨养区面积所占的比例(%);A表示所占耕地面积(hm2)。CSZ是表示其在农作制中的种植制度分区(cropping systems zone)。

Y1I=∑ij∈CSZSijAijYijII/∑ij∈CSZSijAij

(2)

式中:Y表示作物的潜在产量(t·hm-2),l表示作物的品种名称,I表示该区是灌溉区农田,i表示农田横向单元的序列,j表示农田纵向单元的序列,S表示灌溉区面积所占的比例(%),A表示所占耕地面积(hm2)。该方法考虑到了作物的光合、呼吸以及蒸腾等生理过程,在计算作物潜在产量中具有很多优点,但是这种方法是在非洲建立起来的,运用起来有一定的地域局限性[25-26]。

利用作物生长模型估计作物的潜在产量可以很好地克服以上方法的局限性,作物生长模型代表了当前人们对作物生理过程(物候学、碳同化等)以及作物对外界环境反应的了解程度[27]。作物模型法只要知道某地土壤和气候以及作物的基本资料就可以得到任何时间段该地作物的潜在产量。该法的通用性相对较强,而且方法简单、准确。作物生长过程模拟是指将与作物有关的气候及土壤环境等作为一个统一整体,运用系统分析学及计算机模拟的方法,通过对作物的生理过程与作物生长环境以及作物栽培管理技术之间的关系加以理论概括及统计分析,建立相应的作物生长模型,再在计算机上进行动态分析和对作物生长过程的模拟研究。作物生长模型描述作物品种、生长环境以及栽培管理措施三者的交互作用,需要因地制宜的数据资料,包括日常的气象数据、作物的田间管理措施(如种植日期,种植密度等)、土壤特性以及初始的播种条件等。

作物生长模型从提出到基本成熟已经涉及到多种作物,基本以禾本科作物为主,如小麦[28]、玉米[29]、水稻[30]、甘薯(Dioscoreaesculenta)[31]、甜菜(Betavulgaris)[32]、棉花(Gossypiumspp.)[33-34]等。如美国的CERES系列模型[35],是根据禾本科植物的生长特性而开发设计的模拟模型,主要包括CERES-Wheat,CERES-Maize,CERES-Rice等。该模型结合天气资料、作物生长资料、土壤资粮以及大田管理资料,可以动态的模拟作物的生长过程,模拟出作物的潜在产量。其中主要作物生长模型还包括美国的DSSAT模型[36-37]、GOSSYM模型[38-39]、EPIC模型[40-42],荷兰的WOFOST模型[43-44]以及澳大利亚的APSIM模型[45-47]等。作物生长模型不仅对继承已有研究成果有利,而且也是作物现代化种植管理的基础[48-49]。此外,还有学者利用计量经济学的方法,借助产量的函数来估算和分析作物潜在产量[50]。

1.3 作物潜在产量研究进展

早在19世纪40年代,德国化学家Liebig等[51]提出“Liebing最小因子定律(Liebing’s law of the minimum)”,指出作物生长所需的最小营养,从而引出了作物潜在产量的概念。经过科研工作者的不断努力,人们对作物潜在产量的研究更加深入[52]。在20世纪60年代初期,Bonner[53]第一次从光合效率的角度分析了作物的产量潜力,指出提高作物光合效率可以有效提高作物的潜在产量。作物所获得产量的90%左右都来自于光合作用过程中所形成的光合物质,通过直接或间接地改善作物的光合性能可以提高作物的产量[54]。20世纪70年代中期,国际水稻研究中心(IRRI)对亚洲的6个国家(孟加拉国、印度、印尼、巴基斯坦和菲律宾)进行了水稻限制因子的研究[55],从而开始了系统研究水稻潜在产量的体系。起先,一些学者想运用辐射、反射、呼吸消耗等来计算作物的光合潜在产量,但是由于其它因素的影响过大,使得所得产量远远高于实际产量[56]。随后人们考虑到温度对光温潜在产量的影响,对其进行了校准修正[57-58]。此后又考虑到水分的作用,以及光照、温度、降水量的综合作用,从而转向气候条件下潜在产量的研究。期间,随着计算机的应用和普及,学者们在研究作物潜在产量的同时利用计算机建立了许多作物生长模型,而且其中大多数已经得到验证和应用。此外,1994年Muchow等[59]利用作物生长模型模拟分析了不同种植日期、土壤类型以及施肥量和施肥日期下高粱(Sorghumvulgare)的潜在产量,并给与了最优生产管理措施的建议。2003年Verdoodt等[60]利用作物生长模型对南非干旱地区作物的潜在产量进行了模拟分析,得出光温是不同作物产量的重要影响因子,但降水量是干旱地区作物产量最重要的影响因子。Hodges等[61]也运用CERES-Maize模型模拟分析美国玉米的产量,并且结果较为准确。

