黄园,南海红,张星星,汤恒星
镉对斜生栅藻诱导型反牧食防御群体形成的抑制作用
黄园,南海红,张星星,汤恒星
南京师范大学生命科学学院,江苏 南京 210023
水域生态系统的镉污染因对生物具有强毒性而引起人们广泛关注。浮游藻类的反牧食防御在维持种群动态和群落结构方面具有重要作用,但目前关于镉污染对藻类反牧食防御的影响并不清楚。采用在斜生栅藻(Scenedesmus obliquus)培养液中添加浮游动物——大型溞(Daphnia magna)信息素的方法诱导藻类反牧食防御,同时将其暴露在不同镉浓度环境下(0~0.32 mg·L-1),以探究藻类反牧食防御对镉胁迫的响应变化。结果发现,添加大型溞信息素对斜生栅藻生长速率、最大光化学效率(Fv/Fm)和实际光合效率(φPSII)均没有显著影响;无镉环境中添加大型溞信息素后,栅藻种群分别在第2天和第3天形成大量的四细胞和八细胞群体,其群体比例分别达到42.7%和46.4%,最大每群体细胞数可达到(3.3±0.20);在0.10~0.32 mg·L-1镉浓度范围内,栅藻细胞生长速率和光合作用均受抑制,其多细胞群体比例也显著下降;当镉浓度较低时(≤0.08 mg·L-1),栅藻种群繁殖和光合效率均没有明显变化,但其多细胞群体比例显著降低,诱导型反牧食防御被抑制。以上结果说明浮游藻类的诱导型反牧食防御对镉污染具有较强的敏感性,低浓度镉暴露可对其产生较强的抑制作用,这将导致镉污染水域中的可诱导型藻类更易被小型浮游动物捕食,进而影响食物链的能量流动。
镉;斜生栅藻;反牧食防御;群体形成;大型溞
引用格式:黄园, 南海红, 张星星, 汤恒星. 镉对斜生栅藻诱导型反牧食防御群体形成的抑制作用[J]. 生态环境学报, 2016,25(7): 1202-1210.
HUANG Yuan, NAN Haihong, ZHANG Xingxing, TANG Hengxing. Inhibitory Effect of Cadmium on the Inducible Anti-grazer Colony Formation in Scenedesmus obliquus [J]. Ecology and Environmental Sciences, 2016, 25(7): 1202-1210.
由重金属污染导致的水生生物毒性及后期的生物富集与放大作用正受到越来越多的关注(Herpin et al.,1996)。镉是在合金、釉料、颜料生产等工业中被大量使用的一种金属,经化工厂废水排放等途径进入水体,被美国环境保护署列为最为严重的环境污染物之一(Awad et al.,2005)。除了对水生动物的直接毒性作用,镉可在水生植物(如栅藻)体内积累,对其生长、生理活性产生一定的影响。早期研究发现镉浓度达到0.02 mg·L-1时可显著降低栅藻的色素含量,进而抑制藻类种群增长,并随镉浓度升高这种抑制作用更加明显(Mohammed et al.,2006;Monteiro et al.,2011);Tukaj et al.(2007)研究发现镉暴露可直接破坏藻类的叶绿素和液泡系统结构;镉对藻类的细胞毒性也体现在其对光合、呼吸作用等生理代谢过程的抑制方面(Ilangovan et al.,1998;Le Faucheur et al.,2005;Kováčik et al.,2011)。
除了作为生态系统的重要组成部分,藻类与浮游动物的捕食关系亦广泛存在于水域系统中,在维持物种多样性和生态系统稳定性方面具有重要作用(Drossel et al.,2001)。为抵御浮游动物捕食,许多浮游植物可以通过形态改变(形成棘刺、厚细胞壁、集群等)进行反牧食防御(Kampe et al.,2007;Van Donk et al.,2011),其中栅藻属(Scenedesmus)微藻是具有反牧食防御特征藻类的典型代表。在浮游动物摄食藻类时,单细胞形态栅藻可“感受”到牧食者释放的信息物质以觉察到牧食者存在,进而产生典型的四细胞或者八细胞生态型的诱导型防御群体(O'Donnell et al.,2013)。对于藻类而言,诱导型防御群体的形成可明显增大集群细胞体积,降低被浮游动物摄食的风险,提高在强牧食压力下的种群存活率;而对于浮游动物,由于藻类形成诱导型防御群体后其体积增大,许多小型浮游动物如轮虫(Brachionus)和网纹溞(Ceriodaphnia)对藻类的摄食率降低,进而影响浮游动物的种群繁殖(Mayeli et al.,2005)。在水域生态系统不受外界严重干扰的情况下,微藻诱导型防御群体形成可有效防止食物链不同营养级生物种群的剧烈波动,从而维持群落结构的相对稳定性(Vos et al.,2004;Stap et al.,2006)。
