李晶 程文俊 马宇虹
[摘要] 脂联素在心血管疾病的发生和发展中起着非常重要的作用。本文简述了脂联素、脂联素受体的结构和功能,分析了脂联素在保护心血管中发挥的作用,介绍了脂联素在心血管保护及治疗中的潜在用途和临床意义,提示脂联素可以作为心血管疾病诊断和治疗的生物标志物,其受体有望成为新的心血管疾病治疗靶点。
[关键词] 脂联素;心血管疾病;研究进展
[中图分类号] R541 [文献标识码] A [文章编号] 1673-7210(2016)03(c)-0076-04
[Abstract] Adiponectin plays a very important role in the occurrence and development of cardiovascular diseases. This paper describes structure and function of the adiponectin and adiponectin receptor, reviews the function of adiponectin in the protection of cardiovascular, and introduces the potential use and clinical significance in protection and treatment of cardiovascular, which shows that the adiponectin can be as the biomarker of diagnosis and treatment of vascular disease, its receptors are expected to become new therapeutic targets of cardiovascular disease.
[Key words] Adiponectin; Cardiovascular disease; Research progress
脂肪組织不仅作为能量贮存组织,也是内分泌器官,可分泌多种被称为脂肪因子的激素,这些因子分泌进入血液循环中,通过影响胰岛素敏感性、调节血糖、血脂代谢以及心血管稳态等参与许多慢性疾病的发生和发展[1]。肥胖患者中,异常的代谢会导致一些炎症细胞,尤其是活化的巨噬细胞,浸润到脂肪组织,继而诱发脂肪组织产生炎症细胞因子,如肿瘤坏死因子-α(TNF-α)、瘦素、白细胞介素6、单核细胞趋化蛋白-1、载脂蛋白-2和防御素等,这些炎症细胞因子会促进血管疾病的发生,同时在这种情况下,脂联素(Adiponectin)的分泌水平也会明显的减少[2]。上述这些变化是血管类疾病发生的主要成因[3]。脂联素是由脂肪组织产生的蛋白质激素,包括白色脂肪组织,并有血管保护性能,体内外研究提示脂联素在脂肪组织中可能作为一种信号蛋白参与了胰岛素的调节[4]。在最近的研究中,在一般人群与糖尿病患者中低脂联素水平也被证明是与高血压、血脂异常有关,脂联素对各种代谢紊乱,包括2型糖尿病、肥胖和动脉粥样硬化,有很好的抑制作用,脂联素对心血管有突出的保护作用。
1 脂联素及其受体
1.1 脂联素
脂联素又称作Acrp30、apM1、AdipoQ、GBP28,由ADIPOQ基因编码[5],蛋白由244个氨基酸构成,其单体大小为28~30 kD,由4个结构域构成,分别是氮末端的信号肽、短的可变区域,通常含22个Gly-X-Pro或者Gly-X-Y重复的类胶原蛋白结构域,以及碳末端的类球状蛋白结构域,其中球状区是脂联素生物活性的关键部位。和TNF-α的结构相似,脂联素与胶原Ⅷ、X及补体C1q高度同源[6]。