与此同时,我国国内也开始了对作物潜在产量的研究,并且运用计算机作物生长模型对一些地区的作物进行了模拟分析。如,2008年运用CERES-Maize模型对华北平原玉米进行的模拟分析[29],该模型可以准确计算出华北平原各地玉米的潜在产量。此外,CERES模型还被广泛的应用于预测气候变化对作物的影响[62-65],李军等[66]运用该模型对黄土高原地区的玉米潜在产量进行了模拟分析。2014年,利用APSIM-Maize模型对中国北方平原的玉米潜在产量以及产量收益进行的模拟分析,结果表明,APSIM-Maize模型可以很好地模拟玉米的生长以及潜在产量,通过对模型中灌溉和肥料使用量地调整,使得玉米的产量收益差进一步缩小[67]。随着遥感技术的发展,近年来科研工作者们已经开始将作物生长模型与遥感数据结合起来估算作物的潜在产量[68]。

2 马铃薯潜在产量研究进展

马铃薯不仅作为粮食和蔬菜深受人们青睐,还被广泛地用于工业加工,此外,马铃薯还是重要的饲料作物。其饲用价值主要是马铃薯淀粉渣和马铃薯茎叶的应用,马铃薯淀粉渣是马铃薯淀粉加工过程中的副产品,其主要成分是残余淀粉颗粒、纤维素、半纤维素和果胶等[69]。目前,对马铃薯渣的应用主要有两种:1)用多菌种混合发酵马铃薯淀粉渣生产蛋白饲料,发酵饲料中的物质有助于动物对蛋白质等营养物质的吸收效率以及提升动物自身的免疫力[70];2)将马铃薯淀粉渣与其它作物混贮饲喂,马铃薯淀粉渣通过混贮后,不但适口性得到了较大的改善,而且消化利用率也提高了,有效降低了饲喂成本,提高了经济效益[71]。

马铃薯茎叶是马铃薯的地上部分,马铃薯茎叶中含有大量的粗蛋白、粗纤维、粗脂肪、胡萝卜素以及钙、磷等营养物质,是很好的青贮饲料[72]。但是由于马铃薯鲜茎叶中所含的水分过高、含糖量低和适口性差等原因,单独青贮不易成功,所得青贮饲料效果不佳[73]。通过添加米糠等,发现可以很好地提高马铃薯青贮的品质,有助于食草动物对营养的吸收[74]。2015年,对内蒙古地区马铃薯茎叶青贮的研究发现,“青贮饲料+混合粗提取物”的综合技术可有效地提高马铃薯茎叶青贮饲料品质,使得食草动物对饲料中的蛋白质更容易消化吸收,为马铃薯茎叶在饲料方面的应用提供了重要的依据[75]。

从20世纪80年代开始,马铃薯潜在产量的研究受到越来越多的关注。Stigter等[76]首先利用二氧化碳同化率及呼吸量来估算马铃薯的总干物产量,发现通过计算马铃薯植株截获的总辐射量、辐射转化率、作物的收获指数以及马铃薯块茎的干物质含量可以计算得出马铃薯的潜在产量。与其它禾本科作物不同,马铃薯属于茄科作物,块茎的生长决定着马铃薯的最终产量。马铃薯生长过程中对环境变化极为敏感,尤其是光照、温度和水分的影响[2]。由于马铃薯的块茎生长在土壤中,所以马铃薯的产量也受到土壤的影响。1984年Ng和Loomis[77]研究开发了Potato模型,该模型根据马铃薯不同的生长过程,建立了大气―作物―土壤的系统模型,以天气为驱动变量,以土壤条件为基础,通过对马铃薯生长过程中叶片光合作用以及其根、茎、叶生物量的形成过程进行计算分析来模拟马铃薯的生长发育过程。虽然该模型涉及到马铃薯的生理和形态等多个方面,但是没能考虑水分平衡以及氮肥量等对马铃薯生长的影响,所得到的潜在产量与实际有很大的偏差。N元素作为必需元素对马铃薯的产量有直接的影响,在马铃薯生产中,如果缺乏N元素,植株将表现出缺素症状,即合成的叶绿素减少,导致叶片变黄、植株矮小、产量降低。因此,N元素输入量是否合理决定着马铃薯的产量。到20世纪80年代末,Feddes等[78]研究并开发了综合性的马铃薯生长模型SWACRO,该模型以气候变化与马铃薯生长及田间水分变化为基本原理,模拟气候变化对马铃薯生长发育、产量及农田水分平衡等的影响,对马铃薯的水分平衡、呼吸以及马铃薯生长中对N元素的需求量进行了比较详细的介绍和说明。随后一些科研工作者利用一些田间试验数据建立了一些经验型的马铃薯生长模型,通过田间的试验数据估算出其中的一些参数,尽管这些模型可以应用于田间试验当中,但是通过模型所估算的数据与实测值差异比较明显。之后,苏格兰作物研究所专家通过研究指出[79],马铃薯的干物质产量可以通过马铃薯的播种期和收获期、土壤和空气的温湿度以及光照辐射估算出来,随后学者们针对这一结果对以往的马铃薯生长模型进行了修正,从而使得马铃薯潜在产量的研究更加深入。