在重金属污染的水体中,浮游藻类既面临来自重金属毒性的胁迫,又面临被浮游动物牧食的风险,在这双重压力下具有防御特性的藻类将如何响应呢?藻类的诱导型防御行为很可能因金属毒性的影响而呈现出不同的形态变化,从而改变水体中浮游生物种间关系并进一步影响生态系统稳定性。基于此,本文分别选用镉和栅藻作为研究对象,分析镉胁迫下斜生栅藻(Scenedesmus obliquus)反牧食防御的变化。基于早期镉对浮游藻类的毒性及栅藻表型防御的相关研究,推测镉胁迫对栅藻生长、光合作用具有抑制作用,从而破坏其反牧食防御。
1.1实验生物和培养体系
实验所用的斜生栅藻,编号为FACHB-416,由中国科学院水生生物研究所淡水藻种库提供,采用BG11培养基(Rippka et al.,1979)于恒温光照培养箱内培养,培养条件为温度25 ℃,光照强度50 μmol·m-2·s-1,光暗周期比为14 h∶10 h,每天摇瓶3~4次,平均每3天添加1次新鲜培养基,使栅藻培养系处于指数生长期。
通过添加浮游动物滤液(内含浮游动物信息素)诱导栅藻反牧食防御行为是目前国际上的通行方法(Hessen et al.,1993;Zhu et al.,2016)。本实验选用的浮游动物为实验室内常年保存种——大型溞(Daphnia magna),以曝气自来水培养,每天投喂足量斜生栅藻,并及时清理代谢物以保证浮游动物处于良好的生长状态。
1.2实验设计
1.2.1制备大型溞滤液
大型溞培养滤液中含有促使斜生栅藻产生诱导型防御的信息素,其主要成分为多种脂肪族硫酸盐类和氨基磺酸盐类物质(Yasumoto et al.,2008)。首先将大型溞饥饿24 h,去除其排泄物质可能带来的外源营养盐,然后挑选状态良好、大小适宜的大型溞,用不含N、P的BG11培养基培养24 h,初始密度300 inds·L-1,培养温度25 ℃,光照强度50 μmol·m-2·s-1,光暗周期比为14 h∶10 h,并投喂密度为2×106cells·m L-1的斜生栅藻。之后采用0.1 μm孔径的微孔滤膜进行抽虑,即得到大型溞培养滤液。同时过滤含有斜生栅藻但未包含大型溞的BG11培养液作为对照滤液。调整两滤液中N、P含量使其保持一致。
1.2.2预实验分析
BG11培养基中的EDTA(1 mg·L-1)可降低镉的生物毒性(Campbell et al.,2000),因此先预实验研究EDTA的添加是否影响斜生栅藻诱导型防御行为。取对数生长期斜生栅藻分别添加至70 mL含EDTA和不含EDTA的BG11培养基中,并分别添加30 m L对照滤液(对照组)和30 m L大型溞滤液(处理组),实验容器为150 mL锥形瓶,每组3个平行,共2(对照组与处理组)×2(EDTA添加与去除)×3(平行)=12个锥形瓶。斜生栅藻初始实验密度约1.0×105cells·m L-1,共培养9 d,每天摇瓶3~4次并随机调换位置以保证光照均匀性,培养条件与上述相同。
1.2.3镉实验
因污染程度差异自然水体中可溶性镉含量波动较大,如英国部分水域镉质量浓度约0.20×10-3mg·L-1,但在日本等国家的工业废水管理中镉的允许排放量可高达0.10 mg·L-1。Ward et al.(2005)研究发现镉浓度达到0.18 mg·L-1时大型溞(D. magna)种群生长不受影响,可正常牧食浮游藻类。基于此,本实验共设置5个镉浓度:0、0.05、0.08、0.10以及0.32 mg·L-1。以蒸馏水溶解分析纯CdCl2制备镉母液(镉浓度为25.0 mg·L-1)。取对数生长期斜生栅藻添加至70 mL不含EDTA的BG11培养基中,并分别添加30 mL对照滤液(对照组)和30 mL大型溞滤液(处理组),通过添加不同体积镉母液,达到实验设定浓度,镉浓度利用原子吸收分光光度计-火焰法确定(Chen et al.,2001)。实验容器为150 m L锥形瓶,每组3个平行,共2(对照组与处理组)×5(Cd2+浓度)×3(平行)=30个锥形瓶。实验条件与预实验相同。
1.3细胞密度及形态观察
实验开始后每天取样(2 m L)1次,以鲁戈氏液(2%)固定,显微镜下以血球计数板确定微藻细胞密度以及单细胞、二细胞、四细胞、八细胞及其他形态细胞个数,某一群体形态细胞所占比例以该形态下的细胞总数在总细胞密度中的百分含量表示,每群体细胞数以总细胞密度除以各个形态的细胞颗粒总数获得。根据公式μ=(ln Nt-ln N0)/t计算生长率(μ),Nt表示t天时藻细胞密度,N0表示初始藻细胞密度。
1.4光合效率测定
采用叶绿素荧光仪(Phyto-PAM)测定藻细胞光合效率。取2 mL藻液置于液相适配器中,暗适应后测定细胞在饱和脉冲光下的最小荧光(F0)和最大荧光(Fm),并计算最大光化学效率Fv/Fm=(Fm-F0)/Fm;之后测定光适应一段时间后的稳定最小荧光Fs和稳定最大荧光Fm′,计算实际光化学效率φPSII=(Fm′-Fs)/Fm′。
