水分管理调控水稻氮素利用研究进展

2016-08-29 03:27曹小闯李晓艳朱练峰张均华禹盛苗吴良欢金千瑜
生态学报 2016年13期
关键词:氧量根际氮素

曹小闯, 李晓艳,朱练峰,张均华,禹盛苗,吴良欢,金千瑜,*

1 中国水稻研究所,水稻生物学国家重点实验室, 杭州 310006

2 浙江大学环境与资源学院,教育部环境修复与生态健康重点实验室,杭州 310058



水分管理调控水稻氮素利用研究进展

曹小闯1, 李晓艳2,朱练峰1,张均华1,禹盛苗1,吴良欢2,金千瑜1,*

1 中国水稻研究所,水稻生物学国家重点实验室, 杭州310006

2 浙江大学环境与资源学院,教育部环境修复与生态健康重点实验室,杭州310058

水分管理;根际溶氧量;氮代谢;光合氮素利用率;水稻

水稻是我国种植面积最大、灌溉用水量最多的作物, 全国种植面积达3000万hm2[1]。作为一个需氧的有机体,水稻虽然有发达的通气组织以保证根系的正常需氧活动,但半水生性特点要求其生长过程中需要大量的灌溉水,因此土壤供氧状况仍是限制水稻根系生长的关键因子[2]。长期处于淹水状态的稻田,空气很难进入到土壤中,水稻根系及微生物的呼吸作用消耗大量氧气,导致土壤中的氧浓度极低。持续的低氧环境会引起稻田还原性有毒物质的积累,根系细胞能量代谢失衡、细胞质酸化及低氧的生理生化反应,对水稻根系形态结构、根系活力和生长发育等都会产生严重影响[3-4]。研究发现,湿润灌溉、干湿交替、好氧栽培等水分管理能通过调控根际溶氧量促进水稻生长[5-8],诱导水稻的生理特性及改善根系的吸收功能增强其抗旱性能,达到以不牺牲光合产物积累而大幅度提高氮素利用效率的目的[9-10]。增加根际溶氧量还能刺激土壤氮的矿化作用,且氮素形态显著影响水稻的光合速率[11]。随着我国氮肥用量的不断增加,水稻的氮素利用率呈不断降低趋势;灌水过多、不合理的水分管理也显著增加稻田氮素损失,因此寻找提高氮肥利用率的新途径是目前急需解决的突出问题[12]。本文通过国内外最新文献综述了稻田水分管理对水稻根际氮素形态、氮吸收利用、光合速率及其氮环境效应的影响等方面研究进展,以期为相关研究提供参考。

1 稻田水分管理对土壤和根际氮素形态的影响

增加根际溶氧量还能显著提高根际氧化还原电位及根系活力,这不仅有利于根系对营养物质的吸收,还使根际土壤磷有效性增加、还原性有害物质(Fe2+、Mn2+、H2S等)减少,为水稻生长、氮吸收代谢提供有利的外部环境[19-20]。干湿交替及好氧栽培模式下土壤团聚体破碎释放出的闭蓄态有机物、微生物细胞溶解及渗透调节物质的分泌等都将提高基质的有效性及碳、氮矿化率[21];还提高了有机质有效性并能抵制微生物进入半休眠状态,这也增加微生物生物量碳、氮[18]。碳源是微生物生长繁殖的限制因素,高量的溶解性有机碳提升了微生物生物量和酶活性,随之土壤结构得到改善,碳氮有效性将进一步提高[22]。