目前,SUBSTOR-Potato[80]、NPOTATO[81]、LINTUL-POTATO[82]、IFORCROP-POTATO[83]、Crop SystVB-CSPotato[84]、CROPSYST-SIMPOTATO[85]等都是一些公认的发展比较成熟的模型。在2003年,Hijmans[86]将未来气候分为不同的几个时期,利用LINTUL-POTATO模型对马铃薯潜在产量进行了模拟分析,对全球温度变化下不同经纬度地区的马铃薯产量进行了预测,并且通过模拟马铃薯的潜在产量,分析了全球变暖条件下马铃薯产量研究中所遇到的问题,并给出了一些提高马铃薯产量的应对方案。

人们应用马铃薯生长模型来模拟马铃薯生长的过程中发现作物生长模型是基于单植水平的系统,在小面积的马铃薯潜在产量估算上作物生长模拟模型比较适用,而在更大面积或更大的空间区域,潜在产量受到作物遗传特性和周围环境等的综合影响,其估算结果往往并不理想[87],因此需要借助一些技术手段,将马铃薯生长模型作物与作物的估产区划、空间数据库以及空间信息技术相互结合来估算其潜在产量。蔡承智等[88]根据FAO和国际应用系统分析研究所(IIASA)基于中国1961―1997年的统计资料(经多方校正)共同开发的AEZ模型,运用GIS 平台计算了中国41个农作制亚区的马铃薯生产潜力,并指出了单产最高潜力的区域分布。研究结果表明,作物在最适宜区域种植的潜在产量很大的程度上可以被认为是该作物潜在产量的最大值,而在其它地区几乎是不能达到的。

随着越来越多马铃薯生长模型的建立与发展,人们开始对未来环境气候下的马铃薯产量进行预测分析。在2008年,孙芳等[89]将SUBSTOR-POTATO模型[90]和中心区域气候模型(PRECIS)相结合,模拟估算了在空气中CO2浓度比目前水平高30%~49%的情况下马铃薯的生长状况,结果表明,在未来气温有一定升高的情况下,马铃薯产量相对目前也会有一定的提高。同时,人们在研究马铃薯潜在产量过程中,利用生长模型调节其中的相关因素,适当调整田间管理模式、水分肥料供应量等来提高马铃薯的潜在产量。Alva等[91]在2010年利用不同品种马铃薯的产量数据,对Crop Syst VB-CSPotato等模型的参数及预测的潜在产量结果进行了验证和分析,为这些模型参数的精确度提供了参考依据。

3 马铃薯潜在产量研究的前景展望

研究马铃薯潜在产量的最终目的是找出潜在产量与实际产量的产量差,找到导致产量差的限制因素,从根本上提高马铃薯的产量。随着人口的急剧增长,马铃薯作为世界第四大粮食作物被越来越注重,国内外对于马铃薯潜在产量的研究也越来越多,马铃薯潜在产量的概念及其分析方法也越来越规范。然而马铃薯潜在产量的研究是一项十分复杂的工作,随着农业科技的发展,对马铃薯潜在产量研究的要求也越来越高,不仅需要对马铃薯产量的形成机理进行充分的分析及了解,同时还需要掌握与马铃薯生长有关的外界环境数据资料。

目前在马铃薯潜在产量研究中仍然存在着一些亟待解决的问题,包括:1)马铃薯潜在产量的划分层次和方法不同,使得研究分析中所得结果的可比性较差[92];2)马铃薯潜在产量的概念和计算分析方法不同,且随着作物模型的发展、模型之间分析机理的不同,分析结果也存在较大的差异[93]。

综上所述,未来在对马铃薯潜在产量的研究中应该加强以下几项研究:1)随着马铃薯生长模型研究越来越完善,以及遥感技术(RS)和地理信息系统(GIS)等新技术手段在农业上的广泛运用,如何将这些技术与马铃薯生长模型相结合是今后马铃薯潜在产量的研究重点;2)进一步探讨研究马铃薯的光合作用机理,为马铃薯潜在产量的研究提供明确的科学依据;3)由于目前对马铃薯潜在产量的研究仍然局限于气候土壤等自然因素,很少考虑到社会经济、管理技术、作物品种特性、自然灾害等因素对马铃薯潜在产量的影响,而气候又有很大的不确定性,因此,将自然因素与社会经济等因素相结合也是马铃薯潜在产量未来的一个研究方向。

References:

[1] Stastná M,Toman F,Dufková J.Usage of SUBSTOR model in potato yield prediction.General Information,2010,97(2):286-290.

[2] 秦尚云,安文正.马铃薯——阴山北麓丘陵区的优势作物.中国农业资源与区划,2004,25(6):33-36.

Qin S Y,An W Z.Potato——Crop with advance in hilly areas at the northern foot of Yin Mountain.Chinese Journal Resources and Regional Planning,2004,25(6):33-36.(in Chinese)

[3] 何三信.甘肃省马铃薯生产优势区域开发刍议.中国农业资源与区划,2008,29(3):66-68.

He S X.Initiate discussion on developing priority region for potato production in Gansu Province.Chinese Journal Agricultural Resources and Regional Planning,2008,29(3):66-68.(in Chinese)

[4] 陈亮,洪龙,张凌青,罗晓瑜,胡世强,张建勇,白瑞,蒙向武.马铃薯淀粉渣与玉米秸秆混贮饲喂肉牛效果的研究.饲料研究,2014(9):45-48.