1.5统计分析
所有实验指标均采用平均值±标准误表述,利用SPSS 16.0、SigmaPlot 11.0软件进行数据统计分析并作图。藻类生长率采用两因素方差(two-way ANOVA)进行分析。对每群体细胞数、光合参数指标(Fv/Fm和φPSII)数据,采用Mauchly进行球形检验后进行重复测量方差分析(RM ANOVA),采用Bonferroni post hoc比较不同组间结果是否存在显著差异,以P<0.05为差异显著标准。
2.1EDTA去除对斜生栅藻生长和诱导型防御群体形成的影响
2.1.1EDTA去除对斜生栅藻生长的影响
对照组(含对照滤液)与处理组(含大型溞滤液)斜生栅藻在含EDTA的培养基中的生长率分别为(0.369±0.023)、(0.366±0.009),在不含EDTA的培养基中的生长率分别为(0.408±0.003)、(0.369±0.028)。两因素方差分析表明EDTA(F=0.626,P=0.567)与大型溞滤液(F=0.836,P=0.397)均对斜生栅藻生长率无显著性影响。EDTA的主要作用为络合铜、锌等金属离子,但因BG11培养基中金属离子浓度含量较低,故去除EDTA后培养基中游离态金属离子对藻细胞没有明显影响。另外,处理组中添加大型溞滤液也对斜生栅藻生长无影响,表明浮游动物“信息素”诱导栅藻防御群体形成与藻细胞生长是彼此独立的过程(Hessen et al.,1993;Lampert et al.,1994)。
2.1.2EDTA去除对斜生栅藻诱导型防御群体形成的影响
对照组中,无论是否去除EDTA,斜生栅藻种群均以单细胞为主,含EDTA与不含EDTA组其每群体细胞数量分别维持在1.0~1.34和1.0~1.33范围内(图1);添加大型溞滤液后,实验第3天处理组中均观察到大量八细胞群体,含EDTA和不含EDTA组其每群体细胞数分别升高至(3.46±0.09)和(3.47±0.32),之后随培养时间延长每群体细胞数呈下降趋势,推测可能是由于大型溞滤液中的“信息素”随时间逐渐降解,从而导致诱导效应降低(Wu et al.,2013)。重复测量方差分析(RM ANOVA)表明EDTA添加与否对处理组中斜生栅藻每群体细胞数量无显著性影响(F=0.172,P=0.700)。
图1 添加或去除EDTA培养基中对照组(A,含对照滤液)和处理组(B,含大型溞滤液)斜生栅藻的每群体细胞数变化Fig. 1 Variances in the mean number of cells per particle of S. obliquus cultured in medium with or without EDTA in the absence (A, control)or presence (B, treatment) of Daphnia filtrate
2.2镉暴露对斜生栅藻生长和诱导型防御影响
2.2.1镉浓度变化
随培养时间延长,培养基中镉浓度呈下降趋势,实验9 d后培养基中平均镉浓度由初始浓度0.05、0.08、0.10、0.32 mg·L-1分别降低为0.03、0.06、0.05,0.10 mg·L-1。微藻对重金属离子常具有较强的富集能力(Pérez-Rama et al.,2002;Peña-Castro et al.,2004a),其细胞壁上的功能基团(如多肽、多糖的氨基、羧基等)可与金属离子发生吸附反应,金属离子被动吸附在细胞表面,之后与质膜上的某些酶(如膜转移酶、水解酶等)结合从而被细胞主动转移至胞内(Gardea-Torresdey et al.,1990)。实验发现处理组和对照组中镉实测浓度无显著性差异(P>0.05),表明添加大型溞滤液并未影响栅藻细胞对镉的富集过程。
2.2.2镉暴露对斜生栅藻生长的影响
随镉浓度升高,对照组和处理组中斜生栅藻生长率均呈下降趋势(图2)。两因素方差分析表明大型溞滤液对栅藻生长率无显著性影响(F=0.838,P=0.371),这与预实验结果相一致;但镉浓度显著影响微藻生长率(F=11.467,P<0.001)。对照组中0.08 mg·L-1镉暴露下栅藻生长率显著下降17.3%,且镉浓度越高,生长抑制作用越明显(图2A);处理组中0.10~0.32 mg·L-1镉暴露下微藻生长率显著降低13.1%~17.8%(图2B)。镉对栅藻属微藻的生长抑制作用已被广泛研究,且抑制作用强弱受微藻种类、暴露时间、镉浓度等因素的影响(Terry et al.,2002;Tukaj et al.,2007;Monteiro et al.,2011)。镉对细胞生长的抑制作用主要通过与细胞蛋白的功能基团(如蛋白SH-groups)相互作用,进而抑制有关酶活性或导致酶失活实现的(Assche et al., 1990;Sharma et al.,2009)。