依据不同数量单体自组装构成的同源多聚体的大小可以分成4类:单体、低分子量的3聚体[low molecular weight(LMW),trimeric form]、中分子量的6聚体[medium molecular weight(MMW),hexameric]和高分子量的多聚体[high molecular weight(HMW)][6-7]。血浆中的脂联素是由脂肪组织分泌的脂蛋白,具有抗糖尿病、抗炎症、抗动脉粥样硬化和激活下游蛋白的功能[8-9]。脂联素同时也是一种蛋白类激素,在循环系统中其浓度为5~30 μg/mL,占血浆中蛋白的比例是0.01%,较其他激素更为丰富。脂联素的表达及其在血浆中的水平,通常肥胖患者比正常体重者低,男性比女性低。
1.2 脂联素受体
脂联素受体目前发现有3种,分别是脂联素受体1(AdipoR1),脂联素受体2(AdipoR2)和T-钙黏蛋白(T-cadherin)。AdipoR1和AdipoR2定位于细胞膜上,具有7个跨膜结构域,N端位于细胞内膜。AdipoR1在大多数细胞中表达,但其主要在骨骼肌中表达,与AMP激酶信号通路的激活有关[10]。AdipoR2在肝脏中大量表达,与过氧化物酶体增殖物激活受体(PPAR)-α途径激活有关。激活AdipoR1和AdipoR2会增加线粒体的生物合成,改善肝脏和骨骼肌中脂肪酸的氧化,提高细胞摄取葡萄糖,减少肝糖异生,增加骨骼肌乳酸的生产,抑制炎性反应和氧化应激,而上述这些都与心血管疾病的发生有关[11]。相反破坏AdipoR1和AdipoR2将引起胰岛素抵抗,糖耐量受损。T-钙黏蛋白是六聚体和高分子量脂联素的受体,在许多类型的细胞中表达,包括血管内皮细胞、平滑肌细胞(SMC),其表达与动脉粥样硬化有关,另外也与相关的脂联素介导的血管重生有关。T-cadherin活性形式可以抑制由氧化应激导致的血管内皮细胞凋亡。
2 脂联素与心血管疾病
2.1 脂联素对心血管的保护作用
在过去的几年中,临床研究结果提示,脂联素的缺乏是人类各种心血管疾病及并发症发生的重要病因[12-13]。在外周和冠状动脉中,低脂联素水平可以作为预测血管内皮功能障碍的一个重要指标,而这个指标独立于胰岛素抵抗、体重指数和血脂异常[14-15]。脂联素基因敲除的小鼠易患心血管障碍、急性血管损伤后内膜增生[16-17]、内皮依赖性血管舒张功能损伤[18]、高血压[19]等。在载脂蛋白基因敲除小鼠中,高表达球状脂联素,或者通过腺病毒导入全长脂联素均将明显减轻动脉粥样硬化病变的程度,缓解血管内皮功能障碍,降低血压等[19-20]。在家兔模型中采取脂联素治疗可以显著减小腹主动脉动脉粥样硬化斑块的面积,另外上述家兔模型动脉粥样硬化减弱的同时伴有黏附因子(血管细胞黏附因子和细胞间黏附因子)表达量的降低[18]。因此,脂联素除具有胰岛素敏感性、调节脂质代谢作用外,还能保护血管系统。
2.1.1 脂联素抑制平滑肌增殖,促进血管再生 脂联素可以促进平滑肌细胞的增殖和迁移的生长因子(如血小板衍生生长因子、碱性成纤维细胞生长因子、肝素结合表皮生长因子等)与其受体的结合,从而促进平滑肌细胞的增殖和迁移,抑制动脉粥样硬化[21-22],促进血管再生。脂联素基因敲除的小鼠与野生型对照组比较,血管平滑肌细胞增殖能力减弱,血管内膜变薄[23]。另外免疫组化结果显示,在只有在血管壁受损时可以检测到脂联素的存在[24],这一结果也提醒我们脂联素在血管病变发生中的作用。腺病毒在脂联素基因敲除的动脉球囊损伤小鼠中的研究结果显示,高表达脂联素将增强血管内膜增生程度[25],这个结果也提示升高血浆脂联素水平可能有助于预防血管成形术后血管的再狭窄。