2 稻田水分管理对水稻氮吸收利用的影响调控研究

2.1稻田水分管理对水稻氮吸收的影响

2.2稻田水分管理对水稻氮吸收的调控机制研究

根际是植物、土壤和微生物相互作用的特殊区域,是植物、土壤、微生物进行物质和能量交换及信息传递的门户。根际缺氧或无氧环境下水稻根系细胞迅速从有氧呼吸切换为以乙醇发酵途径为主的无氧呼吸,ATP合成量仅为正常时3%—5%,能量严重亏缺,不利于水稻对氮的吸收[41]。短期缺氧胁迫时,水稻根系能通过增加通气组织功能提高氧气向根尖的转运效率, 减少吸收营养物质的根表面积, 但提高着生在主根上的侧根数目以增加对营养物质的吸收[42]。通过调控水分管理增加根际溶氧量可显著提高稻田氧化还原电位和硝态氮含量,这两个因素都会影响水稻的根系形态建成和氮素吸收[43]。增加根际溶氧量对水稻氮吸收代谢有显著的促进作用,这可能是由于随着根际溶氧量增加,根系呼吸作用加强,为氮吸收提供更多的能量;也可能受增氧条件下根系形态变化的影响,主要表现为最长根增长、孔隙度减小、侧根和不定根数减少、外皮层厚壁组织细胞疏松,根系活力增强[6,44]。杨菲等[45]发现干湿交替能明显提高根际氧浓度,增加水稻根系生物量、根毛数、根系表面积,并促进水稻4级次生侧根的发生。Jackson等[46]发现增氧可显著提高水稻根长及其生物量,且能显著增加深层根的比例,说明增加根际氧浓度可促进根系向下层生长,提高土壤中水分和养分的有效性。富氧环境可提高水稻总根长和下层根系所占的干物质比例,且提高了根系自根基到根尖10—20cm、>20cm部分所占的生物量比例[47]。但根际氧浓度并非越高越好,水稻对根际溶氧量需求存在一定的阙值。研究发现水分含量达到田间持水量的70%—75%时,最有利于水稻根系生长,在此基础上增加或降低根际溶氧量,水稻的产量及相关氮代谢均会受到显著影响[48]。总之,根系形态结构的改变必将导致水稻对土壤氮素吸收利用能力的改变,根系生物量大、直径大、空隙高度及不定根数量高的水稻品种在氮素吸收及产量上均有明显的优势,这将为今后选育理想根系品种提供重要参考。

2.3稻田水分管理对水稻光合速率的调控研究

3 稻田水分管理对氮素环境效应的影响

氮素利用率是决定氮肥增产效果的主要因素,受氮肥用量、施肥方法、水分管理等因素影响。长期淹水种植使稻田氮矿化速率极慢,还田秸秆等有机质分解不充分,导致土壤积累大量的酚醛木质素化合物,降低氮素有效性[75],这将阻碍水稻对土壤背景氮的吸收但对肥料氮吸收没有影响,加重水稻生产对肥料的依赖。以南太湖流域淹灌稻田为例,淹灌稻田中氮挥发、径流、淋失等途径是造成氮肥利用率低的主要原因,三者氮损失量分别占施氮量的20%—40%、1.4%—6.3%及1.0%—1.9%[76]。稻田氮素损失受温度、水分、氮源、pH 值、C/N、氧化还原电位等诸多因素影响,其中土壤持水量能够很好的反映土壤溶解氧的状况,因而通过调控稻田水分含量将影响稻田氮素损失。在稻田生态系统中,CH4是造成全球温室效应的主要气体。Liesack等[77]指出,稻田产生的CH4大约有高达36%—80%在根际微氧区域被甲烷氧化细菌消耗, 因此根际生物氧化在控制稻田温室气体排放过程中具有非常重要的作用[78]。甲烷氧化菌是一种严格的好氧菌, 而产生CH4、N2O等温室气体的甲烷细菌、反硝化细菌大部分都属于厌氧菌[79]。稻田持续淹水导致土壤缺氧,抑制甲烷氧化菌的活性。当频繁干湿交替及增加根际溶氧量后土壤的氧化还原电位增加,土壤微生物群落结构发生变化,甲烷氧化菌等好氧微生物活性显著增加,可抑制温室气体的产生。李香兰等[80]发现,稻田持续淹水处理CH4排放量是烤田处理的12—20倍。因此通过适宜的水分管理改善根系氮素、溶氧量状况,可能会降低甲烷细菌、反硝化细菌等厌氧微生物的数量和活性,减少CH4、N2O等温室气体的生成。

