原子转移自由基聚合技术及其在分离材料制备中的应用研究进展*

2016-09-23 06:32陈佑宁张君才杨小玲
合成材料老化与应用 2016年4期
关键词:苯乙烯接枝吸附剂

陈佑宁,张君才,杨小玲

(咸阳师范学院化学与化工学院,陕西咸阳 712000)



原子转移自由基聚合技术及其在分离材料制备中的应用研究进展*

陈佑宁,张君才,杨小玲

(咸阳师范学院化学与化工学院,陕西咸阳 712000)

对原子转移自由基聚合(ATRP)的基本原理、引发体系及单体进行了全面的综述。结合最新的研究成果,介绍了ATRP在分离材料制备方面的最新研究进展。

原子转移自由基聚合,分离材料,研究进展

原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)是1995年分别由Wang J S[1]、Sawamoto M[2]以及Percec V[3]独立提出并报道的一种可控自由基活性聚合新技术。与其它传统的自由基聚合相比,ATRP反应条件较为温和,适用单体广泛,对杂质不太敏感,分子设计能力较强,是合成具有特定结构和性能聚合物的重要手段。近年来,原子转移自由基聚合技术逐步应用到分离材料的制备中。本文主要就ATRP的发展历程及其在分离材料制备中应用研究最新进展进行介绍。

1 ATRP的基本原理

ATRP的概念源于有机化学中的过渡金属催化原子转移自由基加成(Atom Transfer Radical Addition,ATRA),ATRA是有机化学中形成C-C键的有效方法(图1)。

图1 原子转移自由基加成反应

图2 连续的原子转移自由基加成反应

为了证实这一设想,Matyjaszwski和王锦山博士以α-氯代苯乙烯为引发剂,氯化亚铜与2,2′-联二吡啶的络合物为催化剂,在130℃条件下进行了苯乙烯本体聚合,不仅得到了窄分子量分布的聚苯乙烯,而且聚合物的实测分子量与理论计算值非常接近。当加入第二单体丙烯酸甲酯时,成功地实现了嵌段共聚,具有明显的活性聚合特征。据此,他们提出了原子转移自由基聚合这一全新的概念。

根据Matyjaszwski和王锦山提出的概念,典型的原子转移自由基聚合的基本原理如图3所示。

图3 ATRP反应机理

2 ATRP的引发体系

Matyjaszewski等人对ATRP 引发体系的研究表明,所有α位上含有诱导共轭基团的卤代烷都能引发ATRP 反应[1-2,5]。目前已报道的比较典型的ATRP 引发剂主要有α卤代苯基化合物、α卤代羰基化合物、α卤代腈基化合物和多卤化物,如α-氯代苯乙烷、苄基氯、α-氯丙酸乙酯、α-氯乙腈、四氯化碳等。

第一代ATRP技术引发体系的催化剂为CuX(X=Cl、Br)。Sawamoto和Teyssie等人分别采用Ru和Ni的配位化合物为催化剂成功地进行了MMA的ATRP反应,后来又发现以卤化亚铁为催化剂的ATRP反应[6-7]。这些催化剂的研究成功,为开发高效、无公害的引发体系奠定了基础。

配位剂是ATRP 引发体系中的一个重要组成部分,具有稳定过渡金属和增加催化剂溶解性能的作用。常用的配位剂有联二吡啶、油溶性长链烷基取代的联二吡啶,Haddleton等人采用2-吡啶醛缩亚胺为配位剂,实现了ATRP的均相反应[8];程广楼等人将邻菲咯啉用于苯乙烯和甲基丙烯酸甲酯等单体的ATRP聚合,大大提高了催化剂卤化铜的催化活性和选择性[9]。