2.1.2 脂联素抗动脉粥样硬化 临床研究和动物模型已经证实脂联素在抑制动脉粥样硬化方面的重要性[26-28]。载脂蛋白基因缺陷小鼠血液中高水平的脂联素可以降低动脉粥样硬化斑块[29]。脂联素的缺乏会导致PPAR-γ通路丧失抑制动脉粥样硬化的功能[30]。在体外研究中,由于脂联素大多通过原核表达获得,故其生物活性很低,通常需要很高的剂量,这将带来一定的污染物,这些污染物可能影响脂联素的作用的结果[31],加上脂联素对几乎所有类型的血管细胞均有作用,因此脂联素在人类动脉粥样硬化方面的作用仍有争议。球状脂联素的生物学效应被大多数的体外实验证实,然而却没有足够的证据可以证明这种形式的脂联素在人体外周循环广泛存在。最近的一篇文章中使用交叉脂联素基因敲除小鼠和LDL受體基因敲除小鼠模型中,证实血清脂联素水平与动脉粥样硬化不相关,与使用何种饮食类型无关,循环脂联素水平与主动脉根部的斑块大小、主动脉胆固醇的积累和斑块的形态均没有关系[32]。这些结果不同于先前报道中得到的载脂蛋白基因敲除的小鼠模型,这可能是由于不同的实验条件、不同形式的脂联素等原因导致的。脂联素抗动脉粥样硬化的分子机制,可能主要是由于其促进内皮细胞NO的产生,激活磷脂酰肌醇3激酶依赖的途径和AMPK通路[33-34]。以上结果均传达一个讯息,脂联素在心血管系统中的作用是复杂的、多方面的。
2.1.3 脂联素抗血栓作用 血小板活化在动脉粥样硬化和血液斑块形成中起核心作用,研究者建议通过抑制血小板的聚集来防止动脉粥样硬化[35]。临床研究提示,血浆脂联素水平与血小板活化呈负相关[36]。脂联素基因敲除的小鼠和缺乏脂联素的人,注射脂联素将有效抑制血小板的聚集[37]。此外,在血小板和巨核细胞中也发现了脂联素受体蛋白的表达[38]。正常小鼠或者脂联素基因敲除的小鼠,血小板数量或凝血因子水平没有明显的不同。脂联素基因敲除的小鼠在颈动脉损伤后,血栓形成加速,腺病毒介导的脂联素表达可以逆转这一过程。因此,脂联素可能是一种内源性抗血栓因子,脂联素对血栓形成的抑制作用可以归因于其刺激内皮细胞NO的产生。
2.2 脂联素与高血压
高血压的形成归因于很多因素,其中最重要的因素为交感神经被激活、血管内皮功能障碍(游离脂肪酸增加引起氧化应激反应)以及脂联素分泌异常[39]。临床结果显示,患高血压的成人,其脂联素水平是低的[40],另外,肥胖的高血压患者总脂联素水平低于较瘦的高血压患者[39]。同时,高血压患者的临床统计结果发现脂联素水平与血管扩张反应呈正相关[40]。脂联素基因敲除的小鼠,血管内皮细胞功能显著降低[40]。几项研究同时提示,成年高血压患者的脂联素水平比血压正常者低,脂联素水平的增加可以降低患高血压的风险[41-42]。脂联素可以调节血压,保护血管内皮细胞,是一种与肥胖和血管疾病相关的生物调节因子。体外研究已经表明,脂联素具有抑制肿瘤坏死因子和细胞黏附分子表达的生物学效应[43]。
综上所述,脂联素作为一种重要的脂肪因子,其具有抑制平滑肌增殖、促进血管再生、抗动脉粥样硬化、抗血栓等作用,脂联素与高血压也有密切的关系,可以有效预防或治疗相关的血管类疾病,治疗方法主要是提高脂联素水平或组织对脂联素的敏感性。脂联素对血管的影响和有关机制仍不十分明确,仍然需要更多的研究。在不久的将来,脂联素及其受体有望成为一种新的血管类疾病治疗的靶点。
[参考文献]
[1] Attar MJ,Mohammadi S,Karimi M,et al. Association of adiponectin with dietary factors and cardiovascular risk factors in type 2 diabetes mellitus patients [J]. Diabetes Metab Syndr,2013,7(1):3-7.
[2] Zhu W,Cheng KK,Vanhoutte PM,et al. Vascular effects of adiponectin:molecular mechanisms and potential therapeutic intervention [J]. Clin Sci,2008,114(5):361-374.