4 问题与展望

氮素生理利用率与光合作用紧密相关,水稻氮肥利用率的降低必然与植物光合氮素利用率的降低有关。张云桥等[83]发现,高氮效水稻品种的叶绿素含量较低,但光合速率下降却不明显;且氮高效水稻基因型在各生育期均具有理想的株型、叶面积指数、光合势和群体生长速率来协调其氮素高效吸收利用[84]。当前有关水稻光合同化物的形成与利用、氮素在体内运输和转运、籽粒充实等对于根际氧浓度的响应,以及相关吸收和转运蛋白的表达调控机制等方面报道较少。因此,加强这些方面的研究能够更好完善水稻氧营养代谢机制,将为高氮效水稻品种选育提供更好的参考价值。

基于以上的分析,可以认为稻田生态系统中水稻氮素利用需要从以下几方面进行深入研究:

(1) 合理的水分管理能促进水稻氮素吸收,提高氮素利用率。因此,通过控制稻田水氮互作协调土壤水-肥-气的平衡,根据影响氮肥利用率和光合作用的限制因素探索和开发新型水氮集成管理技术,将有利于构建理想水稻根系、健康稻田环境,提高水稻产量和氮素利用效率。

(2) 氮水平、氮形态能通过调控叶片光合速率影响水稻的生长发育及氮素利用率。加强水氮互作对水稻不同生育期光合速率的影响研究,明确光合氮素利用率与根际氮形态特征及溶氧量的响应关系,这将为我们全面阐述水氮互作提高水稻氮肥利用率的光合生理本质奠定基础。

(3)当前根际氧调控根系吸收特性的相关研究较少,进一步揭示不同根际氧浓度下水稻根系功能与养分利用间的内在联系是根际氧研究的发展趋势。水稻根系及植株的衰老主要受激素调控,明确根际氧与激素在延缓衰老中的互作机制,进而阐述溶氧量调控根系生长发育和生理功能的机理,提高根系机能并带动外界营养的高利用率以及光合产物的转运效率,对于水稻后期产量潜能的发挥和超高产栽培都具有重要科学意义。

[1]中国统计年鉴, 2014. http://www.stats.gov.cn/tjsj/ndsj/2014/indexch.Htm.

[2]Angela Hodge, Graziella Berta, Claude Doussan, Francisco Merchan, Martin Crespi. Plant root growth, architecture and function. Plant and Soil, 2009, 321(1/2): 153-187.

[3]Konstantin Yu Kulichikhin, Olli Aitio, Tamara V Chirkova, Kurt V Fagerstedt. Effect of oxygen concentration on intracellular pH, glucose-6-phosphate and NTP content in rice (Oryzasativa) and Wheat (Triticumaestivum) root tips: in vivo31P-NMR study. Physiologia Plantarum, 2007, 129(3): 507-518.

[4]Julia Bailey-Serres, Takeshi Fukao, Daniel J Gibbs, Michael J Holdsworth, Seung Cho Lee, Francesco Licausi, Pierdomenico Perata, Laurentius A C J Voesenek, Joost T van Dongen. Making sense of low oxygen sensing. Trends in Plant Science, 2012, 17(3): 129-138.

[5]赵锋, 张卫建, 章秀福, 王丹英, 徐春梅. 稻田增氧模式对水稻籽粒灌浆的影响. 中国水稻科学, 2011, 25(6): 605-612.

[6]Motoka Nakamura, Takatoshi Nakamura, Takayoshi Tsuchiya, Ko Noguchi. Functional linkage between N acquisition strategies and aeration capacities of hydrophytes for efficient oxygen consumption in roots. Physiologia Plantarum, 2013, 147(2): 135-146.

[7]Zhu L F, Yu S M, Jin Q Y. Effects of aerated irrigation on leaf senescence at late growth stage and grain yield of rice. Rice Science, 2012, 19(1): 44-48.

[8]Li Y L, Wang X X. Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions. Plant and Soil, 2013, 365(1/2): 115-126.

[9]潘英华, 康绍忠. 交替隔沟灌溉水分入渗规律及其对作物水分利用的影响. 农业工程学报, 2000, 16(1): 39-43.