[5] 程方,李巨秀,来航线,张高波,卫伟.多菌种混合发酵马铃薯渣产蛋白饲料.食品与发酵工业,2015,41(2):95-101.

Chen F,Li J X,Lai H X,Zhang G B,Wei W.Research on production of protein feed from mixed-strains fermentation of potato residue.Food and Fermentation Industries,2015,41(2):95-101.(in Chinese)

[6] 杨永在,王长水,梁艺洵,姬琳堡,夏传齐,曹兵海.不同添加物对马铃薯茎叶青贮品质的影响.中国草食动物科学,2015,35(5):34-38.

Yang Y Z,Wang C S,Liang Y X,Ji L B,Xia C Q,Cao B H.Effects of different additives on silage quality of potato steam and leave.China Herbivore Science,2015,35(5):34-38.(in Chinese)

[7] Chen J,Tang C,Shen Y,Sakure Y,Fukushima Y.Nitrate pollution of groundwater in a wastewater irrigated field in Hebei Province,China.Wastewater Re-use and Groundwater Quality An International Symposium,2004(285):23.

[8] 刘洋,高明杰,何威明,张晴,罗其友.世界马铃薯生产发展基本态势及特点.中国农学通报,2014,30(20):78-86.

Liu Y,Gao M J,He W M,Zhang Q,Luo Q Y.Analysis on the basic trend and characteristics of world potatoes production.Chinese Agricultural Science Bulletin,2014,30(20):78-86.(in Chinese)

[9] 刘洋,罗其友,高明杰.世界马铃薯生产及其贸易的发展现状分析.世界农业,2011(8):46-51.

Liu Y,Luo Q Y,Gao M J.Analysis the production and trade of world potatoes production.World Agriculture,2011(8):46-51.(in Chinese)

[10] Evans L T.Crop Evolution,Adaptation and Yield.Cambridge:Cambridge University Press,1993.

[11] Ittersum M K V,Rabbinge R.Concepts in production ecology for analysis and quantification of agricultural input-output combinations.Field Crops Research,1997,52(3):197-208.

[12] Evans L T,Fischer R A.Yield potential:Its definition,measurement,and significance.Crop Science,1999,39(6):1544-1551.

[13] 侯亚兵.河南省玉米生产潜力及增产途径研究.郑州:河南农业大学硕士学位论文,2007.

Hou Y B.The studies on the potential productivity and technology approach for increasing yield of maize in Henan Province.Master Thesis.Zhengzhou:Henan Agricultural University,2007.(in Chinese)

[14] Ittersum M K V,Cassman K G,Grassini P,Wolf J,Tittonell P,Hochman Z.Yield gap analysis with local to global relevance——A review.Field Crops Research,2013,143(1):4-17.

[15] Datta S K D.Principles and Practices of Rice Production.New York(USA):Wiley Interscience Publications,1981.

[16] Cassman K G,Dobermann A,Walters D T,Yang H.Meeting cereal demand while protecting natural resources and improving environmental quality.Social Science Electronic Publishing,2011,28(4):315-358.

[17] 李军,王立祥,邵明安,樊廷录.黄土高原地区小麦生产潜力模拟研究.自然资源学报,2001,16(2):161-165.

Li J,Wang L X,Shao M A,Fan T L.Simulation of wheat potential productivity on Loess Plateau region of China.Journal of Natural Resources,2001,16(2):161-165.(in Chinese)

[18] 赵春生.对京郊玉米高产潜力分析.北京农业,1998(4):7.

Zhao C S.Analysis of high yield potential to maize to Beijing outskirts.Beijing Agriculture,1998(4):7.(in Chinese)

[19] Lobell D B,Cassman K G,Field C B.Crop yield gaps:Their importance,magnitudes,and causes.Annual Review of Environment and Resources,2009,34(1):179-204.

[20] Tittonell P,Shepherd K D,Vanlauwe B,Giller K E.Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya——An application of classification and regression tree analysis.Agriculture,Ecosystems & Environment,2008,123(1-3):137-150.

[21] Fermont A M,Asten P J A V,Tittonell P,Wijk M T V,Giller K E.Closing the cassava yield gap:an analysis from small-holder farms in East Africa.Field Crops Research,2009,112(1):24-36.

[22] Wairegi L W I,Asten P J A V,Tenywa M M,Bekunda M A.Abiotic constraints override biotic constraints in East African highland banana systems.Field Crops Research,2010,117(1):146-153.

[23] Hochman Z,Carberry P S,Robertson M J,Gaydon D S,Bell L W,Mclntosh P C.Prospects for ecological intensification of Australian agriculture.European Journal of Agronomy,2013,44(2):109-123.

[24] Albersen P,Fischer G,Keyzer M,Sun L.Estimation of Agricultural Production Relations in the LUC Model for China.Laxenburg,Austria:IIASA,2002.