[3] Stojanovi S,Ili MD,Ili S,et al. The significance of adiponectin as a biomarker in metabolic syndrome and/or coronary artery disease [J]. Vojnosanit Pregl,2015,72(9):779-784.
[4] Mansur RB,Rizzo LB,Santos CM,et al. Adipokines metabolic dysfunction and illness course in bipolar disorder [J]. J Psychiatr Res,2015,74:63-69.
[5] Maeda K,Okubo K,Shimomura I,et al. cDNA cloning and expression of a novel adipose specific collagen-like factor,apM1(adipose most abundant gene transcript 1)[J]. Biochem Biophys Res Commun,1996,221(2):286-289.
[6] Kadowaki T,Yamauchi T. Adiponectin and adiponectin receptors [J]. Endocrine Reviews,2005,26(3):439-451.
[7] Schraw T,Wang ZV,Halberg N,et al. Plasma adiponectin complexes have distinct biochemical characteristics [J]. Endocrinology,2008,149(5):2270-2282.
[8] Lee B,Shao J. Adiponectin and energy homeostasis [J]. Reviews in Endocrine and Metabolic Disorders,2014,15(2):149-156.
[9] Ohashi K,Ouchi N,Matsuzawa Y. Anti-inflammatory and anti-atherogenic properties of adiponectin [J]. Biochimie,2012,94(10):2137-2142.
[10] De Rosa A,Monaco ML,Capasso M,et al. Adiponectin oligomers as potential indicators of adipose tissue improvement in obese subjects [J]. Eur J Endocrinol,2013,169(1):37-43.
[11] Yoon MJ,Lee GY,Chung JJ,et al. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase,p38 mitogen-activated protein kinase,and peroxisome proliferator [J]. Diabetes,2006,55(9):2562-2570.
[12] Trujillo M,Scherer P. Adiponectin-journey from an adipocyte secretory protein to biomarker of the metabolic syndrome [J]. J Intern Med,2005,257(2):167-175.
[13] Lam KS,Xu A. Adiponectin:protection of the endothelium [J]. Curr Diab Rep,2005,5(4):254-259.
[14] Okui H,Hamasaki S,Ishida S,et al. Adiponectin is a better predictor of endothelial function of the coronary artery than HOMA-R,body mass index,immunoreactive insulin,or triglycerides [J]. Int J Cardiol,2008,126(1):53-61.
[15] Torigoe M,Matsui H,Ogawa Y,et al. Impact of the high-molecular-weight form of adiponectin on endothelial function in healthy young men [J]. Clin Endocrinol,2007, 67(2):276-281.
[16] Szmitko PE,Teoh H,Stewart DJ,et al. Adiponectin and cardiovascular disease:state of the art? [J]. Am J Physiol Heart Circ Physiol,2007,292(4):H1655-H1663.
[17] Matsuda M,Shimomura I,Sata M,et al. Role of adiponectin in preventing vascular stenosis:the missing link of adipo-vascular axis [J]. J Biol Chem,2002,277(40):37487-37491.
[18] Kubota N,Terauchi Y,Kubota T,et al. Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways [J]. J Biol Chem,2006,281(13):8748-8755.
[19] Ouchi N,Ohishi M,Kihara S,et al. Association of hypoadiponectinemia with impaired vasoreactivity [J]. Hypertension,2003,42(3):231-234.
[20] Shimabukuro M,Higa N,Asahi T,et al. Hypoadiponectinemia is closely linked to endothelial dysfunction in man [J]. J Clin Endocrinol Metab,2003,88(7):3236-3240.
[21] Wang Y,Lam KS,Xu JY,et al. Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner [J]. J Biol Chem,2005,280(18):18341-18347.
[22] Arita Y,Kihara S,Ouchi N,et al. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell [J]. Circulation,2002,105(24):2893-2898.
[23] Kubota N,Terauchi Y,Yamauchi T,et al. Disruption of adiponectin causes insulin resistance and neointimal formation [J]. J Biol Chem,2002,277(29):25863-25866.