3 ATRP的单体

与其它活性聚合相比,ATRP具有最宽的单体选择范围,目前已经报道的可进行ATRP的单体有三大类:(1)苯乙烯及取代苯乙烯,如对氯苯乙烯、对氯甲基苯乙烯、间甲基苯乙烯等;(2)(甲基)丙烯酸酯,如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯等;(3)带有功能基团的(甲基)丙烯酸酯,如(甲基)丙烯酸-2-羟乙酯、(甲基)丙烯腈、4-乙烯基吡啶等。

4 ATRP技术在分离材料制备中的应用

研究发现,在ATRP技术中,通过控制单体转化率、聚合反应时间,可以精确控制固体表面聚合物分子刷的分子链长,也可在固体表面制备嵌段共聚物分子刷。采用ATRP技术,已经在有机和无机材料等许多固体基底表面上修饰了聚合物分子刷,合成了许多功能材料。目前,ATRP技术对分离材料的研究大多集中在对色谱固定相、聚合物膜和多糖类基体的修饰方面。

4.1ATRP技术在吸附膜制备中的应用

应用ATRP制备高容量吸附膜[10]、刺激响应膜[11]和新型抗污染膜[12]的研究报道很多。Husson等人利用SI-ATRP技术分别将聚(2-二甲基氨基甲基丙烯酸乙酯)[13]和聚丙烯酸[14]接枝在再生纤维素表面制备了弱阴离子交换膜和阳离子交换膜,将聚(3-磺酸丙酯)修饰在大孔膜表面制备了强阳离子交换膜[15],采用SI-ATRP将聚(2-乙烯基吡啶)接枝在膜的表面可以使PVDF微孔膜转变为离子交换膜[16]。由于采用ATRP技术,膜表面功能基团密度高,得到的膜均具有较高的吸附容量。

4.2ATRP技术在色谱固定相制备中的应用

ATRP技术在开发高性能色谱固定相方面也取得了显著进展。以硅胶为基体,采用ATRP技术制备的阳离子交换色谱固定相对蛋白质的吸附容量比传统方法显著提高[17],制备的反相和亲水色谱固定相具有优异的抗水解性能[18];将丙烯酸十八烷基酯、衍生化苯丙胺酸单体用ATRP高密度地接枝在硅胶表面,制备的固定相对稠环芳烃显示出选择性[19];用ATRP将聚(N-异丙基丙烯酰胺)接枝在硅胶[20]、膜[21]、聚苯乙烯[22]基质上,组分的保留行为随温度变化呈现特殊选择性;将N-异丙基丙烯酰胺和 N-叔丁基丙烯酰胺共聚物接枝在聚甲基丙烯酸缩水甘油酯微球上,制备了用于分离和纯化蛋白质的固定相[23]。

4.3ATRP技术在吸附剂制备中的应用

在吸附剂的开发方面,采用ATRP的研究刚起步。用聚丙烯腈接枝到N-氯磺酰胺化的聚苯乙烯表面,再与羟胺反应,制备了对汞有特异性的吸附剂(图4)[24];将聚甲基丙烯酸缩水甘油酯接枝于聚苯乙烯微球表面,再与乙二胺反应,制备了吸附Cu(Ⅱ)、Pb(Ⅱ)、Cr(Ⅵ)和As(Ⅴ)的吸附剂(图5)[25]。我们课题组用SI-ATRP 法制备了四唑螯合树脂[26]和亚氨基二乙酸型螯合树脂[27],证明SI-ATRP是高容量螯合树脂制备的新方法。因此,利用已有功能单体或寻找新型功能单体,结合ATRP技术,开展新型吸附剂的制备技术以及表面单体接枝量与吸附容量关系的研究,对制备高性能吸附剂具有重要意义。

图4 聚丙烯腈接枝氯磺酰胺化聚苯乙烯的合成

图5 ATRP和胺化反应结合制备胺基树脂

5 结语

“活性”自由基聚合结合了活性聚合与自由基聚合各自的优势,自发现以来进行了广泛的研究。ATRP技术作为一种操作简便、极具工业化前景的“活性”自由基聚合方法,更是备受关注。ATRP技术提供了一种合成结构可控、且易于功能化共聚物的有效方法。预期ATRP技术将更加广泛地用于分子设计中,在学术及工业应用中前景广阔。

[1] Wang J S,Matyjaszewski K. Controlled/“riving”radical polymerization atom transfer radical polymerization in the presence of transition-metal complexes[J]. Journal of the American Chemical Society,1995,117:5614-5615.