[25] Grassini P,Thorburn J,Burr C,Cassman K G.High-yield irrigated maize in the Western U.S corn belt:Ⅰ.On-farm yield,yield potential,and impact of agronomic practices.Field Crops Research,2011,120(1):142-150.

[26] Laborte A G,Bie K C D,Smaling E M A,Moya P F,Boling A A,Ittersum M K V.Rice yields and yield gaps in Southeast Asia:Past trends and future outlook.European Journal of Agronomy,2012,36(1):9-20.

[27] Donatelli M K,Ittersum M V.Modelling cropping systems-highlights of the symposium and preface to the special issues.European Journal of Agronomy,2003,18(18):187-197.

[28] 姜志伟,陈仲新,周清波,任建强.CERES-Whea作物模型参数全局敏感性分析.农业工程学报,2011,27(1):236-242.

Jiang Z W,Chen Z X,Zhou Q B,Ren J Q.Global sensitivity analysis of CERES-Wheat model parameters.Transaction of the CSAE,2011,27(1):236-242.(in Chinese)

[29] 戴明宏,陶洪斌,廖树华,王利纳,王璞.基于CERES-Maize模型的华北平原玉米生产潜力的估算与分析.农业工程学报,2008,24(4):30-36.

Dai M H,Tao H B,Liao S H,Wang L N,Wang P.Estimation and analysis of maize potential productivity based on CERES-Maize model in the North China Plain.Transaction of the CSAE,2008,24(4):30-36.(in Chinese)

[30] 罗霄,李忠武,叶芳毅,黄金权.水稻生长模型CERES-Rice的研究进展及展望.中国农业科技导报,2009,11(5):54-59.

Luo X,Li Z W,Ye F Y,Huang J Q.Progress and prospects of studies on CERES-Rice models.Journal of Agricultural Science and Technology,2009,11(5):54-59.(in Chinese)

[31] Mithra V S S,Somasundaram K.A model to simulate sweet potato growth.World Applied Sciences Journal,2008,34(4):1873-1877.

[32] Vandendriessche H J.A model of growth and sugar accumulation of sugar beet for potential production conditions:SUBEMOpoⅡ.Model performance.Agricultural Systems,2000,64(1):21-35.

[33] 潘学标,韩湘玲,石元春.COTGROW:棉花生长发育模拟模型.棉花学报,1996(4):180-188.

Pan X B,Han X L,Shi Y C.COTGROW:Cotton growth and development simulation model.Cotton Science,1996(4):180-188.(in Chinese)

[34] Baker D N,Lambert J R,Mckinion J M.GOSSYM:A Simulator of Cotton Crop Growth and Yield.Columbia:South Carolina Agricultural Experiment Station,1983.

[35] Jone J W,Hongenboom G,Porter C H,Boote K J,Gijsman A J,Hunt L A,Wilkens P W,Singh U,Ritchie J T.The DSSAT cropping system model.European Journal of Agronomy,2003,18(3-4):235-265.

[36] Sau F,Boote K J,Bostick W M,Jonesc J W,Mínguez M I.Testing and improving evapotranspiration and soil water balance of the DSSAT crop models.Agronomy Journal,2004,96(5):1243-1257.

[37] 杨勤,许吟隆,林而达,熊伟,陈晓光.DSSAT作物模型对宁夏春小麦的模拟应用.中国气象学会2008年年会气候变化分会场论文集.北京:中国气象学会,2008.

Yang Q,Xu Y L,Lin E D,Xiong W,Chen X G.DSSAT model simulation application to spring wheat in Ningxia.Chinese Meteorological Society in mid-2008 will be the venue of climate change Proceedings.Beijing:Chinese Meteorological Society,2008.(in Chinese)

[38] Xu M,Liang X,Gao W,Reddy K R,Slusser J,Kunker K.Preliminary results of the coupled CWRF-GOSSYM system.Proceedings of SPIE——The International Society for Optical Engineering,2005:9.

[39] 林海,胡锡宁,陈冠文,余渝.棉花生长动态模拟模型系统GOSSYM的应用.新疆农业大学学报,1999,22(1):51-55.

Lin H,Hu X N,Chen G W,Yu Y.Application on cotton growth and development dynamic simulation model GOSSYM.Journal of Xinjiang Agricultural University,1999,22(1):51-55.(in Chinese)

[40] Liu J,Wiberg D,Zehnder A J B,Yang H.Modeling the role of irrigation in winter wheat yield,crop water productivity,and production in China.Irrigation Science,2007,26(1):21-33.

[41] Lu C H,van Ittersum M K,Rabbinge R.A scenario exploration of strategic land use options for the Loess Plateau in northern China.Agricultural Systems,2004,79(2):145-170.

[42] 王学春,李军,郝明德.基于EPIC模型的黄土高原旱地草粮轮作田土壤湿度模拟.草业科学,2010,27(12):11-20.

Wang X C,Li J,Hao M D.Soil moisture simulation of cereal-alfalfa rotation system in the arid-land Loess Plateau based on EPIC model.Pratacultural Science,2010,27(12):11-20.(in Chinese)

[43] Wokabi S M.Effectiveness of WOFOST simulation model to predict maize yield gaps on the eastern slopes of Mt Kenya.East African Agricultural and Forestry Journal,2003,69(2):139-147.