图2 不同镉浓度培养下对照组(A)和处理组(B)中斜生栅藻生长率Fig. 2 The grow th rates of S. obliquus in the absence (A, control) or presence (B, treatment) of Daphnia filtrate at different concentrations of cadmium
图3 不同镉浓度暴露下培养3、5、7、9 d后对照组与处理组中斜生栅藻的实际光合效率(φPSII)Fig. 3 The efficiency of photosystem II (φPSII) of S. obliquus populations grown for 3, 5, 7, and 9 days in the absence (control) or presence (treatment) of Daphnia filtrate at different concentrations of cadmium
2.2.3镉暴露对斜生栅藻光合效率的影响
除生长率外,光合效率的变化也体现了金属离子对藻类生长的影响(图3和图4)。添加大型溞滤液对藻细胞实际光合效率(φPSII)无显著性影响(F=0.649,P=0.427)(图3)。对照组和处理组中φPSII变化趋势均具有明显的镉浓度效应,即随镉浓度升高而明显下降。重复测量方差分析(RM ANOVA)表明对照组中镉质量浓度高于0.08 mg·L-1的处理显著降低了藻细胞φPSII值(P<0.05),处理组中φPSII在镉质量浓度高于0.10 mg·L-1时显著降低(P<0.05)。最大光化学效率(Fv/Fm)变化趋势与φPSII相似,对照组与处理组栅藻的Fv/Fm均随镉质量浓度升高而降低,实验第3天检测到高镉浓度(0.32 mg·L-1)下处理组Fv/Fm明显低于对照组的Fv/Fm。φPSII和Fv/Fm的变化均反映出不论是对照组还是处理组,镉均对栅藻光合作用产生了抑制作用。镉对植物光合作用的抑制作用往往与其降低光合色素含量、损害光合器官如捕光色素蛋白复合体、瓦解叶绿体片层结构、抑制CO2固定酶活性等过程密切相关(Ghoshroy et al.,1990;Larsson et al.,1998;Mobin et al.,2007)。
2.2.4镉暴露对斜生栅藻诱导型防御群体形成的影响
实验镉浓度范围内,对照组中斜生栅藻在实验期间每群体细胞数稳定在1~1.35范围内(图5)。添加大型溞滤液显著促进了栅藻每群体细胞数的增加(F=112.529,P<0.001),培养3 d后无镉环境中处理组栅藻每群体细胞数可达到(3.28±0.11)。镉浓度对栅藻每群体细胞数具有显著性影响(F=10.746,P<0.001),且具有明显的浓度效应,当镉浓度升高至0.32 mg·L-1,处理组第3天每群体细胞数逐渐降低至(1.70±0.11),其下降趋势符合双曲线衰减模型变化规律。培养4、5、6 d后处理组中栅藻每群体细胞数随镉浓度的变化趋势与第3天相似。
图4 不同镉浓度暴露下培养3、5、7、9 d后对照组与处理组中斜生栅藻的最大光化学效率(Fv/Fm)Fig. 4 The maximum quantum yield (Fv/Fm) of S. obliquus populations grow n for 3, 5, 7, and 9 days in the absence (control) or presence (treatment) of Daphnia filtrate at different concentrations of cadm ium
细胞群体比例的变化也反映了镉对栅藻诱导型防御群体形成的抑制作用(图6)。对照组中,在0~0.32 mg·L-1镉浓度下(图6A~E),栅藻群体均以单细胞形态为主。添加大型溞滤液后(图6a~e),在无镉暴露下(图6a),栅藻种群中单细胞比例急剧下降,而四细胞群体和八细胞群体分别在第2天和第3天快速增多,其群体比例分别达到42.7%和46.4%;实验第4天至第6天,八细胞群体比例仍保持在25.3%~38.5%范围内。这与前人报道的栅藻可通过牧食者释放的信息素“感知”到捕食风险,从而形成多细胞群体来抵御牧食的结论相一致(Lampert et al.,1994;Lürling,2001;Lürling,2003)。这种反牧食防御群体可帮助栅藻减少小型浮游动物牧食造成的摄食损耗,从而有利于其生物量的保持。