[2] Kato M,Kamigaito M,Sawamoto M. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride Dichloro-tris(triphenylphosphine) ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System Possibility of Living Radical Polymerization[J].Macromolecules,1995,28(5):1721-1723.

[3] Percec V,Barboiu B. “Living”Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and cul(bpy)Cl[J]. Macromolecules,1995,28(23):7970-7972.

[4] Matyjaszewski K. Macromolecular engineering:from rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties[J]. progress in polymer science,2005,30:858-86.

[5] Wang J S,Matyjaszewski K. Controlled/“Living” Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(Ⅰ)/Cu(Ⅱ) Redox Process [J]. Macromolecules,1995,28(23):7901-7910.

[6] Ando T,Kato M,Kamigaito M,et al. Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex:Formation of Polymers with Controlled Molecular Weights and Very Narrow Distributions[J].Macromolecules,1996,29:1070.

[7] Granel C,Dubois P,Jerome R,et al. Controlled Radical Polymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated) Arylnickel(Ⅱ) Complex and Different Activated Alkyl Halides[J].Macromolecules,1996,29:8576.

[8] Haddleton D M,Jasieczek C B,Hannon M J,et al. Atom Transfer Radical Polymerization of Methyl Methacrylate Initiated by Alkyl Bromide and 2-Pyridinecarbaldehyde Imine Copper(I) Complexes[J]. Macromolecules,1997,30:2190.

[9] 程广楼,胡春圃,应圣康. 一种用于烯烃聚合过程的新型高效催化剂[J].合成橡胶工业,1997,20(2):116.

[10] Disabb-Miller M L,Johnson Z D,Hickner M A. Ion motion in anionand proton-conducting triblock copolymers[J]. Macromolecules,2013,46:949-956.

[11] Chu L Y,Li Y,Zhu J H,et al.Negatively thermoresponsivemembranes with functional gates driven by zipper-type hydrogen-bonding interactions[J]. Angewandte Chemie International Edition,2005,44:2124-2127.

[12] Wu Z Q,Chen H,Liu X L,et al.Protein Adsorption on Poly(N-vinylpyrrolidone)-Modified Silicon Surfaces Prepared by Surface-Initiated Atom Transfer Radical Polymerization[J]. Langmuir,2009,25:2900-2906.

[13] Worthley C H,Constantopoulos K T,Ginic-Markovic M,et al. Surface modification of commercial cellu-lose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface bio-fouling resistance[J]. Journal of Membrane Science,2011,385-386:30-39.

[14] Bhut B V,Husson S M. Dramatic performance improvement of weak anion exchange membranes for chromatographic bioseparations [J]. Journal of Membrane Science,2009,337:215-223.

[15] Singh N,Wang J,Ulbricht M,et al. Surface-initiated atom transfer radical polymerization:a new method for the preparation of polymeric membrane adsorbers[J]. Journal of Membrane Science,2008,309:64-72.

[16] Chenette H C S,Robinson J R,Hobley E,et al. Development of high-productivity,strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes[J]. Journal of Membrane Science,2012. http:∥dx.doi.org/10.1016/j.memsci.2012.07.040.

[17] Singh N,Husson S M,Zdyrko B,et al.Surface modification of micro-porous PVDF membranes by ATRP[J]. Journal of Membrane Science,2005,262:81-90.

[18] Mallik A K,Rahman M M,Czaun M,et al. Facile synthesis of high-density poly(octadecyl acrylate)-grafted silica for reversed-phase high-performance liquid chromatography by surface-initiated atom transfer radical polymerization[J]. Journal of Chromatography A,2008,1187 :119-127.