[44] 马玉平,王石立,张黎.针对华北小麦越冬的WOFOST模型改进.中国农业气象,2005,26(3):145-149.

Ma Y P,Wang S L,Zhang L.Study on improvement of WOFOST against overwinter of wheat in North China.Chinese Journal of Agrometeorology,2005,26(3):145-149.(in Chinese)

[45] Asseng S,Keating B A,Fillery I R P,Gregory P J,Bowden J W,Turner N C,Palta J A,Abrecht D G.Performance of the APSIM-wheat model in western Australia.Field Crops Research,1998,57(2):163-179.

[46] 聂志刚,李广.基于APSIM模型的可视化小麦生长系统分析.草业科学,2013,30(2):795-798.

Nie Z G,Li G.Analysis of APSIM-based visual growth system in wheat.Pratacultural Science,2013,30(2):795-798.(in Chinese)

[47] 雷娟娟,闫丽娟,李广,董莉霞,高珍妮.基于APSIM模型光照与CO2对小麦的影响机制.草业科学,2015,32(8):1310-1316.

Lei J J,Yan L J,Li G,Dong L X,Gao Z N.Effects of CO2and illumination on wheat grain yields based on APSIM model.Pratacultural Science,2015,32(8):1310-1316.(in Chinese)

[48] 张卫东,范荣尚,贾家贤,牛新霞.阿克苏地区枣粮间作高产配套栽培技术.新疆农业科技,2010(2):54-55.

Zang W D,Fan R S,Jia J X,Niu X X.Aksu area jujube crop intercropping high yield cultivation techniques.Xinjiang Agricultural Science and Technology,2010(2):54-55.(in Chinese)

[49] 刘开昌,胡昌浩,董树亭,王空军,李爱芹.高油玉米需磷特性及磷素对籽粒营养品质的影响.作物学报,2001,27(2):267-272.

Liu K C,Hu C H,Dong S T,Wang K J,Li A Q.Characteristic of phosphorus absorption of high oil maize and effects of phosphor on its kernel quality.Acta Agronomica Sinica,2001,27(2):267-272.(in Chinese)

[50] Licker R,Johnston M,Foley J A,Barford C,Kucharik C J,Monfrede C,Ramankutty N.Mind the gap:How do climate and agricultural management explain the ‘yield gap’ of croplands around the world.Global Ecology and Biogeography,2010,19(6):769-782.

[51] Liebig J F V,Playfair L P B,Webster J W.Organic Chemistry in Its Applications to Agriculture and Physiology.Cambridge:Owen,1841.

[52] Richards R A.Selectable traits to increase crop photosynthesis and yield of grain crops.Journal of Experimental Botany,2000,51:447-458.

[53] Bonner J.The upper limit of crop yield.Science,1962,137:11-15.

[54] Ying J,Peng S,He Q,Yang H,Yang C,Visperas R M,Cassman K G.Comparison of high-yield rice in tropical and subtropical environments I.Determinants of grain and dry matter yields.Field Crops Research,1998,57(1):71-84.

[55] Barker R K,Gomez A,Herdt R W.Farm-level constraints to high rice yields in Asia:1974-77.IRRI,Los Banos:Philippines,1979.

[56] Loomis R S,Williams W A.Maximum crop productivity:An estimate.Crop Science,1963,3(1):67-72.

[57] De Wit C T.Photosynthesis of leaf canopies.Wageningen:Center for Agricultural Publications and Documentation,1965.

[58] De Wit C T.Simulation of assimilation,respiration and transpiration of crops.Wageningen:Simulation Monographs Pudoc Wageningen,1978:1-112.

[59] Muchow R C,Hammer G L,Vanderlip R L.Assessing climatic risk to sorghum production in water-limited subtropical environments Ⅱ.Effects of planting date,soil water at planting,and cultivar phenology.Field Crops Research,1994,36(3):235-246.

[60] Verdoodt A,Ranst E,Averbeke W.Modelling crop production potentials for yield gap analysis under semiarid conditions in Guquka,South Africa.Soil Use and Management,2003,19(4):372-380.

[61] Hodges T,Botner D,Sakamoto C,Haug J H.Using the CERES-Maize model to estimate production for the US Cornbelt.Agricultural and Forest Meteorology,1987,40(4):293-303.

[62] Phillips J G,Cane M A,Rosenzweig C.ENSO,seasonal rainfall patterns and simulated maize yield variability in Zimbabwe.Agricultural and Forest Meteorology,1998,90(1):39-50.

[63] Southworth J,Randolph J C,Habeck M,Dorring O C,Pfeifer R A,Rao D G,Johnsto J J.Consequences of future climate change and changing climate variability on maize yields in the midwestern United States.Agriculture Ecosystems and Environment,2000,82:139-158.

[64] Mati B M.The influence of climate change on maize production in the semi-humid-semi-arid areas of Kenya.Journal of Arid Environments,2000,46(4):333-344.