在镉暴露环境下,即使是低镉浓度(≤0.08 mg·L-1),栅藻四细胞与八细胞群体比例均显著下降(图6b~c),进而导致每群体细胞数的降低;随着镉浓度升高,如0.32 mg·L-1镉暴露下即使添加大型溞滤液(图6e),栅藻种群仍以单细胞为主,其多细胞群体比例远远低于无镉时多细胞群体比例。综合以上结果表明,镉暴露对栅藻诱导型反牧食防御群体形成具有较强的抑制作用。目前认为栅藻防御型群体的形成是由于母细胞完成了正常的有丝分裂,但子细胞无法释放出来从而粘连在一起,因此,微藻细胞正常生长繁殖是诱导型防御群体形成的必要条件(Lampert et al.,1994)。但高浓度镉(≥0.10 mg·L-1)暴露显著抑制了栅藻生长(图2);另外,高镉浓度下藻细胞光合效率也显著下降(图3和图4),从而减少了用于群体形成的能量供应(Peña-Castro et al.,2004b);以上因素均会导致高镉浓度下栅藻诱导型防御群体形成受到抑制。
当镉浓度低于0.08 mg·L-1时,栅藻生长率和光合作用均未受显著抑制,但其防御型四细胞、八细胞群体比例及每群体细胞数却明显降低(图5和图6)。研究表明藻细胞内液泡系统对栅藻细胞粘连进而形成群体有一定作用(Pickett-Heaps et al.,1975),但是Tukaj et al.(2007)发现镉暴露会破坏栅藻的液泡系统结构。另外,栅藻细胞对镉离子的吸附作用也可能是抑制其群体形成的原因(Töpperw ien et al.,2007;Monteiro et al.,2009;Chen et al.,2012)。根据已有研究,微生物在受到铜、镉等金属离子毒性影响时,其细胞表面多糖会与金属离子相结合,作为一种保护细胞的机制(Scott et al.,1988;Crini,2005)。但是,细胞多糖也是促进藻类群体形成的重要因素(Van Rijssel et al.,2000;Thornton,2002;Yang et al.,2007;Yang et al.,2008)。因此,用于促进防御型群体形成的多糖可能用于抵抗金属离子毒性,从而稍弱了其对群体形成的促进作用。
图5 培养3、4、5、6 d后对照组与处理组中斜生栅藻每群体细胞数随镉浓度的变化Fig. 5 Cells per particle of S. obliquus populations on day 3, 4, 5, and 6 in the absence (control) or presence (treatment) of Daphnia filtrate at different concentrations of cadmium
水域生态系统中,诱导型防御群体的形成可有效降低浮游藻类的捕食风险,如栅藻的八细胞群体不易被小型枝角类牧食(Lürling et al.,1997)。本实验研究结果表明在镉污染水体中,栅藻的诱导型反牧食防御群体形成将被抑制,微藻群体将趋向于单细胞组成,这与Whitton et al.(1980)发现的在重金属污染水域中栅藻多以单细胞形态为主的结论相一致。金属污染水域中,随着藻类诱导型防御群体形成能力的减弱,藻细胞将更易被小型浮游动物所牧食,从而增强食物链中小型浮游动物介导的物质和能量流动。另外,对可诱导型藻类而言,反牧食防御群体形成后,栅藻群体的沉降速率加大,使得种群远离光合层而易下降至低光低温的深水区(Lürling et al.,2001;Verschoor et al.,2009)。镉污染抑制栅藻群体形成后,藻细胞平均比表面积将增大,更容易维持在表层水域进行快速生长,进而在一定程度上补偿由镉毒性和浮游动物牧食导致的生物量损失。
图6 不同镉浓度暴露下对照组(A~E)和处理组(a~e)中斜生栅藻单细胞、二细胞、四细胞、八细胞以及其他不规则细胞数的群体比例Fig. 6 Proportions of S. obliquus cells that were unicellular or two-, four-, eight-celled colonies and others in the absence (control, A~E) or presence(treatment, a~e) of Daphnia filtrate at different concentrations of cadmium
镉污染对斜生栅藻细胞生长、光合效率、诱导型反牧食防御群体形成均会产生影响,低镉浓度虽不会显著降低栅藻细胞生长和光合作用,但会明显抑制其诱导型反牧食防御群体的形成;随镉浓度升高,藻类生长被抑制,其反牧食形态防御将进一步被削弱。以上结果说明镉暴露对栅藻的诱导型反牧食形态防御具有较强的抑制作用,这将导致镉污染水域中的栅藻更易被小型浮游动物捕食,进而影响食物链的物质和能量流动。
ASSCHE F V, CLIJSTERS H. 1990. Effects of metals on enzyme activity in plants [J]. Plant, Cell & Environment, 13(3): 195-206.