[10]周江明, 姜家彪, 姜新有, 詹丽钏. 不同肥力稻田晚稻水氮耦合效应研究. 植物营养与肥料学报, 2008, 14(1): 28-35.

[11]Guo S W, Katrin Sehiemer, Burkhard Sattelmaeher, Ulf-Peter Hansen. Different apparent CO2compensation points in nitrate-and ammonium-growthPhaseolusvulgarisand the relationship to non-photorespiratory CO2evolution. Physiologia Plantarum, 2005, 123(3): 288-301.

[12]张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.

[13]赵霞, 徐春梅, 王丹英, 陈松, 计成林, 陈丽萍, 章秀福. 根际溶氧量在水稻氮素利用中的作用机制研究. 中国水稻科学, 2013, 27(6): 647-652.

[14]刘学, 朱练峰, 陈琛, 王会民, 欧阳由男, 禹盛苗, 金千瑜. 超微气泡增氧灌溉对水稻生育特性及产量的影响. 灌溉排水学报, 2009, 28(5): 89-91.

[15]段英华, 张亚丽, 沈其荣. 水稻根际的硝化作用与水稻的硝态氮营养. 土壤学报, 2004, 41(5): 803-809.

[16]Kirk G J D, Kronzucker H J. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: A modeling study. Annals of Botany, 2005, 96(4): 639-646.

[17]裴鹏刚, 张均华, 朱练峰, 禹盛苗, 金千瑜. 根际氧浓度调控水稻根系形态和生理特性研究进展. 中国稻米, 2013, 19(2): 6-8.

[18]Noah Fierer, Joshua P Schimel. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 2002, 34(6): 777-787.

[19]赵峰, 王丹英, 徐春梅, 张卫建, 章秀福. 水稻氧营养的生理、生态机制及环境效应研究进展. 中国水稻科学, 2009, 23(4): 335-341.

[20]Revsbech N P, Pedersen O, Reichardt W, Briones A. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biology and Fertility of Soils, 1999, 29(4): 379-385.

[21]Butterly C R, Bünemann E K, McNeill A M, Baldock J A, Marschner P. Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biology and Biochemistry, 2009, 41(7): 1406-1416.

[22]Maria Stenberg, Bo Stenberg, Tomas Rydberg. Effects of reduced tillage and liming on microbial activity and soil properties in a weakly-structured soil. Applied Soil Ecology, 2000, 14(2): 135-145.

[23]Francesco Licausi. Regulation of the molecular response to oxygen limitations in plants. New Phytologist, 2011, 190(3): 550-555.

[24]Halley C Oliveira, Luciano Freschi, Ladaslav Sodek. Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency. Plant Physiology and Biochemistry, 2013, 66: 141-149.

[25]Maria Stoimenova, Abir U Igamberdiev, Kapuganti Jagadis Gupta, Robert D Hill. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta, 2007, 226(2): 465-474.

[26]Faouzi Horchani, Samira Aschi-Smiti, Renaud Brouquisse. Involvement of nitrate reduction in the tolerance of tomato (SolanumlycopersicumL.) plants to prolonged root hypoxia. Acta Physiologiae Plantarum, 2010, 32(6): 1113-1123.

[27]Anne Botrel, Werner M Kaiser. Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta, 1997, 201(4): 496-501.

[28]Shi K, Ding X T, Dong D K, Zhou Y H, Yu J Q. Putrescine enhancement of tolerance to root-zone hypoxia inCucumissativus: a role for increased nitrate reduction. Functional Plant Biology, 2008, 35(4): 337-345.

[29]徐春梅, 王丹英, 陈松, 陈丽萍, 章秀福. 增氧对水稻根系生长与氮代谢的影响. 中国水稻科学, 2012, 26(3): 320-324.

[30]赵锋, 张卫建, 章秀福, 王丹英, 徐春梅. 连续增氧对不同基因型水稻分蘖期生长和氮代谢酶活性的影响. 作物学报, 2012, 38(2): 344-351.

[31]王绍华, 曹卫星, 丁艳锋, 田永超, 姜东. 水氮互作对水稻氮吸收与利用的影响. 中国农业科学, 2004, 37(4): 497-501.