[24] Sambuceti G,Morbelli S,Vanella L,et a1. Diabetes impairs the vascular recruitment of normal stem cells by oxidant damage,reversed by increases in pAMPK,heme oxygenase-1,and adiponectin [J]. Stem Cells,2009,27(2):399-407.
[25] Matsuda M,Shimomura I,Sata M,et al. Role of adiponectin in preventing vascular stenosis:the missing link of adipo-vascular axis [J]. J Biol Chem,2002,277(40):37487-37491.
[26] Yamauchi T,Kamon J,Minokoshi Y,et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase [J]. Nat Med,2002,8(11):1288-1295.
[27] Okamoto Y,Kihara S,Ouchi N,et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice [J]. Circulation,2002,106(22):2767-2770.
[28] Li CJ,Sun HW,Zhu FL,et al. Local adiponectin treatment reduces atherosclerotic plaque size in rabbits [J]. J Endocrinol,2007,193(1):137-145.
[29] Yamauchi T,Kamon J,Ito Y,et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects [J]. Nature,2003,423(6941):762-769.
[30] Hiuge-Shimizu A,Maeda N,Hirata A,et al. Dynamic changes of adiponectin and S100A8 levels by the selective peroxisome proliferator-activated receptor-γ agonist rivoglitazone [J]. Arterioscler Thromb Vasc Biol,2011,31(4):792-799.
[31] Fantuzzi G. Adiponectin in inflammatory and immune-mediated diseases [J]. Cytokine,2013,64(1):1-10.
[32] Nawrocki AR,Hofmann SM,Teupser D,et al. Lack of association between adiponectin levels and atherosclerosis in mice [J]. Arterioscler Thromb Vasc Biol,2010,30(6):1159-1165.
[33] Iwashima Y,Katsuya T,Ishikawa K,et al. Hypoadiponectinemia is an independent risk factor for hypertension [J]. Hypertension,2004,43(6):1318-1323.
[34] Di Chiara T,Licata A,Argano C,et al. Plasma adiponectin:a contributing factor for cardiac changes in visceral obesity-associated hypertension [J]. Blood Pressure,2014,23(3):147-153.
[35] Wagner DD,Burger PC. Platelets in inflammation and thrombosis [J]. Arterioscler Thromb Vasc Biol,2003,23(12):2131-2137.
[36] Shoji T,Koyama H,Fukumoto S,et al. Platelet activation is associated with hypoadiponectinemia and carotid atherosclerosis [J]. Atherosclerosis,2006,188(1):190-195.
[37] Kato H,Kashiwagi H,Shiraga M,et al. Adiponectin acts as an endogenous antithrombotic factor [J]. Arterioscler Thromb Vasc Biol,2006,26(1):224-230.
[38] Liao Y,Takashima S,Maeda N,et al. Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism [J]. Cardiovasc Res,2005,67(4):705-713.
[39] Kim NH,Cho NH,Yun CH,et al. Association of obstructive sleep apnea and glucose metabolism in subjects with or without obesity [J]. Diabetes Care,2013,36(12):3909-3915.
[40] Wolf AM,Wolf D,Rumpold H,et al. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes [J]. Biochem Biophys Res Commun,2004,323(2):630-635.
[41] Demirci H,Nuhoglu C,Ursavas IS,et al. Obesity and asymptomatic hypertension among children aged 6-13 years living in Bursa,Turkey [J]. Family Practice,2013,30(6):629-633.
[42] Ouchi N,Kihara S,Funahashi T,et al. Obesity,adiponectin and vascular inflammatory disease [J]. Current Opinion in Lipidology,2003,14(6):561-566.
[43] Ouchi N,Kihara S,Arita Y,et al. Adipocyte-derived plasma protein,adiponectin,suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages [J]. Circulation,2001,103(8):1057-1063.
(收稿日期:2015-12-02 本文編辑:张瑜杰)