AWAD S, CHU T C, LUSTIGMAN B, et al. 2005. Effect of cadmium on the grow th of Chlamydomonas [J]. Journal of Young Investigators, 13:416-420.
CAMPBELL C D, HIRD M, lUMSDON D G, et al. 2000. The effect of EDTA and fulvic acid on Cd, Zn, and Cu toxicity to a bioluminescent construct (pUCD607) of Escherichia col. [J]. Chemosphere, 40(3):319-325.
CHEN C Y, CHANG H W, KAO P C, et al. 2012. Biosorption of cadmium by CO2-fixing m icroalga Scenedesmus obliquus CNW-N [J]. Bioresource Technology, 105: 74-80.
CHEN J R, TEO K C. 2001. Determ ination of cadm ium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction [J]. Analytica Chim ica Acta, 450(1-2): 215-222.
CRINI G. 2005. Recent developments in polysaccharide-based materials used as adsorbents in wastew ater treatment [J]. Progress in Plymer Science, 30(1): 38-70.
DROSSEL B, HIGGS P G, MCKANE A J. 2001. The influence of predatorprey population dynamics on the long-term evolution of food web structure [J]. Journal of Theoretical Biology, 208(1): 91-107.
GARDEA-TORRESDEY J L, BECKER-HAPAK M K, HOSEA J M, et al. 1990. Effect of chemical modification of algal carboxyl groups on m etal ion binding [J]. Environmental Science & Technology, 24(9):1372-1378.
GHOSHROY S, NADAKAVUKAREN M J. 1990. Influence of cadm ium on the ultrastructure of developing chloroplasts in soybean and corn [J]. Environmental and Experimental Botany, 30(2): 187-192.
HERPIN U, BERLEKAMP J, MARKERT B, et al. 1996. The distribution of heavy metals in a transect of the three states the Netherlands, Germany and Poland, determined with the aid of moss monitoring [J]. Science of the Total Environment, 187(3): 185-198.
HESSEN D O, VAN DONK E. 1993. Morpholigical changes in Scenedesmus induced by substances released from Daphnia [J]. A rchiv für Hydrobiologie, 127: 129-140.
ILANGOVAN K, CANIZARES-VILLANUEVA R, GONZALEZMORENO S, et al. 1998. Effect of cadm ium and zinc on respiration and photosynthesis in suspended and immobilized cultures of Chlorella vulgaris and Scenedesmus acutus [J]. Bulletin of Environmental Contamination and Toxicology, 60(6): 936-943.
KAMPE H, KONIG-RINKE M, PETZOLDT T, et al. 2007. Direct effects of Daphnia-grazing, not infochemicals, mediate a shift towards large inedible colonies of the gelatinous green alga Sphaerocystis schroeteri[J]. Limnologica-Ecology and Management of Inland Waters, 37(2):137-145.
KOVÁČIK J, KLEJDUS B, ŠTORK F, et al. 2011. Comparison of methyl jasmonate and cadmium effect on selected physiological parameters in Scenedesmus quadricauda (chlorophyta, chlorophyceae) [J]. Journal of Phycology, 47(5): 1044-1049.
LAMPERT W, ROTHHAUPT K O, VON ELERT E. 1994. Chem ical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia) [J]. Limnology and Oceanography, 39(7):1543-1550.
LARSSON E H, BORNMAN J F, ASP H. 1998. Influence of UV-B radiation and Cd2+on chlorophyll fluorescence, grow th and nutrient content in Brassica napus [J]. Journal of Experimental Botany, 49(323):1031-1039.