[32]陈新红, 刘凯, 徐国伟, 王志琴, 杨建昌. 结实期氮素营养和土壤水分对水稻光合特性、产量及品质的影响. 上海交通大学学报: 农业科学版, 2004, 22(1): 48-53.

[33]孙永健, 孙园园, 李旭毅, 郭翔, 马均. 水氮互作下水稻氮代谢关键酶活性与氮素利用的关系. 作物学报, 2009, 35(11): 2055-2063.

[34]Trought M C T, Drew M C. Alleviation of injury to young wheat plants in anaerobic solution cultures in relation to the supply of nitrate and other inorganic nutrients. Journal of Experimental Botany, 1981, 32(3): 509-522.

[35]Wang X Z, Zhu J G, Gao R, Yasukazu H, Feng K. Nitrogen cycling and losses under rice-wheat rotations with coated urea and urea in the Taihu lake region. Pedosphere, 2007, 17(1): 62-69.

[36]Tan X Z, Shao D G, Liu H H, Yang F S, Xiao C, Yang H D. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy and Water Environment, 2013, 11(1/4): 381-395.

[37]Sepaskhah A R, Barzegar M. Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment. Agricultural Water Management, 2010, 98(1): 38-44.

[38]刘艳丽, 张斌, 胡峰, 乔洁, 张卫健. 干湿交替对水稻土碳氮矿化的影响. 土壤, 2008, 40(4): 554-560.

[39]何文寿, 李生秀, 李辉桃. 水稻对铵态氮和硝态氮吸收特性的研究. 中国水稻科学, 1998, 12(4): 249-252.

[40]Lon S, Chen N C, Chishaki N, Inanaga S. Behavior of N within rice plants, comparing between Japonica and Indica varieties. Ecology and Environment, 2004, 13(4): 646-650.

[41]Almeida A M, Vriezen W H, Van Der Straeten D. Molecular and physiological mechanisms of flooding avoidance and tolerance in rice. Russian Journal of Plant Physiology, 2003, 50(6): 743-751.

[42]Jean Armstrong, William Armstrong. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe2+and water uptake, and lateral root emergence. Annals of Botany, 2005, 96(4): 625-638.

[43]Jampeetong Arunothai, Brix Hans. Oxygen stress inSalvinianatans: Interactive effects of oxygen availability and nitrogen source. Environmental and Experimental Botany, 2009, 66(2): 153-159.

[44]Zhao F, Xu C M, Zhang W J, Zhang X F, Li F B, Chen J P, Wang D Y. Effects of rhizosphere dissolved oxygen content and nitrogen form on root traits and nitrogen accumulation in rice. Rice Science, 2011, 18(4): 304-310.

[45]杨菲, 谢小立. 稻田干湿交替过程生理生态效应研究综述. 杂交水稻, 2010, 25(2): 1-4.

[46]Jackson M B, Colmer T D. Response and adaptation by plants to flooding stress. Annals of Botany, 2005, 96(4): 501-505.

[47]王丹英, 韩勃, 章秀福, 邵国胜, 徐春梅, 符冠富. 水稻根际含氧量对根系生长的影响. 作物学报, 2008, 34(5): 803-808.

[48]张玉屏, 李金才, 黄义德, 黄文江. 水分胁迫对水稻根系生长和部分生理特性的影响. 安徽农业科学, 2001, 29(1): 58-59.

[50]Wang X B, Wu P, Hu B, Chen Q S. Effects of nitrate on the growth of lateral root and nitrogen absorption in rice. Acta Botanica Sinica, 2002, 44(6): 678-683.

[51]Herbert J Kronzucker, M Yaeesh Siddiqi, Anthony D M Glass, Guy J D Krik. Nitrate-ammonium synergism in rice: A subcellular flux analysis. Plant Physiology, 1999, 119(3): 1041-1046.

[55]Cao Y, Fan X R, Sun S B, Xu G H, Hu J, Shen Q R. Effect of nitrate on activities and transcript levels of nitrate reductase and glutamine synthetase in rice. Pedosphere, 2008, 18(5): 664-673.