[65] O’Neal M R,Frankenberger J R,Ess D R.Use of ceres-maize to study effect of spatial precipitation variability on yield.Agricultural Systems,2002,73(1):205-225.

[66] 李军,王立祥,邵明安,樊廷录.黄土高原地区玉米生产潜力模拟研究.作物学报,2002,28(4):555-560.

Li J,Wang L X,Shao M A,Fan T L.Simulation of maize potential productivity in the Loess Plateau Region of China.Acta Agronomica Sinica,2002,28(4):555-560.(in Chinese)

[67] Wang J,Wang E,Yin H,Feng L,Zhang J P.Declining yield potential and shrinking yield gaps of maize in the North China Plain.Agricultural and Forest Meteorology,2014,195(2):89-101.

[68] 靳华安,王锦地,柏延臣,陈桂芬,薛华柱.基于作物生长模型和遥感数据同化的区域玉米产量估算.农业工程学报,2012,28(6):162-173.

Jin H A,Wang J D,Bo Y C,Chen G F,Xue H Z.Estimation on regional maize yield based on assimilation of remote sensing data and crop growth model.Transactions of the Chinese Society of Agricultural Engineering,2012,28(6):162-173.(in Chinese)

[69] 史静,陈本建.马铃薯渣的综合利用与研究进展.青海草业,2013,22(1):42-50.

Shi J,Chen B J.The research progress of potato pulp comprehensive utilization.Qinghai Prataculture,2013,22(1):42-50.(in Chinese)

[70] Oxenboll K M,Pontoppidan K,Frunji F.Use of a protease in poultry feed offers promising environmental benefits.International Journal of Poultry Science,2011,10(11):842-848.

[71] 王典,李发弟,张养东,卜登攀,孙鹏,周凌云.马铃薯淀粉渣和玉米秸秆混合青贮料对肉牛瘤胃内环境及血清生化指标的影响.动物营养学报,2012,24(7):1361-1367.

Wang D,Li F D,Zhang Y D,Bu D P,Sun P,Zhou L Y.Mixed silage of potato pulp and corn straw affects rumen environment and serum biochemical parameters of beef cattle.Chinese Journal of Animal Nutrition,2012,24(7):1361-1367.(in Chinese)

[72] 李伟,刘涛,陆占国.马铃薯茎叶再利用研究.作物杂志,2009(3):52-54.

Li W,Liu T,Lu Z G.Re-utilization of potato stalks and leaves.Crops,2009(3):52-54.(in Chinese)

[73] 张增欣,邵涛.青贮添加剂研究进展.草业科学,2006,23(9):56-63.

Zhang Z X,Shao T.Research progress in silage additive.Pratacultural Science,2006,23(9):56-63.(in Chinese)

[74] 何玉鹏,郭艳丽,秦士贞,马淑梅,杜进娇,郑琛,赵芳芳.添加小麦麸对马铃薯茎叶青贮品质的影响.郑州:中国饲料营养学术研讨会,2014.

[75] 张雄杰,卢鹏飞,盛晋华,陈浩.马铃薯秧藤的饲用转化及综合利用研究进展.畜牧与饲料科学,2015(5):50-54.

Zhang X J,Lu P F,Sheng J H,Chen H.Research progress on forage transformation and integrated utilization of potato stem.Animal Husbandry and Feed Science,2015(5):50-54.(in Chinese)

[76] Stigter C J,Goudriaan J,Bottemanne F A,Birnie J,Lengkeek J G,Sibma L.Experimental evaluation of a crop climate simulation model for Indian corn (ZeamaysL.).Agricultural Meteorology,1977,18(77):163-186.

[77] Ng N,Loomis R S.Simulation of Growth and Yield of the Potato Crop.Wageningen:Kluwer Academic Publishers,1984:305-306.

[78] Feddes R A,Kabat P,Van Bakel P J T,Bronswijk J J B,Halbertsma J.Modelling soil water dynamics in the unsaturated zone-state of the art.Journal of Hydrology,1988,100(1):69-111.

[79] 姜鸿明.预测马铃薯出苗期的数学模型.农业新技术新方法译丛,1990(2):25-28.

[80] Bowen W,Cabrera H,Barrera V,Baigorria G.Simulating the response of potato to applied nitrogen.CIP Program Report 1997-1998.

[81] Kooman P L,Rabbinge R.An analysis of the relation between dry matter allocation to the tuber and earliness of a potato crop.Annals of Botany,1996,77(3):235-242.

[82] Spitters C J T,Schapendonk A.Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation.Genetic Aspects of Plant Mineral Nutrition,1990,123:151-161.

[83] Aggarwal P K,Kalra N,Chander S,Pathak H.InfoCrop:A Generic Simulation Model for Annual Crops in Tropical Environments.India:New Delhi,Indian Agricultural Research Institute,2004:132.

[84] Hodges T,Johnson S L,Johnson B S.A modular structure for crop simulation models:Implemented in the SIMPOTATO model.Agronomy Journal,1992,84(5):911-915.