LE FAUCHEUR S, BEHRA R, SIGG L. 2005. Phytochelatin induction,cadm ium accumulation, and algal sensitivity to free cadm ium ion in Scenedesmus vacuolatus [J]. Environmental Toxicology and Chem istry,24(7): 1731-1737.
LÜRLING M, VAN DONK E. 1997. Morphological changes in Scenedesmus induced by infochem icals released in situ from zooplankton grazers [J]. Limnology and Oceanography, 42(4):783-788.
LURLING M, VAN DONK E. 2000. Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? [J]. Oikos, 88(1):111-118.
LÜRLING M. 2001. Grazing-associated infochemicals induce colony formation in the green lga Scenedesmus [J]. Protist, 152(1): 7-16.
LURLING M. 2003. Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus w ith special reference to the induction of defensive morphology [J]. Annales de Limnologie-International Journal of Limnology, 39(2): 85-101.
MAYELI S M, NANDINI S, SARMA S S S. 2005. The efficacy of Scenedesmus morphology as a defense mechanism against grazing by selected species of rotifers and cladocerans [J]. Aquatic Ecology, 38(4):515-524.
MOBIN M, KHAN N A. 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress [J]. Journal of Plant Physiology, 164(5): 601-610.
MOHAMMED M, MARKERT B. 2006. Toxicity of heavy m etals on Scenedesmus quadricauda (Turp.) de Brébisson in batch cultures (7 pp)[J]. Environmental Science and Pollution Research, 13(2): 98-104.
MONTEIRO C M, CASTRO P M, MALCATA F X. 2009. Use of the m icroalga Scenedesmus obliquus to remove cadm ium cations from aqueous solutions [J]. World Journal of M icrobiology and Biotechnology, 25(9): 1573-1578.
MONTEIRO C M, FONSECA S C, CASTRO P M, et al. 2011. Toxicity of cadm ium and zinc on two m icroalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal [J]. Journal of Applied Phycology, 23(1): 97-103.
O'DONNELL D R, FEY S B, COTTINGHAM K L. 2013. Nutrient availability influences kairomone-induced defenses in Scenedesmus acutus (Chlorophyceae) [J]. Journal of Plankton Research, 35(1):191-200.
PEÑA-CASTRO J M, MARTÍNEZ-JERÓNIMO F, ESPARZA-GARCÍA F,et al. 2004a. Heavy metals removal by the m icroalga Scenedesmus incrassatulus in continuous cultures [J]. Bioresource Technology, 94(2):219-222.
PEÑA-CASTRO J M, MARTÍNEZ-JERÓNIMO F, ESPARZA-GARCÍA F,et al. 2004b. Phenotypic plasticity in Scenedesmus incrassatulus(Chlorophyceae) in response to heavy metals stress [J]. Chemosphere,57(11): 1629-1636.
PÉREZ-RAMA M, ALONSO J A, LÓPEZ C H, et al. 2002. Cadmium removal by living cells of the marine microalga Tetraselmis suecica [J]. Bioresource Technology, 84(3): 265-270.
PICKETT-HEAPS J D, STAEHELIN L A. 1975. The ultrastructure of Scenedesmus (Chlorophyceae) II. Cell division and colony formation[J]. Journal of Phycology, 11(2): 186-202.
RIPPKA R, DERUELLES J, WATERBURY J B, et al. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria [J]. Journal of General M icrobiology, 111(1): 1-61.
SCOTT J A, PALMER S J. 1988. Cadmium bio-sorption by bacterial exopolysaccharide [J]. Biotechnology Letters, 10(1): 21-24.
SHARMA S S, D IETZ K J. 2009. The relationship between metal toxicity and cellular redox imbalance [J]. Trends in Plant Science, 14(1): 43-50. STAP I, VOS M, MOOIJ W M. 2006. Linking herbivore-induced defencesto population dynamics [J]. Freshwater Biology, 51(3): 424-434.
TERRY P A, STONE W. 2002. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans [J]. Chemosphere,47(3): 249-255.
THORNTON D. 2002. Diatom aggregation in the sea: mechanisms and ecological implications [J]. European Journal of Phycology, 37(2):149-161.
TÖPPERW IEN S, XUE H, BEHRA R, et al. 2007. Cadm ium accumulation in Scenedesmus vacuolatus under freshwater conditions [J]. Environmental Science & Technology, 41(15): 5383-5388.
TUKAJ Z, BASCIK-REM ISIEWICZ A, SKOWRONSKI T, et al. 2007. Cadm ium effect on the grow th, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus: a study at low and elevated CO2concentration [J]. Environmental and Experimental Botany, 60(3): 291-299.