[56]赵锋, 王丹英, 徐春梅, 张卫建, 李凤博, 毛海军, 章秀福. 根际增氧模式的水稻形态、生理及产量响应特征. 作物学报, 2010, 36(2): 303-312.

[57]Elizabeth A Ainsworth, Stephen P Long. What have we learned from 15 years of free-air CO2enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 2005, 165(2): 351-372.

[58]Andrew D B Leakey, Martin Uribelarrea, Elizabeth A Ainsworth, Shawna L Naidu, Alistair Rogers, Donald R Ort, Stephen P Long. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2concentration in the absence of drought. Plant Physiology, 2006, 140(2): 779-790.

[59]Debabrata Ray, Sheshshayee M S, Mukhopadhyay K, Bindumadhava H, Prasad T G, Kumar M Udaya. High nitrogen use efficiency in rice genotypes is associated with higher net Photosynthetic rate at lower Rubisco content. Biologia Plantarum, 2003, 46(2): 251-256.

[60]Oula Ghannoum, John R Evans, Wah Soon Chow, T John Andrews, Jann P Conroy, Susanne von Caemmerer. Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-Malic enzyme relative to NAD-Malic enzyme C4grasses. Plant Physiology, 2005, 137(2): 638-650.

[61]Amane Makino, Tetsuya Sato, Hiromi Nakano, Tadahiko Mae. Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances. Plant, 1997, 203(3): 390-398.

[62]Chandler J W, Dale J E. Nitrogen deficiency and fertilization effects on needle growth and Photosynthesis in Sitka spruce (Piceasilchensis). Tree Physiology, 1995, 15(12): 813-817.

[63]Charles R Warren. The photosynthetic limitation posed by internal conductance to CO2movement is increased by nutrient supply. Journal of Experimental Botany, 2004, 55(406): 2313-2321.

[64]Li Y, Yang X X, Ren B B, Shen Q R, Guo S W. Why nitrogen use efficiency decreased under high nitrogen supply of rice seedlings (OryzasativaL.)? Journal of Plant Growth Regulation, 2012, 31(1): 47-52.

[65]Pia Walch-Liu, Günter Neumann, Fritz Bangerth, Christof Engels. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. Journal of Experimental Botany, 2000, 51(343): 227-237.

[66]John M Bowler, Malcolm C Press. Effects of elevated CO2, nitrogen form and concentration on growth and photosynthesis of a fast-and slow-growing grass. New Phytologist, 1996, 132(3): 391-401.

[67]Guo S W, Brück H, Sattelmacher B. Effects of supplied nitrogen form on growth and water uptake of French bean (PhaseolusvulgarisL.) plants. Plant and Soil, 2002, 239(2): 267-275.

[68]Guo S W, Zhou Y, Shen Q R, Zhang F S. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations. Plant Biology, 2007, 9(1): 21-29.

[69]John A Raven. Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytologist, 1985, 101(1): 25-77.

[70]Li Y, Gao Y X, Xu X M, Shen Q R, Guo S W. Light-saturated photosynthetic rate in high-nitrogen rice (OryzasarivaL.) leaves is related to chloroplastic CO2concentration. Journal of Experimental Botany, 2009, 60(8): 2351-2360.

[71]Fort C, Fauveau M L, Muller F, Label P, Granier A, Dreyer E. Stomatal conductance, growth and root signaling in young oak seedlings subjected to partial soil drying. Tree Physiology, 1997, 17(5): 281-289.

[72]丁雷, 李英瑞, 李勇, 沈其荣, 郭世伟. 梯度干旱胁迫对水稻叶片光合和水分状况的影响. 中国水稻科学, 2014, 28(1): 65-70.

[73]陈贵, 周毅, 郭世伟, 沈其荣. 水分胁迫和不同形态氮素营养对苗期水稻光合特性的影响. 南京农业大学学报, 2007, 30(4): 78-81.

[74]李勇. 氮素营养对水稻光合作用与光合氮素利用率的影响机制研究[D]. 南京: 南京农业大学, 2011.