[19] Czaun M,Rahman M M,Takafuji M,et al. Molecular shape recognition-structure correlation in a phenylalanine-based polymer-silica composite by surface-initiated atom transfer radical polymerization[J]. Polymer,2008,49 :5410-5416.

[20] Nagase K,Kobayashi J,Kikuchi A,et al. Influence of Graft Interface Polarity on Hydration/Dehydration of Grafted Thermoresponsive Polymer Brushes and Steroid Separation Using All-Aqueous Chromatography[J]. Langmuir,2008,24:10981-10987.

[21] Lokuge I,Wang X J,Bohn P W. Temperature-Controlled Flow Switching in Nanocapillary Array Membranes Mediated by Poly(N-isopropylacrylamide) Polymer Brushes Grafted by Atom Transfer Radical Polymerization[J].Langmuir,2007,23:305-311.

[22] Mizutani A,Nagase K,Kikuchi A,et al. Thermo-responsive polymer brush-grafted porous polystyrene beads for all-aqueous chromatography[J]. Journal of Chromatography A,2010,1217:522-529.

[23] Mizutani A,Nagase K,Kikuchi A,et al. Preparation of thermo-responsive polymer brushes on hydrophilic polymeric beads by surface-initiated atom transfer radical polymerization for a highly resolutive separation of peptides[J]. Journal of Chromatography A,2010,1217:5978-5985.

[24] Zong G X,Chen H,Qu R J,et al. Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP,and use of the resin in mercury removal after modification[J]. Journal of Hazardous Materials,2011,186 :614-621.

[25] Niu L,Deng S B,Yu G,et al. Efficient removal of Cu(Ⅱ),Pb(Ⅱ),Cr(Ⅵ) and As(Ⅴ) from aqueous solution using an aminated resin prepared by surface-initiated atom transfer radical polymerization[J]. Chemical Engineering Journal,2010,165 :751-757.

[26] Chen Y N,He M F,Wang C Z,et al. A novel polyvinyltetrazole-grafted resin with high capacity for adsorption of Pb(Ⅱ),Cu(Ⅱ) and Cr(Ⅲ) ions from aqueous solutions[J]. Journal of Materials Chemistry A,2014,2:10444-10453.

[27] 王琴会,王超展,卫引茂. 基于原子转移自由基聚合制备新型螯合树脂及其吸附性能[J].高等学校化学学报,2012,33(11):2579-2584.

Recent Development of Atom Transfer Radical Polymerization and its Application in Preparation of Separation Materials

CHEN You-ning,ZHANG Jun-cai,YANG Xiao-ling

(College of Chemistry and Chemical Engineering,Xianyang Normal College,Xianyang 712000,Shaanxi,China)

The latest advances in principle,catalyst system and monomer of atom transfer radical polymerization(ATRP) were reviewed. The recent application of ATRP in preparation of separation materials was introduced.

atom transfer radical polymerization,separation materials,research progress

陕西省教育厅专项科研计划项目(15JK1782)资助

O 631;O 647.3

专论与综述

猜你喜欢
苯乙烯接枝吸附剂
固体吸附剂脱除烟气中SOx/NOx的研究进展
用于空气CO2捕集的变湿再生吸附剂的筛选与特性研究
丙烯酸丁酯和聚丙二醇二甲基丙烯酸酯水相悬浮接枝PP的制备
SBS接枝MAH方法及其改性沥青研究
苯乙烯精馏过程中聚合的控制和处理
高接枝率PP—g—MAH的制备及其在PP/GF中的应用
聚苯乙烯高温快速热解制备苯乙烯的研究
EPDM接枝共聚物对MXD6/PA6/EPDM共混物性能的影响
中国8月苯乙烯进口量26万t,为16个月以来最低
赤泥吸附剂的制备及其对铜离子的吸附性能