VAN DONK E, IANORA A, VOS M. 2011. Induced defences in marine and freshwater phytoplankton: a review [J]. Hydrobiologia, 668(1): 3-19.
VAN RIJSSEL M, JANSE I, NOORDKAMP D, et al. 2000. An inventory of factors that affect polysaccharide production by Phaeocystis globosa[J]. Journal of Sea Research, 43(3-4): 297-306.
VERSCHOOR A M, BEKMEZCI O K, ELLEN V, et al. 2009. The ghost of herbivory past: slow defence relaxation in the chlorophyte Scenedesmus obliquus [J]. Journal of Limnology, 68: 327-335.
VOS M, KOOI B W, DEANGELIS D L, et al. 2004. Inducible defences and the paradox of enrichment [J]. Oikos, 105(3): 471-480.
WARD T J, ROBINSON W E. 2005. Evolution of cadmium resistance in Daphnia magna [J]. Environmental Toxicology and Chemistry, 24(9):2341-2349.
WHITTON B A. 1980. Zinc in the environment [M]. New York: Wiley:363-400.
WU X Y, ZHANG J, QIN B L, et al. 2013. Grazer density-dependent response of induced colony formation of Scenedesmus obliquus to grazing-associated infochemicals [J]. Biochemical Systematics and Ecology, 50: 286-292.
YANG Z, KONG F X, SHI X L, et al. 2007. Effects of Daphnia-associated infochem icals on the morphology, polysaccharides content and PSII-efficiency in Scenedesmus obliquus [J]. International Review of Hydrobiology, 92(6): 618-625.
YANG Z, KONG F X, SHI X L, et al. 2008. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria)during flagellate grazing [J]. Journal of Phycology, 44(3): 716-720.
YASUMOTO K, NISHIGAM I A, AOI H, et al. 2008. Isolation of new aliphatic sulfates and sulfamate as the Daphnia kairomones inducing morphological change of a phytoplankton Scenedesmus gutwinskii[J].Chem ical and Pharmaceutical Bulletin, 56(1): 133-136.
ZHU X X, WANG J, CHEN Q W, et al. 2016. Costs and trade-offs of grazer-induced defenses in Scenedesmus under deficient resource [J]. Scientific Reports, 6: 22594.
Inhibitory Effect of Cadm ium on the Inducible Anti-grazer Colony Formation in Scenedesmus obliquus
HUANG Yuan, NAN Haihong, ZHANG Xingxing, TANG Hengxing
School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
Cadmium contam ination in aquatic ecosystems has raised concerns due to its high cytotoxicity to organisms. The inducible anti-grazer defenses in phytoplankton are know n to stabilize the population dynam ics and the community structures in aquatic environment. However, how the inducible defenses of phytoplankton respond to Cd contamination remains unclear. In the present study, we inoculated the alga Scenedesmus obliquus into media with or without Daphnia filtrate, and cultured them at different concentrations of Cd2+(0~0.32 mg·L-1). The results showed that addition of Daphnia filtrate had no significant effect on the algal grow th rate, the maximum quantum yield (Fv/Fm) and the efficiency of photosystem II (φPSII). In the presence of Daphnia filtrate, Cd2+-free populations of S. obliquus were comprised of 42.7% four-celled colonies on day 2 and 46.4% eight-celled colonies on day 3, with the maximum number of cells per particle of (3.3±0.20). At Cd2+concentrations of 0.10~0.32 mg·L-1, the algal grow th and photosynthesis were decreased w ith the result of reduced proportions of colonial populations. Exposure to ≤0.08 mg·L-1Cd2+had no significant effect on algal grow th and photosynthesis; how ever, the ability of S. obliquus to form large colonies in response to Daphnia filtrate was impaired. These results suggested the high sensitivity of grazer-induced morphological defense of phytoplankton to Cd2+toxicity. Cd contam ination may result in inducible defended algae being easily grazed by small herbivorous zooplankton, potentially changing the energy flow along food chain in Cd-contam inated waters.
Cadm ium; Scenedesmus obliquus; anti-grazer defense; colony formation; Daphnia magna
10.16258/j.cnki.1674-5906.2016.07.016
X171.5
A
1674-5906(2016)07-1202-09
国家自然科学基金项目(31500373);江苏省科技厅自然科学基金项目(BK20150972);江苏省高校自然科学研究面上项目(15KJD180002)
黄园(1987年生),女,讲师,博士,研究方向为水域生态学。E-mail: huangyuan_2005@126.com
2016-06-03