[75]Sabina Yeasmin, A K M Mominul Islam, A K M Aminul Islam. Nitrogen fractionation and its mineralization in paddy soils: A review. Journal of Agricultural Science Technology, 2012, 8(3): 775-793.

[76]曹志洪, 林先贵, 杨林章, 胡正义, 董元华, 尹睿. 论“稻田圈” 在保护城乡生态环境中的功能Ⅱ.稻田土壤氮素养分的累积、迁移及其生态环境意义. 土壤学报, 2006, 43(2): 256-260.

[77]Werner Liesack, Sylvia Schnell, Niels Peter Revsbech. Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 2000, 24(5): 625-645.

[78]Banker B C, Kludze H K, Alford D P, Delaune R D, Lindau C W. Methane sources and sinks in paddy rice soils: Relationship to emissions. Agriculture, Ecosystems & Environment, 1995, 53(3): 243-251.

[79]Karin Enwall, Laurent Philippot, Sara Hallin. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied and Environmental Microbiology, 2005, 71(12): 8335-8343.

[80]李香兰, 徐华, 曹金留, 蔡祖聪, 八木一行. 水分管理对水稻生长期CH4排放的影响. 土壤, 2007, 39(2): 238-240.

[81]Guo J H, Peng Y Z, Wang S Y, Zheng Y N, Huang H J, Wang Z W. Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresource Technology, 2009, 100(111): 2796-2802.

[82]Reddy K R, Patrick W H Jr. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 1975, 7(2): 87-94.

[83]张云桥, 吴荣生, 蒋宁, 刘桂华. 水稻的氮素利用效率与品种类型的关系. 植物生理学通讯, 1989, 25(2): 45-47.

[84]魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 杭杰, 马群, 张胜飞, 刘庆, 刘艳阳. 不同水稻氮利用效率基因型的物质生产与积累特性. 作物学报, 2007, 33(11): 1802-1809.

Effects of water management on rice nitrogen utilization: a review

CAO Xiaochuang1, LI Xiaoyan2, ZHU Lianfeng1, ZHANG Junhua1, YU Shengmiao1, WU Lianghuan2, JIN Qianyu1,*

1StateKeyLaboratoryofRiceBiology,ChinaNationalRiceResearchInstitute,Hangzhou310006,China

2MinistryofEducationKeyLaboratoryofEnvironmentalRemediationandEcosystemHealth,CollegeofEnvironmentalandResourceSciences,ZhejiangUniversity,Hangzhou310058,China

water management; rhizosphere dissolved oxygen; nitrogen metabolism; photosynthetic nitrogen-use efficiency; rice

10.5846/stxb201411202298

浙江省自然科学基金资助项目(LQ15C130004);国家重点基础研究发展973计划资助项目(2015CB150502);国家自然科学基金资助项目(31172032, 30900880)

2014-11-20; 网络出版日期:2015-10-30

Corresponding author.E-mail: jinqy@mail.hz.zj.cn

曹小闯, 李晓艳,朱练峰,张均华,禹盛苗,吴良欢,金千瑜.水分管理调控水稻氮素利用研究进展.生态学报,2016,36(13):3882-3890.

Cao X C, Li X Y, Zhu L F, Zhang J H, Yu S M, Wu L H, Jin Q Y.Effects of water management on rice nitrogen utilization: a review.Acta Ecologica Sinica,2016,36(13):3882-3890.

猜你喜欢
氧量根际氮素
一种催化器储氧量的测试及计算方法
根际微生物对植物与土壤交互调控的研究进展
黄花蒿叶水提物对三七根际尖孢镰刀菌生长的抑制作用
促植物生长根际细菌HG28-5对黄瓜苗期生长及根际土壤微生态的影响
基于GALM算法的循环流化床锅炉氧量软测量
浅谈1000MW锅炉运行中两侧氧量偏差大原因和调整运行
锅炉运行最佳氧量的确定
楸树无性系苗期氮素分配和氮素效率差异
基于光谱分析的玉米氮素营养诊断
氮素运筹对玉米干物质积累、氮素吸收分配及产量的影响