[85] Stockle C O,Martin S A,Campbell G S.CropSyst,a cropping systems simulation model:Water/nitrogen budgets and crop yield.Agricultural Systems,1994,46(3):335-359.

[86] Hijmans R J.The effect of climate change on global potato production.American Journal of Potato Research,2003,80(4):271-279.

[87] 杨重一,庞士力,孙彦坤.作物生产潜力研究现状与趋势.东北农业大学学报,2008,39(7):140-144.

Yang Z Y,Pang S L,Sun Y K.Current status and trend of crop potential productivity.Journal of Northeast Agriculture University,2008,39(7):140-144.(in Chinese)

[88] 蔡承智,Velthuizen H V,Fischer G,Prieler S.基于AEZ模型的我国马铃薯产量潜力的农作制区划分析.中国马铃薯,2006,20(4):207-211.

Cai C Z,Velthuizen H V,Fischer G,Prieler S.Analyses of potato yield potential by Chinese farming system zoning based on AEZ model.Chinese Potato Journal,2006,20(4):207-211.(in Chinese)

[89] 孙芳,林而达,李剑萍,熊伟.基于DSSAT模型的宁夏马铃薯生产的适应对策.中国农业气象,2008,29(2):127-129.

Sun F,Lin E D,Li J P,Xiong W.Study on adaptation measures of potato production by using DSSAT crop model.Chinese Journal of Agrometeorology,2008,29(2):127-129.(in Chinese)

[90] Travasso M,Caldiz D,Saluzzo J.Yield prediction using the SUBSTOR-potato model under Argentinian conditions.Potato Research,1996,39(2):305-312.

[91] Alva A K,Marcos J,Stockle C,Reddy V R,Timlin D.A crop simulation model for predicting yield and fate of nitrogen in irrigated potato rotation cropping system.Journal of Crop Improvement,2010,24(2):142-152.

[92] 罗毅,郭伟.作物模型研究与应用中存在的问题.农业工程学报,2008,24(5):307-312.

Luo Y,Guo W.Development and problems of crop models.Transactions of the CSAE,2008,24(5):307-312.(in Chinese)

[93] 曹宏鑫,赵锁劳,葛道阔,刘永霞,刘岩,孙金英,岳延滨,张智优,陈煜利.作物模型发展探讨.中国农业科学,2011,44(17):3520-3528.

Cao H X,Zhao S L,Ge D K,Liu Y X,Liu Y,Sun J Y,Yue Y B,Zhang Z Y,Chen Y L.Discussion on development of crop models.Scientia Agricultura Sinica,2011,44(17):3520-3528.(in Chinese)

(责任编辑 王芳)

Analysis method of forage-use potato potential yields

(1.Gansu Key Lab of Crop Improvement & Germplasm Enhancement-Gansu Provincial Key Lab of Arid land Crop Science, Lanzhou 730070, China;2.College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

The difference between actual and potential yields of crop is called yield gap. Potential yield reflects the theoretical upper-limit of crop production in a certain region. Prediction of crop potential yield can help confirm the upper-limit of crop yield and have an insight into the study and analysis of yield gap and limiting factors of yield. This paper summarized the current progresses in the studies of potato potential yield and proposed the priorities in the study of potato potential yield in the future. The difference between actual and potential yields of crop is called yield gap. Potential yield reflects the theoretical upper-limit of crop production in a certain region. Prediction of crop potential yield can help to confirm the upper-limit of crop yield and have an insight into the study and analysis of yield gap and limiting factors of yield. This paper summarized the current progresses in the studies of potato potential yields. The current main problems in the research on the potential yield of potato lies in that the concept, calculation and analysis methods and the analysis mechanism among crop models are different, which result in the analysis results are quite different. In the future, the research on the potential yield of potato should focus on that the growth model of potato is combined with the new techniques of remote sensing technology (RS), geographic information system (GIS), and the study method should change from original single analysis

potato; potential yield; yield gap; growth model

Bai Jiang-ping E-mail:baijp@gsau.edu.cn

10.11829/j.issn.1001-0629.2015-0670

2015-12-01 接受日期:2016-08-25

科技部国际科技合作项目(2014DFG31570);国家自然科学基金(31460369);中国科学院西部之光项目;甘肃科技基金(1308RJZA131、1308RJIA005);兰州科技研究项目(2013-4-156)

赵锋(1990-),男,甘肃庆阳人,在读硕士生,主要从事马铃薯遗传育种研究。E-mail:364357302@qq.com

白江平(1978-),男,甘肃天水人,副教授,博士,主要从事马铃薯遗传育种研究。E-mail:baijp@gsau.edu.cn

S532-33

A

1001-0629(2016)11-2326-11*

猜你喜欢
马铃薯作物产量
马铃薯有功劳
今年前7个月北海道鱼糜产量同比减少37%
初夏马铃薯 田间管理抓哪些
提高玉米产量 膜下滴灌有效
春栽马铃薯种植技术
作物遭受霜冻该如何补救
四种作物 北方种植有前景
海水稻产量测评平均产量逐年递增
内生微生物和其在作物管理中的潜在应用
作物遭受药害的补救措施